首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
β‐carotene is one of the most abundant carotenoids, has potential anti‐inflammatory effect, it has been reported that β‐carotene could suppress LPS‐induced inflammatory responses by inhibiting nuclear factor kappa B (NF‐κB) translocation, but the more detailed molecular mechanisms underlying the anti‐inflammatory action of β‐carotene remain to be fully understood. In this study, we investigated the influence of β‐carotene on the activation of JAK2/STAT3, MAPK, and NF‐κB signaling pathway induced by LPS in RAW264.7 cells and peritoneal macrophages. Cells were treated with different concentrations of β‐carotene for 3 hr after LPS treatment for 24 hr. The mRNA expression and the release of IL‐1β, IL‐6, and TNF‐α were evaluated by RT‐PCR and ELISA, and the level of signaling proteins of JAK2/STAT3, MAPK, and NF‐κB signaling pathway were detected by Western blot. The results showed that β‐carotene significantly suppressed (p < 0.05) LPS‐induced release of IL‐1β, IL‐6, and TNF‐α and their mRNA expression. LPS‐induced JAK2/STAT3, IκB/NF‐κB p65, JNK/p38 MAPK signal activation were significantly attenuated (p < 0.05) by β‐carotene in a dose‐dependent manner. In conclusion, β‐carotene could attenuate LPS‐induced inflammation via inhibition of the NF‐κB, JAK2/STAT3, and JNK/p38 MAPK signaling pathways in macrophages.  相似文献   

2.
This study was conducted to investigate the immunomodulatory effect of a water‐soluble polysaccharide extracted from Artemisia argyi (AAP) in vitro. The effect was assessed in peripheral blood leucocytes (PBLs) of broilers, which were incubated with different AAP concentrations (0, 25, 50, 100, and 200 μg/ml) for 24 hr at 37°C in a 5% CO2 incubator. The results showed that, compared with the control group, immunoglobulin M (IgM) concentration was increased in the supernatant of the 100 μg/ml AAP‐treated group (p < .05), and immunoglobulin G (IgG) concentration was increased in the supernatant of the 200 μg/ml of AAP group (p < .05). In terms of cytokine production, production of interleukin‐1beta (IL‐1β), interleukin‐6 (IL‐6) and tumour necrosis factor‐alpha (TNF‐α) in the supernatant was enhanced in the AAP group in a dose‐dependent function, as well as enhanced mRNA expressions were showed in the cells (p < .05). The highest concentration of these three cytokines was observed in different AAP groups (IL‐1β for 25 μg/ml of AAP, IL‐6 for 100, and 200 μg/ml of AAP, and TNF‐α for 100 μg/ml of AAP respectively). The concentration of nitric oxide (NO) was increased when using AAP at the concentration of 100 μg/ml (p < .05) as compared to the control group. No significant effects on inducible nitric oxide synthase, Toll‐like receptor 4 (TLR4), myeloid differentiation factor 88 and nuclear factor Kappa B (NF‐κB) mRNA level were observed at each concentration of AAP. In conclusion, we found that AAP can specifically promote the production of immunoglobulins (IgM and IgG), cytokines (IL‐1β, IL‐6 and TNF‐α), as well as the NO concentration in vitro, but not through the activation of the TLR4/NF‐κB signalling pathway.  相似文献   

3.
This study investigated the protective effects of probiotic on heat stress‐induced intestinal injury and inflammatory response in broilers. A total of 180 male broilers were randomly allocated to three treatments with four replicates each from 22 to 42 days of age. The broilers were either raised under thermoneutral (TN) conditions (23 ± 1°C) or subjected to cyclic heat stress (28–35–28°C for 12 hr daily). The broilers kept at TN conditions were fed a basal diet, and those exposed to heat stress were fed basal diets supplemented with or without probiotic at a dose of 1.5 × 108 cfu/kg. Compared with the TN group, heat stress decreased (p < .05) the growth performance, reduced (p < .05) villus height and villus height: crypt depth ratio in intestinal mucosa, increased (p < .05) serum levels of D‐lactic acid on day 28 and endotoxin, TNF‐α and IL‐6 on day 42, and decreased (p < .05) serum IL‐10 content on day 42. Dietary supplementation of probiotic reversed (p < .05) all these changes except for the growth performance in heat‐stressed broilers. In conclusion, dietary inclusion of probiotic could improve intestinal morphology and barrier function, alleviate inflammatory response, but exert no ameliorative effect on growth performance of broilers under cyclic heat stress.  相似文献   

4.
This experiment was conducted to evaluate the effects of astragalus polysaccharides (Aps) and ginseng polysaccharide (Gps) on growth performance, liver function, immune function, TLR4 signalling pathways and intestinal barrier in weaned piglets challenged with lipopolysaccharide (LPS). In an experiment spanning 28 days, 180 weaned piglets were randomly divided into three treatment groups: basal diet (Con), basal diet supplemented with 800 mg/kg Gps (Gps) and basal diet supplemented with 800 mg/kg Aps (Aps). At the end of the experiment, 12 piglets of each group were selected; half (n = 6) were intraperitoneally injected with LPS and half with normal saline. Dietary supplementation with Aps and Gps significantly increased (p < .05) the average daily gain and feed conversion rate. Lipopolysaccharide challenge increased (p < .05) expression of serum urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β) and tumour inflammatory factor-α (TNF-α), but decreased (p < .05) serum superoxide dismutase (SOD) level, total antioxidant capacity (T-AOC) and immunoglobulin A (IgA) expression. Lipopolysaccharide-challenged piglets fed with Aps or Gps had lower (p < .05) BUN, ALT, AST, IL-1β and TNF-α levels and greater (p < .05) SOD, T-AOC and IgA levels. Lipopolysaccharide challenge increased (p < .05) the expression of TLR4, MyD88 and NF-κB, and LPS-challenged piglets fed diets supplemented with Aps or Gps increased TLR4 and MyD88 and decreased NF-κB expression. Lipopolysaccharide challenge reduced (p < .05) the jejunal villus height, and piglets fed with Aps or Gps had increased (p < .05) jejunal villus height. Supplementation with Aps or Gps enhanced the expression of occludin and claudin in challenged or unchallenged piglets. In conclusion, dietary supplementation with Aps or Gps enhanced piglet growth performance, alleviated liver dysfunction and reduced immunological stress caused by LPS, as well as increased the intestinal barrier function.  相似文献   

5.
This study was to investigate the effects of Epigallocatechin‐3‐gallate (EGCG) on intestinal morphology, antioxidant capacity and anti‐inflammatory response in heat‐stressed broiler. A total of 192 2‐week‐old Arbour Acres broilers chickens were divided into four groups with six replicates per group and eight chickens per replicate: one thermoneutral control group (28°C, group TN), which was fed the basal diet; and three cyclic high‐temperature groups (35°C from 7:00 to 19:00 hr; 28°C from 19:00 hr to 7:00 hr, heat stress group), which were fed the basal diet supplementation with EGCG 0 mg/kg (group HS0), 300 mg/kg (group HS300) and 600 mg/kg (group HS600). The gut morphology and intestinal mucosal oxidative stress indicators, as well as intestinal barrier‐related gene expression, were analysed. The results showed that compared with group TN, heat stress reduced the villus height (VH), activities of glutathione peroxidase (GSH‐Px), superoxide dismutase (SOD)and catalase (CAT), increased the crypt depth (CD) and malondialdehyde (MDA)content at 21, 28 and 35 days (p < 0.05). After the heat‐stressed broilers were supplemented with EGCG, VH, VH/CD (V/C), and the activities of GSH‐Px, SOD and CAT were increased, and CD and MDA content were reduced compared with those in group HS0 without EGCG supplementation at 21, 28 and 35 days (p < 0.05). The EGCG supplementation promoted the gene expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2), Claudin‐1, Mucin 2 (Muc2) and alleviated the nuclear factor‐kappa B (NF‐κB) and lipopolysaccharide‐induced tumour necrosis factor (LITAF) gene expression compared with group HS0 (p < 0.05). Moreover, intestinal morphology was strongly correlated with antioxidant ability and inflammatory response. In conclusion, EGCG alleviated the gut oxidative injury of heat‐stressed broilers by enhancing antioxidant capacity and inhibiting inflammatory response.  相似文献   

6.
The objective of this study was to assess the effects of guanidinoacetic acid (GAA) on growth performance, creatine deposition and blood amino acid (AA) profile on broiler chickens. In Exp. 1, a total of 540 one‐day‐old Arbor Acres male broilers (average initial body weight, 45.23 ± 0.35 g) were divided randomly into five treatments with six replicates of 18 chicks each. Broilers were fed corn–soybean meal‐basal diets supplemented with 0, 600, 800, 1,000 or 1,200 mg/kg GAA for 42 days respectively. Results showed that dietary GAA inclusion increased average daily gain (ADG) and improved gain‐to‐feed ratio (G:F) from 1 to 42 days (p < 0.01). However, average daily feed intake was unaffected by dietary supplementation of GAA. As GAA inclusion increased, the contents of creatine in plasma and kidney were increased (linear, p < 0.01), while the contents of GAA and creatine in liver were decreased (linear, p < 0.01). Similarly, GAA supplementation was inversely related to concentrations of most essential AA in plasma. In Exp. 2, a total of 432 one‐day‐old Arbor Acres male broilers (average initial body weight, 39.78 ± 0.58 g) were divided randomly into four treatments with six replicates of 18 chicks each. Birds were fed a corn–soybean meal‐basal diet supplemented with 0, 200, 400 or 600 mg/kg GAA for 42 days respectively. Dietary inclusion of 600 mg/kg GAA significantly increased ADG and G:F of broilers (p < 0.05). In conclusion, dietary supplementation of 600–1,200 mg/kg GAA can effectively improve the growth performance in broiler chickens by affecting creatine metabolism and utilization efficiency of essential AA, and 600 mg/kg GAA is the minimum dose for improving performance.  相似文献   

7.
To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) on lipopolysaccharide (LPS)‐induced intestinal injury, mice in three treatments were administrated orally with or without ASPS (300 mg/kg body weight) for 14 days, followed by challenge with LPS or saline. At 4 h post‐injection, blood and intestinal samples of six mice / treatment were collected. The results showed ASPS ameliorated LPS‐induced intestinal morphological deterioration, proven by improved villus height (P < 0.05) and villus height : crypt depth ratio (P < 0.05). ASPS also elevated the mucosal barrier of LPS‐challenged mice, supported by reduced plasma diamine oxidase (DAO) activity (P < 0.05) and L‐lactate (P < 0.05), increased mucosal DAO activity (P < 0.05) as well as enhanced intestinal tight junction proteins expression involving occludin‐1 (P < 0.05) and zonula occludens‐1 (P < 0.05). In addition, ASPS decreased LPS‐induced secretion of inflammatory mediators, including tumor necrosis factor (TNF)‐α (P < 0.05) and prostaglandin E2 (P < 0.05). Also, ASPS down‐regulated messenger RNA expression of toll‐like receptor 4 (TLR4) and its downstream signals, including myeloid differentiation factor 88 (P < 0.05), TNF‐α receptor‐associated factor 6 (P < 0.05), as well as nuclear factor (NF)‐κB p65 (P < 0.05) and its protein expression. These findings suggest that ASPS improves intestinal integrity under inflammation conditions connected with inhibiting TLR4/NF‐κB signaling pathways.  相似文献   

8.
This study was conducted to investigate the effects of dietary supplementation with montmorillonite (MMT) on performance, intestinal endotoxin concentration, gut mucosal oxidation status, intestinal morphology and permeability, and immunological barrier function of laying hens during late production. Four hundred and eighty 75‐week‐old laying hens (Lohmann Brown) were randomly assigned to five treatments with eight replicates per treatment and 12 hens in each replicate. The hens were fed the basal diet supplemented with 0 (control), 0.3, 0.6, 0.9, or 1.2 g MMT/kg for 70 days. Compared with the control, supplemented with 0.9 g MMT/kg increased egg mass significantly (p < 0.05) during weeks 1–5 of the experiment. Supplemented with 0.6 and 0.9 g MMT/kg also increased the endotoxin concentration in the ileal digesta (p < 0.05), but decreased the MDA concentration in the ileum significantly (p < 0.05). The T‐AOC in the jejunum of the group fed 0.3 g MMT/kg was significantly increased (p < 0.05). Compared with the control, the villus height:crypt depth of ileum from the groups fed 0.6, 0.9, and 1.2 g MMT/kg increased significantly (p < 0.05). The sIgA concentration of jejunum in the groups fed 0.6 and 0.9 g MMT/kg was higher (p < 0.05) than the control. The MMT supplementation linearly increased (p < 0.05) the mRNA expression of claudin‐1 and claudin‐5 in the jejunum. Dietary MMT supplementation down‐regulated the mRNA expression of NF‐κB P65 and TNF‐α in the jejunum in a linear and quadratic manner (p < 0.05). The IL‐1β mRNA expression of jejunum in the group fed 0.6 g MMT/kg was lower (p < 0.05) than the control. In conclusion, dietary supplementation with MMT may improve the gut barrier functions and suggests that 0.9 g/kg of MMT in diets may be the optimal supplemental level for laying hens in late production.  相似文献   

9.
In the present study, the effect of dietary procyanidin (PCA, from pine needles) supplementation on the innate immunity of broilers were investigated. The experiment was designed as a 2 × 4 factorial arrangement (eight cages / treatment; six birds (one‐day‐old) / cage) with dietary PCA concentrations (0, 0.05, 0.075 and 0.1%) and two immune treatments (injection of lipopolysaccharide (LPS) (0.5 mg/kg body weight) or saline). LPS was dissolved in sterile 9 g/L (w/v) NaCl solution at 16, 18, 20 days of age to mimic immune stress. The remaining birds were injected with saline as a placebo. The results indicated that, prior to LPS challenge, the PCA diet had no significant effect on bird growth performance. The injection of LPS was also not associated with any significant changes in poultry performance. LPS injection increased the activity of nitrogen oxides (NOx) and the concentrations of inflammatory cytokines (interferon‐γ (IFN‐γ), interleukin‐1β (IL‐1β), IL‐2, IL‐4, IL‐6 and IL‐10) in serum; dietary PCA decreased these concentrations (P < 0.05) in the PCA 0.1% group, further illustrating the immune effect of PCA. In conclusion, PCA supplementation has a beneficial effect on LPS challenge, which may be associated with the inhibition of the secretion of cytokines and decrease in the proinflammatory marker NOx.  相似文献   

10.
This study investigated the effect of dietary resveratrol supplementation on growth performance, rectal temperature, and serum parameters of yellow‐feather broilers under heat stress. A total of 480 yellow‐feather broilers (28‐day‐old) were randomly allotted to five groups with six replicates. A thermoneutral group (TN) (24 ± 2°C) received a basal diet and another four heat‐stressed groups (37 ± 2°C for 8 hr/day and 24 ± 2°C for the remaining time) were fed the basal diet or basal diet with 200, 350, and 500 mg/kg resveratrol for 14 consecutive days. The results revealed that resveratrol supplementation improved average daily gain (= 0.001), and decreased (p < 0.05) rectal temperature from d 3 when compared with heat‐stressed group without resveratrol. In addition, supplementation with resveratrol at 350 or 500 mg/kg lowered (p < 0.05) the contents of corticosterone, adrenocorticotropic hormone, cholesterol, triglycerides, uric acid, malonaldehyde, and activities of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, increased (p < 0.05) the levels of triiodothyronine, the ratio of triiodothyronine to thyroxine, total protein, glutathione, and activities of alkaline phosphatase, total superoxide dismutase, catalase, and glutathione peroxidase, though with few fluctuation. In conclusion, supplementation with resveratrol can improve the growth performance by positively regulating serum metabolic parameters and alleviating tissue oxidant damage of broilers under heat stress.  相似文献   

11.
This study investigated the effect of dietary nutmeg oil (NO) on growth performance, blood parameters, lipid peroxidation and heat shock protein (HSP) 70 expression in Korean native chicken (KNC) reared under hot temperature. We allocated 273 meat‐type KNCs (Hanhyup3, 4‐week‐old, body weight [BW] = 539.93 ± 1.75 g) to the following three treatments with seven replicate pens (13 birds/pen) per treatment. Three treatment diets were as follows: (a) Control, basal diet without NO supplementation; (b) NO 250; and (c) NO 500, basal diet supplemented with 250 and 500 ppm NO respectively. Diets and water were provided ad libitum throughout the 6‐week feeding trial. During overall period (0–6 weeks), no differences (p > 0.05) were observed in BW gain (BWG), feed intake (FI) and feed conversion rate (FCR) among treatments. However, the FI at 0–3 weeks decreased (p < 0.05) quadratically with increasing NO levels. Most blood parameters did not differ (p > 0.05) among treatments, although the monocyte level of the NO 500 group was considerably lower (p > 0.05) than that of the other groups. Furthermore, dietary NO did not affect serum triglyceride, cholesterol, total protein, albumin, calcium, phosphorus and alanine aminotransferase (ALT) levels (p > 0.05); however, it linearly decreased serum aspartate aminotransferase (AST) level (p < 0.05). Additionally, serum malondialdehyde (MDA) concentration decreased (p < 0.05) and heart MDA concentration was lower (p = 0.08) with increasing dietary NO supplementation. After a 3‐hr heat (35°C) challenge, the rectal temperature (RT) reduced (p < 0.05) linearly with increasing NO levels. Dietary NO did not affect liver HSP70 (p > 0.05) gene expression. In conclusion, NO potentially enhanced the ability of chickens to alleviate heat stress. Furthermore, our findings suggest that lipid oxidation inhibition by dietary NO likely mediated the enhanced heat‐stress tolerance of the chickens.  相似文献   

12.
One hundred and fifty 7‐day‐old Arbor Acres broilers were randomly assigned into five groups: group 1 served as a control that was fed a basal diet without selenium (Se) supplementation; groups 2, 3 and 4 were fed the basal diet supplemented with 0.15, 0.5 and 1.5 mg Se as Se‐enriched Saccharomyces cerevisiae (SSC) per kg of diet; and group 5 was fed the basal diet supplemented with 0.15 mg per kg of Se as sodium selenite (SS). Growth performance, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, total antioxidant capacity (T‐AOC), and malondialdehyde (MDA) content in plasma and liver, and cellular glutathione peroxidase (GPX‐1) and phospholipid hydroperoxide glutathione peroxidase (GPX‐4) mRNA levels in liver were determined. Compared with group 1, groups 2–4 exhibited higher body weights (p < 0.05), lower feed/gain ratios, and higher GPX activities in plasma (p < 0.05) and GPX and SOD activities and GPX‐1 and GPX‐4 mRNA levels in liver (p < 0.05). Compared with group 5, group 2 exhibited higher GPX activity in plasma on day 21 (p < 0.05). Compared with group 2 and 5, group 3 exhibited lower MDA content in plasma on day 7 (p < 0.05), higher GPX activity in plasma, SOD activity and GPX‐1 mRNA levels in liver on day 14 and 21 (p < 0.05), and higher GPX‐4 mRNA levels on day 14 (p < 0.05). Compared with group 4, group 3 exhibited lower MDA contents in plasma on day 14 (p < 0.05) and in liver on day 21 (p < 0.05), higher T‐AOC in plasma and higher GPX‐1 mRNA levels on day 14 and 21 (p < 0.05), and higher SOD activity in plasma and higher SOD and GPX activities in liver on day 21 (p < 0.05). Thus, SSC improves growth and antioxidant status of broilers; the short‐term bioavailability of SS was faster than that of SSC, but the long‐term bioavailability of SSC was greater than SS.  相似文献   

13.
The link between energy availability, turnover of energy substrates and the onset of inflammation in dairy cows is complex and poorly investigated. To clarify this, plasma inflammatory variables were measured in mid‐lactating dairy cows allocated to three groups: hyperinsulinemic hypoglycaemic clamp, induced by insulin infusion (HypoG, n = 5); hyperinsulinemic euglycaemic clamp, induced by insulin and glucose infusion (EuG; n = 6); control, receiving a saline solution infusion (NaCl; n = 6). At 48 h after the start of i.v. infusions, two udder quarters per cow were challenged with 200 μg of E. coli lipopolysaccharide (LPS). Individual blood samples were taken before clamps, before LPS challenge (i.e. 48 h after clamps) and 6.5 h after. At 48 h, positive acute phase proteins (posAPP) did not differ among groups, whereas albumin and cholesterol (index of lipoproteins), negative APP (negAPP), were lower (p < 0.05) in EuG compared to NaCl and HypoG. The concentration of IL‐6 was greater in EuG (p < 0.05) but only vs. HypoG. At 6.5 h following LPS challenge, IL‐6 increased in the NaCl and EuG clamps (p < 0.05), while TNF‐α increased (p < 0.05) in the EuG only. Among the posAPP, haptoglobin markedly increased in EuG (p < 0.05), but not in NaCl (p = 0.76) and in HypoG; ceruloplasmin tended to decline during LPS challenge, the reduction was significant when all animals were considered (p < 0.05). Conversely, all the negAPP showed a marked reduction 6.5 h after LPS challenge in the three groups. In conclusion, EuG caused an inflammatory status after 48‐h infusion (i.e. decrease of negAPP) and induced a quicker acute phase response (e.g. marked rise of TNF‐α, IL‐6) after the intramammary LPS challenge. These data suggest that the simultaneous high availability of glucose and insulin at the tissue‐level makes dairy cows more susceptible to inflammatory events. In contrast, HypoG seems to attenuate the inflammatory response.  相似文献   

14.
Beta‐glucan is currently under consideration as an alternative to in‐feed antibiotics. The aim of the study was to investigate Agrobacterium sp. ZX09 beta‐glucan on intestinal morphology, cytokine concentration, mucin expression and microbial populations of weaning piglets. Pigs were randomly assigned to one of five dietary treatments supplemented with 0, 25, 50, 100 and 200 mg/kg beta‐glucan. Data showed an increase in ADG at the 100 mg/kg group (p = .03). A significant increase in villus height and reduction in crypt depth were fund in ileal tissue at the 100 mg/kg inclusion level (p < .05). Dietary supplementation of 100 mg/kg beta‐glucan enhanced IL‐10 concentration (p = .04) and gene expression of MUC1 and MUC2 (p < .05) in the jejunum. Dietary supplementation of 100 mg/kg beta‐glucan provoked the up‐regulation of Lactobacillus counts and down‐regulation of Escherichia coli counts in the caecum (p = .05). Data suggested that improved growth performance in response to beta‐glucan supplementation at 100 mg/kg in weaned piglets may be explained by the improved intestinal function.  相似文献   

15.
A study was conducted to evaluate the effects of chestnut tannins (CT) on intestinal morphology, barrier function, pro‐inflammatory cytokine expression, microflora and antioxidant capacity in heat‐stressed broilers. Four hundred 28‐day‐old male Ross 308 broilers were randomly assigned into four groups, with 10 replicates per group and 10 broilers per replicate. The broilers in the normal (NOR) group were kept at 22 ± 1°C and fed the basal diet, and each of the other three groups were treated with cyclic heat (33 ± 1°C from 0800 to 1800 and 22 ± 1°C from 1800 to 0800) and fed the basal diet with 0 (HT), 1 (CT1) or 2 (CT2) g of CT/kg of diet. The experiment lasted for 14 days. Compared with the HT group, broilers in the NOR and CT2 groups had higher (p < .05) average daily gain and villus height in the jejunum and lower serum d ‐lactate (p < .001) and diamine oxidase (p < .01) levels. The addition of 2 g CT/kg of diet increased the total antioxidant capacity (p < .001) and superoxide dismutase activities (p < .05) and zonula occludens‐1 mRNA expression level (p < .05) and decreased the malondialdehyde concentration (p < .01) and mRNA expression levels of interleukin‐6 (p < .001) and nuclear factor kappa B (p < .001) in the jejunal mucosa of heat‐stressed broilers. The populations of Escherichia coli and Clostridium in the jejunum (p < .01) and caecum (p < .05) of broilers in the HT group were higher than those in the NOR and CT2 groups. In conclusion, the addition of 2 g CT/kg of diet seemed to be a feasible means of alleviating the negative effects of heat stress on the growth performance and intestinal function of broilers.  相似文献   

16.
This study was conducted to investigate the effects of dietary supplementation xylo-oligosaccharides (XOS), coated sodium butyrate (CSB), and their combination on growth performance, immune parameters, and intestinal barrier of broilers. A total of 192 1-day-old chicks were assigned to a 2 × 2 factorial design including two dietary additives (0 and 150 mg/kg XOS and 0 and 400 mg/kg CSB). This trial lasted for 42 days. CSB supplementation increased the thymus and bursa index, blood myeloperoxidase (MPO) activity, and IgG and IgM concentrations, whereas adding XOS only improved IgM concentration (p < .05). A significant interaction was observed for MPO activity. Furthermore, broilers fed CSB and their interaction exhibited increased ileal villus height/crypt depth (VH/CD) and goblet cells numbers in the ileum, as well as decreased ileal CD (p < .05). Broilers fed XOS and CSB individually showed higher ileal VH, the number of goblet cells in the duodenum and jejunum (p < .05). Moreover, XOS and CSB individual supplementation upregulated the expression of claudin3 in the ileum (p < .05). Simultaneously, a significant interaction was found for the ileal expression of claudin3. Overall, XOS and CSB supplementation could improve the development of immune organs, the small intestine morphology, and the intestinal physical barrier of broilers. Although no clear synergy of XOS and CSB was detected, the combination had positively affect broilers intestinal barrier and immune parameters.  相似文献   

17.
This study aimed to investigate the effects of back‐fat thickness (BF), at mating of sows, on placental lipotoxicity, oxidative stress, and inflammation. We performed iTRAQ labeling‐based proteomic analysis on term placentas obtained by vaginal delivery from BFI (15–20 mm, control) and BFII (21–27 mm, obese) sows formed according to BF at mating. Proteomic analysis revealed 413 proteins to be significantly different in placenta from BFII sows by ≥1.2‐fold. Gene ontology (GO) analysis identified proteins related to lipid metabolism and inflammatory response to be altered in placenta from obese sows. Indicative of a lipotoxic placental environment, increased placental lipid, and up‐regulated mRNA expression of lipogenic genes, including ADRP (= .06), PPARD, FASN, ACACA, DGAT1, and LIPIN3, were associated with decreased AMPK and increased activation of WNT signaling in placenta from BFII group (< .05). Furthermore, we observed a 18% decrease in total antioxidant capacity (TAC), increased mRNA content of pro‐inflammatory cytokines IL‐6, IL‐18, and TNF‐α, and increased activation of inflammatory NF‐κB and JNK signaling in placenta from BFII sows that was significantly associated with macrophage accumulation (< .05). These findings suggest that maternal obesity aggravates a lipotoxic environment in pig term placenta that may be associated with placental dysfunction and impaired fetal growth.  相似文献   

18.
The influence of temperament on the alteration of metabolic parameters in response to a lipopolysaccharide (LPS) challenge was investigated. Brahman bulls were selected based on temperament score. Bulls (10 months; 211 ± 5 kg BW; n = 6, 8 and 7 for Calm, Intermediate and Temperamental groups, respectively) were fitted with indwelling jugular catheters to evaluate peripheral blood concentrations of glucose, blood urea nitrogen (BUN), non‐esterified fatty acids (NEFA), insulin, epinephrine and cortisol before and after LPS administration (0.5 μg/kg BW LPS). Feed intake was also recorded. Intermediate bulls consumed more feed than the Temperamental bulls during the challenge (p = 0.046). Pre‐LPS glucose (p = 0.401) and BUN (p = 0.222) did not differ among the temperament groups. However, pre‐LPS insulin (p = 0.023) was lower, whereas pre‐LPS NEFA (p < 0.001), cortisol (p < 0.001) and epinephrine (p < 0.001) were greater in Temperamental than in Calm and Intermediate bulls. Post‐LPS glucose was increased in Calm and Intermediate bulls but not in Temperamental bulls (p < 0.001). Insulin concentrations post‐LPS were greater in Calm than in Intermediate and Temperamental bulls (p < 0.001). Concentrations of NEFA post‐LPS were greater in Temperamental than in Calm and Intermediate bulls (p < 0.001). Serum BUN concentration increased post‐LPS, with values being greater in Calm and Intermediate than in Temperamental bulls (p = 0.012). Collectively, these data demonstrate that animal temperament is related to the metabolic responses of Brahman bulls following a provocative endotoxin challenge. Specifically, Temperamental bulls may preferentially utilize an alternate energy source (i.e. NEFA) to a greater degree than do bulls of Calm and Intermediate temperaments. The use of circulating NEFA from lipolysis may reduce the negative metabolic consequences of an immune response by allowing for a prompt answer to increasing energy demands required during immunological challenge, compared with the time required for glycogenolysis and gluconeogenesis.  相似文献   

19.
The biological properties of Piper sarmentosum render it a potential substitute for antibiotics in livestock feed. This study evaluated the effects of P. sarmentosum extract (PSE) on the growth performance, antioxidant capability and immune response of weaned piglets. Eighty 21‐d‐old weaned piglets were selected and randomly allocated to one of four dietary treatments with five replicates of four pigs each. The dietary treatments consisted of a basal diet supplemented with 0 (T0), 50 (T50), 100 (T100) or 200 (T200) mg/kg PSE. The feeding trial lasted 4 weeks. The results revealed that the T50 group had the highest average daily gain (ADG) and average daily feed intake (ADFI) throughout the feeding trial (p < 0.05). Additionally, the T50 group had higher (p < 0.05) serum glutathione peroxidase activity (GSH‐Px) and lower (p < 0.05) serum malondialdehyde (MDA) levels than the T0 group at 4 weeks post‐weaning (p < 0.05). Serum levels of interleukin‐1β (IL‐1β) and tumour necrosis factor‐α (TNF‐α) decreased, while serum levels of interleukin‐4 (IL‐4), interleukin‐10 (IL‐10) and transforming growth factor‐β (TGF‐β) increased by PSE supplementation at 4 weeks post‐weaning (p < 0.05). PSE supplementation upregulated the mRNA expression of IL‐4, IL‐10 and TGF‐β and downregulated the mRNA expression of TNF‐α, IL‐1β and interleukin‐6 (IL‐6) in the ileal mucosal layer of piglets (p < 0.05). In summary, our study findings revealed that PSE supplementation improved the antioxidant capability, and reduced inflammation, which may be beneficial to weaned piglet health.  相似文献   

20.
The effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of late‐term embryos and neonatal broilers were investigated. After candling on 16 day of incubation, a total of 960 eggs were randomly assigned to three treatments: (i) non‐injected control, (ii) saline group injected with 0.6 ml of 0.75% physiological saline and (iii) Creatine pyruvate group injected with 0.6 ml of physiological saline containing 12 mg CrPyr/egg. After hatching, 120 male chicks with average body weight (BW) were randomly allocated into each treatment group for a 7‐day feeding trial. The results showed that broilers subjected to CrPyr treatment had higher BW than those of the control and saline groups on 1, 3 and 7 day post‐hatch, as well as the yolk sac weight on 19 day of incubation (19 E), the day of hatch and 3 day post‐hatch (p < .05). Compared with the control and saline groups, IOF of CrPyr increased the plasma creatine concentration on the day of hatch, and the plasma pyruvate concentration on the day of hatch and 3 day post‐hatch (p < .05). Moreover, IOF of CrPyr increased the liver pyruvate and glucose concentrations on 19 E and the day of hatch, and the liver glycogen concentration during the experiment (p < .05). Broilers in the CrPyr group showed increased mRNA expression levels of pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glycogen synthase 2 (GYS2) on 19 E and the day of hatch (p < .05). These results indicated that IOF of CrPyr increased energy reserves in liver of embryos and neonatal broilers possibly through upregulating the mRNA expression levels of PC, PEPCK and GYS2, which could benefit the increase of BW in broilers on 7 day post‐hatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号