首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the effects of TNF‐α and IL‐1β on development and survival of bovine secondary follicle culture in vitro for 18 days. Secondary follicles (~0.2 mm) were isolated from ovarian cortex and individually cultured at 38.5°C, with 5% CO2 in air, for 18 days, in TCM‐199+ alone (cultured control) or supplemented with 10 ng/ml IL‐1β, 10 ng/ml TNF‐α or both TNF‐α and IL‐1β. The effects of these treatments on growth, follicular survival, antrum formation, viability, ultrastructure and mRNA levels for GDF‐9, c‐MOS, H1foo and Cyclin B1 were evaluated. The results showed that addition of TNF‐α to culture medium increased follicular diameter and rate of antrum formation, whereas that of IL‐1β and a mixture of IL‐1β and TNF‐α did not do so. Ultrastructural analysis showed that, among the tested cytokine treatments, follicles cultured in the presence of TNF‐α had the best‐preserved oocytes and granulosa cells. The presence of TNF‐α, IL‐1β or both did not influence the expression of mRNAs analysed. In conclusion, in contrast to IL‐1β, TNF‐α promotes growth of and antrum formation in in vitro cultured bovine secondary follicles, while their ultrastructure and viability were maintained.  相似文献   

2.
Horses are exquisitely sensitive to bacterial endotoxin and endotoxaemia is common in colic cases. In this study, gene expression of inflammatory cytokines was characterised in the blood of healthy horses following i.v. administration of lipopolysaccharide (LPS). Six horses received an LPS infusion and 6 controls received an equivalent volume of saline. Gene expression of genes encoding interleukin (IL)‐1α, IL‐1β, IL‐6, IL‐8, and tumour necrosis factor‐α (TNF‐α) was quantified by real‐time PCR. Gene expression of all inflammatory cytokines was upregulated following administration of LPS. Interleukin‐1α, IL‐1β, IL‐8 and TNF‐α gene expression peaked at 60 min, while IL‐6 expression peaked at 90 min post LPS infusion. Interleukin‐1β and IL‐6 messenger RNA expression levels were above the baseline values 3 h post LPS infusion, whereas IL‐1α, IL‐8 and TNF‐α expression levels returned to baseline values by 3 h after LPS infusion. It was concluded that LPS infusion upregulated gene expression of inflammatory cytokines in the blood of healthy horses.  相似文献   

3.
Background: Ketamine has immunomodulating effects both in vitro and in vivo during experimental endotoxemia in humans, rodents, and dogs. Hypothesis: Subanesthetic doses of ketamine will attenuate the clinical and immunologic responses to experimental endotoxemia in horses. Animals: Nineteen healthy mares of various breeds. Methods: Experimental study. Horses were randomized into 2 groups: ketamine‐treated horses (KET; n = 9) and saline‐treated horses (SAL; n = 10). Both groups received 30 ng/kg of lipopolysaccharide (LPS, Escherichia coli, O55:B5) 1 hour after the start of a continuous rate infusion (CRI) of racemic ketamine (KET) or physiologic saline (SAL). Clinical and hematological responses were documented and plasma concentrations of tumor necrosis factor‐α (TNF‐α) and thromboxane B2 (TXB2) were quantified. Results: All horses safely completed the study. The KET group exhibited transient excitation during the ketamine loading infusion (P < .05) and 1 hour after discontinuation of administration (P < .05). Neutrophilic leukocytosis was greater in the KET group 8 and 24 hours after administration of LPS (P < .05). Minor perturbations of plasma biochemistry results were considered clinically insignificant. Plasma TNF‐α and TXB2 production peaked 1.5 and 1 hours, respectively, after administration of LPS in both groups, but a significant difference between treatment groups was not demonstrated. Conclusions and Clinical Importance: A subanesthetic ketamine CRI is well tolerated by horses. A significant effect on the clinical or immunologic response to LPS administration, as assessed by clinical observation, hematological parameters, and TNF‐α and TXB2 production, was not identified in healthy horses with the subanesthetic dose of racemic ketamine utilized in this study.  相似文献   

4.
5.
β‐carotene is one of the most abundant carotenoids, has potential anti‐inflammatory effect, it has been reported that β‐carotene could suppress LPS‐induced inflammatory responses by inhibiting nuclear factor kappa B (NF‐κB) translocation, but the more detailed molecular mechanisms underlying the anti‐inflammatory action of β‐carotene remain to be fully understood. In this study, we investigated the influence of β‐carotene on the activation of JAK2/STAT3, MAPK, and NF‐κB signaling pathway induced by LPS in RAW264.7 cells and peritoneal macrophages. Cells were treated with different concentrations of β‐carotene for 3 hr after LPS treatment for 24 hr. The mRNA expression and the release of IL‐1β, IL‐6, and TNF‐α were evaluated by RT‐PCR and ELISA, and the level of signaling proteins of JAK2/STAT3, MAPK, and NF‐κB signaling pathway were detected by Western blot. The results showed that β‐carotene significantly suppressed (p < 0.05) LPS‐induced release of IL‐1β, IL‐6, and TNF‐α and their mRNA expression. LPS‐induced JAK2/STAT3, IκB/NF‐κB p65, JNK/p38 MAPK signal activation were significantly attenuated (p < 0.05) by β‐carotene in a dose‐dependent manner. In conclusion, β‐carotene could attenuate LPS‐induced inflammation via inhibition of the NF‐κB, JAK2/STAT3, and JNK/p38 MAPK signaling pathways in macrophages.  相似文献   

6.
This study evaluated the effects of berberine on growth performance, immunity, haematological parameters, antioxidant capacity, and the expression of immune response‐related genes in lipopolysaccharide (LPS)‐challenged broilers. We assigned 120 one‐day‐old male broilers (Ross 308) to two treatment groups; each group included two subgroups, each of which included six replicates of five birds per replicate. The experiment used a 2 × 2 factorial arrangement with berberine treatment (0 or 60 mg/kg dietary) and challenge status [injection of saline (9 g/L w/v) or LPS (1.5 mg/kg body weight)] as the main factors. On days 14, 16, 18 and 20, broilers were intraperitoneally injected with LPS or physiological saline. Blood and liver samples were collected on day 21. Dietary berberine supplementation significantly alleviated the compromised average daily gain and average daily feed intake (p < 0.05) caused by LPS. The LPS challenge led to increased lymphocyte and white blood cell (WBC) counts, malondialdehyde (serum and liver) content, and immunoglobulin G and M, tumour necrosis factor‐α (TNF‐α) and interleukin‐1β (IL‐1β) expression (p < 0.05) and significantly reduced serum total superoxide dismutase (T‐SOD) activity (p < 0.05). Dietary berberine significantly mitigated the LPS‐induced decreases in the mRNA expression of nuclear factor‐kappa B (NF‐κB), TNF‐α, IL‐1β, inducible nitrite synthase and cyclooxygenase‐2 (p < 0.05) in the liver. In conclusion, berberine supplementation has a positive effect on LPS challenge, which may be related to the increase in antioxidant enzyme activity and inhibition of both NF‐κB signalling and the expression of inflammatory mediators.  相似文献   

7.
8.
Background: Insulin resistance has been associated with risk of laminitis in horses. Genes coding for proinflammatory cytokines and chemokines are expressed more in visceral adipose tissue than in subcutaneous adipose tissue of insulin‐resistant (IR) humans and rodents. Hypothesis/Objectives: To investigate adipose depot‐specific cytokine and chemokine gene expression in horses and its relationship to insulin sensitivity (SI). Animals: Eleven light breed mares. Methods: Animals were classified as IR (SI = 0.58 ± 0.31 × 10?4 L/min/mU; n = 5) or insulin sensitive (IS; SI = 2.59 ± 1.21 × 10?4 L/min/mU; n = 6) based on results of a frequently sampled intravenous glucose tolerance test. Omental, retroperitoneal, and mesocolonic fat was collected by ventral midline celiotomy; incisional nuchal ligament and tail head adipose tissue biopsy specimens were collected concurrently. The expression of tumor necrosis factor‐α (TNF‐α), interleukin (IL)‐1β, IL‐6, plasminogen activator inhibitor‐1 (PAI‐1), and monocyte chemoattractant protein‐1 (MCP‐1) in each depot was measured by real‐time quantitative polymerase chain reaction. Data were analyzed by 2‐way analysis of variance for repeated measures (P < .05). Results: No differences in TNF‐α, IL‐1β, IL‐6, PAI‐1, or MCP‐1 mRNA concentrations were noted between IR and IS groups for each depot. Concentrations of mRNA coding for IL‐1β (P= .0005) and IL‐6 (P= .004) were significantly higher in nuchal ligament adipose tissue than in other depots. Conclusions and Clinical Importance: These data suggest that the nuchal ligament depot has unique biological behavior in the horse and is more likely to adopt an inflammatory phenotype than other depots examined. Visceral fat may not contribute to the pathogenesis of obesity‐related disorders in the horse as in other species.  相似文献   

9.
Donalisio, C., Barbero, R., Cuniberti, B., Vercelli, C., Casalone, M., Re, G. Effects of flunixin meglumine and ketoprofen on mediator production in ex vivo and in vitro models of inflammation in healthy dairy cows. J. vet. Pharmacol. Therap.  36 , 130–139. In this study, ex vivo assays were carried out in dairy cows to evaluate the anti‐inflammatory effects of two nonsteroidal anti‐inflammatory drugs: ketoprofen (KETO) and flunixin meglumine (FM). Twelve healthy Holstein dairy cattle were randomly allocated to two groups (n=6): group 1 received FM and group 2 received KETO at recommended therapeutic dosages. The anti‐inflammatory effects of both drugs were determined by measuring the production of coagulation‐induced thromboxane B2 (TXB2), lipopolysaccharides (LPS) (10 μg/mL)‐induced prostaglandin E2 (PGE2), and calcium ionophore (60 μm )‐induced leukotrien B4 (LTB4). Cytokine production was assessed by measuring tumor necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ) and interleukin‐8 (CXCL8) concentrations after incubation in the presence of 10 μg/mL LPS. The IC50 of FM and KETO was determined in vitro by determining the concentration of TXB2 and PGE2 in the presence of scalar drug concentrations (10?9–10?3 m ). Both FM and KETO inhibited the two COX isoforms in vitro, but showed a preference for COX‐1. FM and KETO showed similar anti‐inflammatory effects in the cow.  相似文献   

10.
This study was conducted to investigate the immunomodulatory effect of a water‐soluble polysaccharide extracted from Artemisia argyi (AAP) in vitro. The effect was assessed in peripheral blood leucocytes (PBLs) of broilers, which were incubated with different AAP concentrations (0, 25, 50, 100, and 200 μg/ml) for 24 hr at 37°C in a 5% CO2 incubator. The results showed that, compared with the control group, immunoglobulin M (IgM) concentration was increased in the supernatant of the 100 μg/ml AAP‐treated group (p < .05), and immunoglobulin G (IgG) concentration was increased in the supernatant of the 200 μg/ml of AAP group (p < .05). In terms of cytokine production, production of interleukin‐1beta (IL‐1β), interleukin‐6 (IL‐6) and tumour necrosis factor‐alpha (TNF‐α) in the supernatant was enhanced in the AAP group in a dose‐dependent function, as well as enhanced mRNA expressions were showed in the cells (p < .05). The highest concentration of these three cytokines was observed in different AAP groups (IL‐1β for 25 μg/ml of AAP, IL‐6 for 100, and 200 μg/ml of AAP, and TNF‐α for 100 μg/ml of AAP respectively). The concentration of nitric oxide (NO) was increased when using AAP at the concentration of 100 μg/ml (p < .05) as compared to the control group. No significant effects on inducible nitric oxide synthase, Toll‐like receptor 4 (TLR4), myeloid differentiation factor 88 and nuclear factor Kappa B (NF‐κB) mRNA level were observed at each concentration of AAP. In conclusion, we found that AAP can specifically promote the production of immunoglobulins (IgM and IgG), cytokines (IL‐1β, IL‐6 and TNF‐α), as well as the NO concentration in vitro, but not through the activation of the TLR4/NF‐κB signalling pathway.  相似文献   

11.
The biological properties of Piper sarmentosum render it a potential substitute for antibiotics in livestock feed. This study evaluated the effects of P. sarmentosum extract (PSE) on the growth performance, antioxidant capability and immune response of weaned piglets. Eighty 21‐d‐old weaned piglets were selected and randomly allocated to one of four dietary treatments with five replicates of four pigs each. The dietary treatments consisted of a basal diet supplemented with 0 (T0), 50 (T50), 100 (T100) or 200 (T200) mg/kg PSE. The feeding trial lasted 4 weeks. The results revealed that the T50 group had the highest average daily gain (ADG) and average daily feed intake (ADFI) throughout the feeding trial (p < 0.05). Additionally, the T50 group had higher (p < 0.05) serum glutathione peroxidase activity (GSH‐Px) and lower (p < 0.05) serum malondialdehyde (MDA) levels than the T0 group at 4 weeks post‐weaning (p < 0.05). Serum levels of interleukin‐1β (IL‐1β) and tumour necrosis factor‐α (TNF‐α) decreased, while serum levels of interleukin‐4 (IL‐4), interleukin‐10 (IL‐10) and transforming growth factor‐β (TGF‐β) increased by PSE supplementation at 4 weeks post‐weaning (p < 0.05). PSE supplementation upregulated the mRNA expression of IL‐4, IL‐10 and TGF‐β and downregulated the mRNA expression of TNF‐α, IL‐1β and interleukin‐6 (IL‐6) in the ileal mucosal layer of piglets (p < 0.05). In summary, our study findings revealed that PSE supplementation improved the antioxidant capability, and reduced inflammation, which may be beneficial to weaned piglet health.  相似文献   

12.
13.
The aim of this study was to determine which cells are the source of production and target for leukotriene (LTs) action within the bovine ovary. Luteal (CL, days 14–16 of the oestrous cycle), steroidogenic cells (LSC) and endothelial cells (LEC) of the bovine corpus luteum (CL), and granulosa cells (GC) were isolated enzymatically, cultured in a monolayer and incubated with LTC4, LTB4, Azelastine (an antagonist of LTC4) or Dapsone (an antagonist of LTB4). Then cells were collected for determination of mRNA expression for LT receptors (LTRs) and 5‐lipoxygenase (5‐LO) by real time RT‐PCR, and media were collected for determination of prostaglandin (PG)E2, F, progesterone (P4; LSC only), endothelin‐1 (ET‐1; LEC only) and 17‐β oestradiol (E2; GC only). The greatest mRNA expression for LTR‐II and 5‐LO were found in LEC, whereas LTR‐I mRNA expression did not differ among cell types. The level of PGE2 increased after LTs treatment in each type of ovarian cell, excluding LTC4 treatment in LEC. The secretion of PGF was also increased by LTs, but decreased after LTB4 treatment of LSC. In GC cultures, both LTs stimulated E2 secretion; in LEC cultures, LTB4 stimulated whereas LTC4 inhibited P4 secretion; in LEC cultures, LTC4 stimulated but LTB4 inhibited ET‐1 secretion. The results show that LTs are produced locally and are involved in PGs production/secretion in all examined cells (LSC, LEC and GC) of bovine ovary. Leukotriene treatment modulate secretion of E2, by GC, P4 by LSC and ET‐1 by LEC, which indicates that LTs are involved in regulation of ovarian secretory functions.  相似文献   

14.
Polymyxin‐B is used to treat equine systemic inflammation. Bacterial toxins other than lipopolysaccharide (LPS) contribute to systemic inflammation but the effects of polymyxin‐B on these are poorly defined. Whole blood aliquots from six healthy horses diluted 1:1 with RPMI were incubated for 21 hr with 1 μg/ml of LPS, lipoteichoic acid (LTA) or peptidoglycan (PGN) in the presence of increasing concentrations of polymyxin‐B (10–3000 μg/ml). A murine L929 fibroblast bioassay was used to measure TNF‐α activity. Polymyxin‐B significantly inhibited the effects of all three bacterial toxins. Analysis of variance showed the IC50 value for polymyxin‐B for TNF‐α inhibition caused by LTA (11.19 ± 2.89 μg/ml polymyxin‐B) was significantly lower (p = .009) than the values for LPS (46.48 ± 9.93 μg/ml) and PGN (54.44 ± 8.97 μg/ml). There was no significant difference in IC50 values between LPS and PGN (p > .05). Maximum inhibition of TNF‐α was 77.4%, 73.0% and 82.7% for LPS, PGN and LTA, respectively and was not significantly different between toxins. At the two highest concentrations of polymyxin‐B, TNF‐α began to increase. These data suggest that polymyxin‐B may inhibit the effects of bacterial toxins other than LPS and might be a more potent inhibitor of LTA than LPS or PGN.  相似文献   

15.
Acepromazine (ACP), a member of the phenothiazine family, has antioxidant properties and interacts with reactive oxygen species produced by stimulated neutrophils ( Serteyn et al. 1999 ). We found that ACP reduced the differentiation of monocytes induced by an overnight incubation with a crude Chlamydia pneumoniae extract ( Serteyn et al. 2001 ). The same model was used to test the effects of phenothiazines on the TNF‐α release by activated monocytes. A crude Chlamydia pneumoniae extract was obtained by mechanical disruption and centrifugation (1 minute, 1500 r.p.m.) of 78 hours infected McCoy cells. Monocytes (THP1 cell line; 2 × 106 cells by assay) were incubated overnight with 30 µL of Chlamydia pneumoniae crude extract (equivalent to an endotoxin charge of 3.5 pg) in the presence or absence of phenothiazines (from 10?6 to 10?4 M) ( Mouithys‐Mickalad et al. 2001 ). For estimation of TNF‐α release, the supernatants were collected, centrifuged (to eliminate the undifferentiated monocytes) and used for TNF‐α measurements (n = 6) (Quantikine HS human TNF‐α, R&D Systems, UK). Acepromazine was compared to other phenothiazines (chlorpromazine, trifluoperazine) or to structural analogues of phenothiazines (phenoxazine, thioxanthen‐9‐one and methylene blue). For each assay, cytotoxicity was evaluated by microscopic examination and blue trypan exclusion method. Mean values of TNF‐α were compared by a Student t‐test (p < 0.05). TNF‐α release by Chlamydia‐treated THP1 was significantly decreased by ACP in a dose‐dependent manner, 378 ± 30, 209 ± 38 and 189 ± 35 ng mL?1 for 10?6, 10?5 and 10?4 M compared to the control values 385 ± 9 ng mL?1. Similar inhibitions of TNF‐α release were obtained with trifluoperazine (313 ± 25 and 265 ± 14 ng mL?1 at 10?6 and 10?5 M) and chlorpromazine (323 ± 29 and 227 ± 13 ng mL?1 at 10?6 and 10?5 M), but at 10?4 M, these two drugs were cytotoxic. The other structurally parent compounds increased significantly the TNF‐α production: 630 ± 46 and 468 ± 60 ng mL?1 for thioxanthen‐9‐one and 547 ± 17 and 331 ± 111 ng mL?1 for methylene blue at 10?5 and 10?6 (M). At 10?4 M, the two compounds were cytotoxic. Phenoxazine increased the TNF‐α production, slightly at 10?6 and 10?5 M (444 ± 39 and 424 ± 16 ng mL?1, respectively) and significantly at 10?4 M (959 ± 30 ng mL?1). Further studies are needed to verify if the inhibition of TNF‐α release by some phenothiazines could be linked to a reduction of the signal transduction, especially the NF‐κB pathway. These results could be interesting for the anaesthesia or treatment of animals suffering from a systemic inflammatory reaction.  相似文献   

16.
Objectives Phase I: To evaluate levels of prostaglandin E2 (PGE2), nitrites and nitrates (NOx), tumor necrosis factor‐alpha (TNF‐α) and expression of inducible cyclo‐oxygenase (COX‐2), nitric oxide synthase (NOS‐2), and matrix metalloproteinases (MMP‐3 and ‐9) in canine aqueous humor following repeated anterior chamber paracenteses (ACP). Phase II: to evaluate the effect of carprofen on PGE2, NOx, and TNF‐α in canine aqueous humor following ACP. Animals studied Four beagles in phase I and 8 beagles in phase II. Procedures Phase I: ACP was performed at time (T) 0, 4 and 8 h. Phase II: A randomized, placebo‐controlled cross‐over design with four dogs per group where carprofen was given 4.4 mg/kg/day on day (D) 1, 2 and 3. ACP was performed at T0 and T1.5 on D3. Statistical analysis was performed with repeated measures anova and post hoc Tukey‐Kramer multiple‐comparison procedure. In phase II, TNF‐α level was analyzed with a Wilcoxon signed‐rank test. Results Phase I: PGE2 significantly increased (P < 0.0001) to plateau at T4. NOX was decreased at T4 (P < 0.06), but increased at T8 (P < 0.0001). COX‐2 showed detectable expression only at T8. TNF‐α, NOS‐2, MMP‐3 and ‐9 were undetectable at all time points. Phase II: At T1.5, PGE2 was significantly elevated in both groups but was lower in the carprofen group (P = 0.037). NOx and TNF‐α did not statistically increase in either group. Conclusions Following ACP, significant increases in PGE2 levels confirmed inflammation characterized by a rise of COX‐2. The NOx pathway took longer to induce as compared with PGE2. Carprofen decreased PGE2 levels and could help control intraocular inflammation.  相似文献   

17.
The aim of this study was to determine leukotrienes (LTs) functions in the bovine corpus luteum (BCL) during the oestrous cycle. In steroidogenic CL cells we examined the effect of luteotropic [LH, prostaglandin E2 (PGE2)] and luteolytic (PGF, cytokines) factors on: the levels of LTB4 and C4, the expression of 5‐lipoxygenase (LO), LT receptors type I (LTR‐I) and LTR‐II, and the effects of LTB4 and C4 stimulations on the levels of progesterone (P4), PGE2, F and nitric oxide (NO) metabolites. Both luteolytic and luteotropic factors stimulated 5‐LO expression on days 2–4 and 17–19 of the cycle. Leukotriene receptors type I expression increased after PGE2 and tumour necrosis factor α with interferon γ (TNF/IFN) stimulation on days 2–4 of the cycle. Leukotriene receptor type II expression increased after PGE and TNF/IFN stimulation on days 2–4 and 17–19 of the cycle, and LTR‐II expression on days 8–10 of the cycle was unchanged after cell stimulation with any factor. Leukotriene B4 level increased after BSC incubation with luteotropic factors during all examined days of the cycle and after cytokine stimulation at early‐ and mid‐luteal stages, whereas luteolytic factors stimulated LTC4 secretion over the entire cycle. Leukotriene B4 stimulated P4 secretion at the mid‐luteal stage and stimulated NO secretion during all examined phases. Leukotriene B4 stimulated PGE2 secretion at the early‐ and mid‐luteal stage. Leukotriene C4 inhibited P4 secretion at the mid‐ and regressing‐luteal stage, stimulated NO (entire cycle) and PGF at mid‐ and regressing‐luteal phases. Leukotrienes modulate steroidogenic cells functions, depending on the stage of the cycle. Leukotriene B4 plays a luteotropic role stimulating P4 and PGE2 secretions; LTC4 stimulates the secretion of luteolytic factors and enhances the luteolytic cascade within BCL.  相似文献   

18.

Background

People with critical illness (CI) commonly develop various forms of immune dysfunction, however, there is limited information concerning immune dysfunction in dogs with CI.

Hypothesis

The immune response in CI dogs differs from that of healthy dogs.

Animals

Immunologic variables were compared between 14 dogs with CI, defined as APPLEfast score of >20 points, admitted to the University of Missouri Veterinary Health Center Small Animal Clinic Intensive Care Unit and healthy controls (n = 15).

Methods

Cohort study evaluating constitutive and lipopolysaccharide (LPS)‐stimulated TNF‐α, IL‐6, and IL‐10 production, phagocytosis of opsonized E. coli and respiratory burst capacity after opsonized E. coli or phorbol 12‐myristate 13‐acetate (PMA) stimulation, peripheral blood lymphocyte phenotype, and monocyte expressions of HLA‐DR and TLR‐4.

Results

Lipopolysaccharide‐stimulated leukocyte TNF‐α (median, Q1, Q3; CI, 49, 49, 120; control, 655, 446, 1174 pg/mL; P = < 0.001), IL‐6 (median, Q1, Q3; CI, 49, 49, 64; control, 100, 49, 166 pg/mL; P = 0.029), and IL‐10 (CI, 49, 49, 56; control, 96, 49, 203 pg/mL; P = 0.014) production and both E. coli (median, Q1, Q3; CI, 60.5, 43, 88.5; control, 86.6, 81, 89.2%; P = 0.047) and PMA (CI, 40, 11.7, 70; control, 93, 83, 97.6%; P = < 0.001)‐stimulated respiratory burst capacity significantly decreased in CI dogs. Percentage of monocytes expressing TLR‐4 greater in the CI dogs (median, Q1, Q3; CI, 46.9, 24.3, 64.2; control, 16.4, 9.4, 26.2%; P = 0.005).

Conclusion

These findings suggest dogs with CI develop immune system alterations that result in reduced respiratory burst function and cytokine production despite upregulation of TLR‐4.  相似文献   

19.
Despite the severity and common occurrence of equine endotoxaemia, the available anti‐endotoxic treatments do not effectively target key inflammatory mechanisms such as leucocyte activation and cytokine production. In this study, four compounds with potential anti‐endotoxic effects, namely rolipram, azithromycin, ethyl pyruvate and metformin, were investigated in vitro using equine whole blood stimulated with bacterial lipopolysaccharide. TNF‐α and IL‐1β production were measured in plasma. Rolipram was the most potent inhibitor of cytokine production (IC50 0.84 and 4.68 μm for TNF‐α and IL‐1β, respectively) with almost complete inhibition of TNF‐α, but inhibited IL‐1β by only 39.46%. Azithromycin produced almost complete inhibition of both cytokines, but tended to be less potent than rolipram (IC50 10.66 and 17.4 μm for TNF‐α and IL‐1β, respectively). Metformin inhibited TNF‐α production with similar potency to rolipram and azithromycin (IC50 3.35 μm ) but showed significantly lower efficacy (45.93%; P < 0.05), and had no inhibitory effect on IL‐1β. Ethyl pyruvate was the least potent (IC50 68.35 μm and >10 mm for TNF‐α and IL‐1β production, respectively). Further work is required to investigate whether these or related compounds may have potential use in the treatment of equine endotoxaemia in vivo.  相似文献   

20.

Background

The hypothalamic‐pituitary‐adrenal (HPA) is influenced by the proinflammatory cytokines IL‐6, IL‐1β, and TNF‐α in critically ill humans. Information about the association of cytokines with the HPA axis in neonatal foals is lacking.

Hypothesis/Objectives

The objectives were to describe for hospitalized septic and nonseptic foals (1) temporal changes in blood concentrations of ACTH, and cortisol, and leukocyte cytokine gene expression, and (2) coassociation of these HPA axis hormones with blood leukocyte cytokine gene expression.

Animals

Hospitalized septic foals (N = 15) and hospitalized nonseptic foals (N = 11).

Methods

Blood samples, obtained from study foals at admission (T = 0), and 24 (T = 1), 48 (T = 2), 72 (T = 3), and 96 (T = 4) hours after admission, were processed to isolate RNA from leukocytes and to harvest plasma and serum for hormone assays. Plasma ACTH and serum cortisol concentrations were determined by radioimmunoassay. Leukocyte mRNA expression of IL‐1β IL‐6, IL‐8, IL‐10, and TNF‐α was determined using RT‐PCR.

Results

Cortisol concentrations were greater (P < .05) in foals at admission than at other time points. The expressions of IL‐8 and IL‐10 mRNA were lower (P < .05) at each time point in septic than in nonseptic foals. Among septic foals, ACTH was positively associated (P = .0026) with IL‐6 mRNA expression.

Conclusions

Sepsis influences secretion of the HPA axis hormones and expression of cytokines in foals. A positive association with the HPA axis and IL‐6 expression was detected. The clinical importance of these findings requires additional study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号