首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
野牦牛mtDNA Cytb基因全序列测定及系统进化关系   总被引:4,自引:0,他引:4  
为从分子水平探究牦牛的分类地位和遗传多样性,试验测定了野牦牛细胞色素b基因全序列,并以绵羊为外群,构建野牦牛、家牦牛、大额牛、普通牛、瘤牛、水牛、非洲野牛、欧洲野牛、美洲野牛、非洲水牛等牛亚科种间系统进化树.结果表明:野牦牛细胞色素b基因全序列长1 140bp,序列间共有13个SNP多态位点,核苷酸变异类型包括转换和颠换,无插入和缺失,表明野牦牛具有较丰富的遗传多样性.研究结果支持将牦牛划分为牛亚科中一个独立属(即牦牛属)的观点.  相似文献   

2.
牦牛在牛亚科中的分类地位仍存在较大的分歧。根据普通牛线粒体基因组序列设计引物对家牦牛基因组进行PCR扩增和克隆测序,获得了家牦牛细胞色素6(Cytochromeb)基因的全长序列,并以羊亚科绵羊(Ovisaries)为外类群,对牛亚科代表性物种进行了系统发育分析。结果显示:牛亚科不同物种间线粒体细胞色素b基因的转换/颠换比值为4.9,突变未达到饱和状态;牦牛与牛属间的序列差异百分比为8.0%~8.6%,大于牦牛与美洲野牛间的序列差异百分比;系统发育分析发现家牦牛与野牦牛首先聚为一类,再与美洲野牛聚为一类;说明牦牛与美洲牦牛属间的遗传相似性较高,而与牛属间的遗传相似性较低,结果支持现在的家牦牛和野牦牛都是同一祖先原始牦牛的后代,推测两者分化时间大约为0.55百万年前;支持将牦牛划分为牛亚科牦牛属的观点,牦牛属包括家牦牛和野牦牛两个种。  相似文献   

3.
试验选取27头河流型水牛和41头沼泽型水牛,以从NCBI数据库中下载的家牛、野牦牛、野牛、绵羊、山羊、小鼠和人的序列作对照,对编码瘦素受体(leptin receptor,LEPR)基因的密码子偏好性及水牛与其他物种间密码子使用的差异和进化关系进行了深入分析。结果发现,所有的密码子在河流型水牛和沼泽型水牛LEPR基因中均有使用,两种类型水牛偏好使用的密码子有28个,其中使用偏好性较强的密码子为AGA(RSCU≥2),表明河流型水牛和沼泽型水牛LEPR基因密码子使用特征相似。水牛及参考物种LEPR基因均偏好使用以A/U结尾的密码子,但水牛与其他参考物种间偏好使用密码子的种类和数目有差异。密码子使用偏好聚类分析表明,河流型水牛与沼泽型水牛亲缘关系最近,先聚为一类,然后与家牛、野牦牛和野牛聚为一类,再与绵羊、山羊、小鼠和人等物种聚为一类。在密码子使用频率上,河流型水牛LEPR基因与酵母密码子偏好性差异小于与大肠杆菌和小鼠密码子偏好性差异,从而揭示酵母更适合作为水牛LEPR基因的外源表达系统。  相似文献   

4.
为了确定河流型与沼泽型水牛促卵泡素受体(FSHR)基因密码子的使用模式,试验采用PCR产物直接测序法对9头河流型水牛、15头沼泽型水牛、6头大额牛和6头中甸牦牛的FSHR基因编码区序列进行了群体变异检测和单倍型划分,并结合已发表的普通牛、野牛、山羊、绵羊、人和黑猩猩的同源序列,对河流型与沼泽型水牛FSHR基因密码子使用的偏好性及与其他物种的差异进行了探讨。结果表明:两类水牛FSHR基因的密码子使用特征较为相似,河流型与沼泽型水牛分别有28个和27个偏好使用的密码子,对于编码Pro的4个密码子CCC、CCA、CCU和CCG而言,河流型水牛偏好使用CCC和CCA,而沼泽型水牛偏好使用CCC。水牛与其他物种共同偏好使用的密码子有20种,均偏好使用以G/C结尾的密码子。基于密码子的同义密码子相对使用度(RSCU)构建的聚类树显示河流型水牛与沼泽型水牛先聚为一类,再与大额牛、牦牛聚为一类,普通牛与山羊、绵羊和野牛聚为一类,人和黑猩猩聚为一类,揭示聚为一类的物种间在密码子使用上的偏好性较相似。  相似文献   

5.
中国牛亚科6个物种MSTN基因外显子2多态性及分化研究   总被引:2,自引:0,他引:2  
采用PCR扩增了6个中国牛种共101个样本的MSTN基因外显子2的编码区,序列分析显示,MSTN基因外显子2编码区含372个碱基对,在所检测样本中,存在10个核苷酸多态位点,定义了7种单倍型,雷琼牛、蒙古牛、独龙牛与巴音郭楞牦牛享有共同的单倍型;MSNT基因外显子2在6个牛种中多态性较丰富。结果表明:两水牛与牛属群体间分化明显;牛属群体中牦牛独自聚成一类;大额牛存在一个独立分支;雷琼牛与一部分独龙牛、大部分蒙古牛和瘤牛聚成一支,说明蒙古牛、雷琼牛、独龙牛种间存在着基因交流。牦牛与普通牛、瘤牛的分化较明显,亲缘关系较远;研究证实了水牛的属分类地位,一定程度上支持牦牛及大额牛划为牛亚科中单独的一个属。  相似文献   

6.
中国牛亚科家畜GH基因编码区序列的遗传变异研究   总被引:2,自引:0,他引:2  
采用PCR产物直接双向测序法,分段扩增普通牛、瘤牛、牦牛、大额牛和亚洲水牛共5个牛种的GH基因,并拼接成编码区全序列,分析中国牛亚科家畜不同牛种GH基因编码区序列变异及其分子进化特征。结果表明,牛GH基因编码区序列全长654bp,种间核苷酸突变率在0.1%~1.84%。5个牛种编码区序列定义了10种单倍型,瘤牛的单倍型多样性最高,大额牛和水牛均无单倍型多样性。GH基因编码区序列的密码子使用存在偏倚性,共发现了25个偏好性密码子。核苷酸的替代以转换为主,转换明显高于颠换,转换/颠换比为3.0。非同义突变位点远远少于同义突变位点,同义与非同义替代发生的速率比都小于或等于1,表明GH基因编码区序列不受达尔文正选择的影响。以GH基因单倍型序列为基础的分子进化树表明,水牛与普通牛、瘤牛、牦牛、大额牛间分化很明显;普通牛、瘤牛、牦牛、大额牛间序列分化并不明显,并且它们共同拥有一条相同的祖先核苷酸序列。说明中国牛亚科家畜GH基因编码区序列的变异相当贫乏,并且由于功能的约束表现得相当保守,进化速率相当缓慢。  相似文献   

7.
【目的】 从基因组比对及密码子偏性角度分析牦牛与其他牛亚科动物X染色体,有助于了解牦牛品种差异及系统进化地位,为其适应高原低压低氧环境和密码子优化提供参考。【方法】 以牦牛X染色体参考基因编码区序列为参考,与普通牛和江河型水牛X染色体参考基因编码区序列进行基因组比对和基因共线性分析,同时进行基因注释,对过滤后的编码区文件进行相对同义密码子使用频率(RSCU)、ENC-plot、PR2-plot和最优密码子确定等偏性分析。【结果】 在牦牛X染色体基因编码区发现了参与气管收缩、肺部呼吸及机体代谢等基因与普通牛和水牛存在差异,如KLHL13、CENPIPGK1等基因;共线性显示长段由强选择压和突变压下表现出的交换线性区域;密码子分析中3种牛亚科动物密码子使用偏性相似,偏性均较弱,均偏向G/C结尾;强偏性密码子(RSCU≥1.5)均为CUG、GUG、AGA、AGG和UGA;牦牛、普通牛和水牛分别筛选出16、13和9个最优密码子,均以A/U结尾。【结论】 牦牛与普通牛、水牛相比面临了更大的选择压力,累计的变异程度更大,三者的密码子偏性受到自然选择作用均大于突变作用。研究结果为牦牛的遗传育种、密码子优化和遗传资源开发利用提供参考。  相似文献   

8.
以西藏11个地区的牦牛类群共计110头为研究对象,采用PCR方法,首次从耳组织总DNA中扩增出了线粒体12SrRNA基因,并进行了序列测定及分析。结果表明,该基因的长962~965bp;序列分析表明12SrRNA基因有较高的进化速率,11个地区的牦牛品种同源性相对较高;对11种类群的牦牛及亚洲水牛、非洲水牛、欧洲野牛和家牛四种牛亚科的12SrRNA基因序列建立NJ和ME分子进化树,结果显示帕里牦牛、斯布牦牛、巴青牦牛、丁青牦牛、江达牦牛、工布江达牦牛、康布牦牛与桑日牦牛的亲缘关系最近。  相似文献   

9.
根据GenBank中普通牛生长分化因子9(GDF-9)基因序列(AF 307092)设计1对引物,以麦洼牦牛卵母细胞总RNA为模板,通过RT-PCR技术对牦牛GDF-9基因cDNA进行克隆测序和序列分析.结果表明:所克隆的1399 bp片段为预期的牦牛GDF-9基因cDNA序列,包含由2个外显子组成的全编码区和3′-下游部分序列.牦牛GDF-9基因编码区核苷酸序列长度为1362 bp,编码453个氨基酸,与GenBank中报道的普通牛、水牛、绵羊、山羊相应序列一致,而与人和黑猩猩存在差异.和普通牛相比,牦牛GDF-9基因编码区存在1处碱基转换(C→T),导致相应的氨基酸由丙氨酸(A)转换为缬氨酸(V).牦牛与普通牛、水牛、绵羊、山羊、人和黑猩猩的核苷酸同源性分别为99.9%、98.4%、97.0%、96.8%、85.6%和85.1%;氨基酸同源性分别为99.8%、97.1%、95.1%、95.4%、79.4%和79.5%.利用NJ法和MP法以该基因编码区核苷酸序列构建的物种间分子系统进化树结果基本一致,即牦牛与普通牛先聚为一类,再与水牛聚为一类,而后与绵羊和山羊聚为一类,最后与人和黑猩猩聚为一类.该聚类结果与物种间遗传距离大小一致,也与各物种在动物学上的分类相吻合,表明GDF-9基因编码区适用于构建物种间系统进化树.  相似文献   

10.
根据GenBank中山羊SRY基因序列设计一对引物,用PCR方法在雄性萨能奶山羊、努比山羊及其与云南圭山山羊杂交种个体中扩增出包含SRY基因整个编码区的特异片段,将特异PCR产物克隆到pMD182-T载体中,再转化到大肠杆菌DH5α感受态细胞中,筛选SRY基因的阳性克隆进行了测序,将其序列与GenBank中部分偶蹄目动物的SRY基因序列进行同源性比较,并用NJ法构建了系统进化树.结果表明:①萨能奶山羊、努比山羊及其与云南圭山山羊杂交种SRY基因编码区长度均为732 bp,其中包含长度为231 bp的HMG-box,位于编码区的第190至420位核苷酸之间;②萨能奶山羊SRY基因编码区序列与GenBank绵羊、欧洲牛、印度水牛、鹿、麝及猪等偶蹄目动物的同源性分别为96.9%、93.5%、92.6%、90.4%、92.4%、77.2%;努比山羊SRY基因编码区序列与GenBank绵羊、欧洲牛、印度水牛、鹿、麝及猪等偶蹄目动物的同源性分别为96.9%、92.9%、92.1%、90.3%、92.3%、77.1%;努比山羊与云南圭山山羊杂交品系SRY基因编码区序列与GenBank绵羊、欧洲牛、印度水牛、鹿、麝及猪等偶蹄目动物的同源性分别为96.9%、93.4%、92.5%、90.3%、92.3%、77.2%;③根据SRY基因编码区的核苷酸序列构建的物种间系统进化树结果基本与这些偶蹄目动物的传统系统分类相一致.  相似文献   

11.
根据普通牛线粒体DNA序列设计引物,获得了九龙牦牛线粒体D-loop区全序列,并以羊亚科绵羊属绵羊作为外类群利用D-loop区序列对牛亚科代表性物种(牦牛、野牦牛、普通牛、瘤牛、美洲野牛、欧洲野牛和亚洲水牛)进行了系统发育分析。结果发现:牦牛线粒体DNA D-loop区序列全长893 bp,与普通牛源序列的同源性为87.4%,其中有17个碱基的缺失;在牛亚科内,牦牛、野牦牛与美洲野牛(美洲野牛属)间的序列差异百分比最小,为6.2%~6.8%,而与牛属中普通牛、瘤牛间的序列差异百分比较大,为10.0%~11.3%;系统发育分析发现:牦牛、野牦牛首先与美洲野牛聚为一类,说明牦牛、野牦牛与美洲野牛属间的遗传相似性较高、亲缘关系较近,而与牛属间的遗传相似性较低、亲缘关系较远;结合古生物学、形态学、分子生物学的证据,支持将牦牛、野牦牛划分为牛亚科中一个独立属即牦牛属的观点。  相似文献   

12.
本研究旨在克隆牦牛X染色体相关小肌肉蛋白(small muscle protein X-link,SMPX)基因的CDS区序列,分析该序列所编码蛋白的结构与功能,并检测SMPX基因在牦牛不同组织中的表达情况。运用RT-PCR技术扩增并克隆SMPX基因CDS区序列,分析其氨基酸序列相似性并构建系统进化树;通过在线软件对其理化性质、二级结构和三级结构进行生物信息学分析;采用实时荧光定量PCR方法检测SMPX基因在牦牛右心室、臀大肌、肺脏和大脑4个组织中的表达情况。结果表明,牦牛SMPX基因CDS区全长515 bp,开放阅读框(ORF)长261 bp,编码86个氨基酸。牦牛SMPX氨基酸序列与野牦牛、水牛、家犬、人、白尾鹿德克萨斯亚种、绵羊、黑猩猩、藏羚羊、野猪的相似性分别为100%、97.7%、96.5%、96.5%、95.3%、95.3%、96.5%、94.2%和91.9%,说明其在不同物种间具有较高的保守性。生物信息学分析发现,SMPX蛋白是一种不稳定的亲水性蛋白,二级结构以无规则卷曲和α-螺旋为主,为膜内蛋白,无信号肽和跨膜蛋白;SMPX氨基酸序列共有4个磷酸化位点。亚细胞定位结果表明,SMPX蛋白的分布于细胞核(52.2%)、线粒体(43.5%)和细胞质(4.3%)。实时荧光定量PCR检测结果显示,SMPX基因在牦牛右心室中表达量最高,显著高于其他组织(P<0.05)。本试验结果为深入研究SMPX基因在牦牛中的生理功能和调控机制提供了参考数据。  相似文献   

13.
本研究选取4头青海牦牛作为研究对象,用2对引物扩增青海牦牛的线粒体细胞色素c氧化酶第1亚基(cox1)基因部分序列(pcox1)和烟酰胺腺嘌呤二核苷酸(NADH)脱氢酶亚单位1基因(nad1)部分序列(pnad1),并用pcox1和pnad1序列重构青海牦牛与其他牛的进化关系。对测定获得序列应用ClustalX 1.81程序进行比对,然后用Phylip 3.67程序MP法,并用Puzzle 5.2程序构建最大似然树。结果表明,所获得的4头牦牛样品pcox1和pnad1基因序列分别为823和837 bp,种系发育分析表明,青海牦牛样品与GenBank已知的牦牛位于同一分支,与其他牛所属分支相隔较远。  相似文献   

14.
对大额牛HSL基因外显子Ⅰ部分序列进行PCR扩增、测序及氨基酸预测,并同其它牛种的资料进行了比对分析,构建了分子系统进化树。结果表明:大额牛其核苷酸序列与牦牛、普通牛、瘤牛、水牛间的同源性分别为99.6%、99.4%、99.2%、97.0%。相应的氨基酸序列大额牛与水牛的同源性为97.6%;与普通牛、瘤牛、牦牛的同源性均为99.4%,仅在第33位有1个氨基酸变异,即大额牛为异亮氨酸,而其它3个牛种均为缬氨酸,这是由该基因片段的第97位碱基发生转换(A←→G)造成的。从分子系统进化树看,瘤牛和普通牛先聚为一类,再依次与牦牛、大额牛、水牛相聚,这与传统的牛种分类结果一致。  相似文献   

15.
In order to get the interleukin-7 (IL-7) gene sequence of Tibetan sheep, and research the characteristics of this sequence and structure and function of encoding protein, IL-7 gene was amplified from Tibetan sheep by RT-PCR. The nucleotide sequence,amino acid sequence, homology and phylogenetic tree were analyzed by the DNAStar software. The secondary and tertiary structures, hydrophilicity, signal peptide and post-translational modification site of the encoding protein were predicted by DNAStar software and online servers. The results showed that the length of IL-7 gene was 531 bp (contained termination codon), and encoded 176 amino acids. Compared with IL-7 gene of Ovis aries, Capra hircus, Pantholops hodgsonii, Bubalus bubalis, Bos indicus, Bison bison bison, Bos taurus and Bos mutus, IL-7 gene of Tibetan sheep showed a great similarity from 97.2% to 99.8%, the amino acid sequence homology varied from 94.9% to 99.4%, and the relationship was the closest between Tibetan sheep and Ovis aries. Result from protein structure prediction indicated that the IL-7 protein was mainly composed of α-helix, it was a hydrophilic and secretory protein. Furthermore, it had six kinds of post translational modification sites, including one N-myristoylation site, one amidation site, one cAMP-and cGMP-dependent protein kinase phosphorylation site, three N-glycosylation sites, four protein kinase C phosphorylation sites and six casein kinase Ⅱ phosphorylation sites. These results might provide references for further study and clinical application of IL-7 gene in Tibetan sheep.  相似文献   

16.
为了获得藏羊白细胞介素-7(interleukin-7,IL-7)基因序列,并研究其序列特征及编码蛋白的结构和功能,本试验采用RT-PCR方法,从藏羊脾脏中扩增了IL-7基因,应用DNAStar软件分析该基因的核苷酸和氨基酸序列,与经BLAST比对后的参考序列进行同源性比对,并构建系统进化树,同时利用DNAStar软件和在线服务器预测该基因编码蛋白的二级结构、三级结构、亲水性、信号肽和蛋白翻译后修饰位点。结果表明,藏羊IL-7基因长度为531 bp(含终止密码子),编码176个氨基酸。藏羊IL-7基因与绵羊、山羊、藏羚羊、水牛、瘤牛、美洲草原野牛、黄牛和牦牛的IL-7基因核苷酸序列同源性在97.2%~99.8%之间,氨基酸序列同源性在94.9%~99.4%之间,藏羊与绵羊的亲缘关系最近。蛋白结构预测结果表明,IL-7蛋白主要由α螺旋组成,是一种亲水性和分泌型蛋白。该蛋白含有6种蛋白质翻译后修饰位点,包括1个N-豆蔻酰化位点、1个酰胺化位点、1个cAMP和cGMP依赖性蛋白激酶磷酸化位点、3个N-糖基化位点、4个蛋白激酶C磷酸化位点、6个酪蛋白激酶Ⅱ磷酸化位点。本研究结果可为藏羊IL-7基因的进一步研究与临床应用提供参考。  相似文献   

17.
In order to investigate the genetic diversity and the origin of evolutionary relationship of Zhongdian yak,we analyzed the complete sequence of 15 individuals Cytb gene,its sequence polymorphism was analyzed,and the phylogenetic tree was constructed.The results showed that the length of the nucleotide sequence were 1 140 bp,with nucleotide frequencies of 26.3%,31.8%,13.1% and 28.8% for T,A,G and C,respectively.Three haplotypes were identified of 15 individuals,with 3 polymorphic sites,including two conversions,one transversion,haplotype diversity was 0.2571 and nucleotide diversity was 0.00035.Phylogenetic analysis suggested that Zhongdian yak and Bos mutusc clustered firstly,then gathered with Bison bison,which indicated that there were high genetic similarity and closer genetic relationship,genetic similarity with other cattle genus was relatively low.Combining with the proof of molecular biology and paleontology,the result supported the point that Bos grunniens and Bos mutus were classified as an alone genus in Bovinae.  相似文献   

18.
本研究旨在克隆牦牛酪蛋白基因家族(CSN1S1、CSN1S2、CSN2和CSN3)的CDS区序列,鉴定其在牦牛不同组织中的表达水平。选取4岁龄左右处于泌乳期的健康类乌齐母牦牛3头,屠宰后分别采集乳腺、心脏、肝脏、骨骼肌组织,分别提取组织总RNA并反转录为cDNA,设计酪蛋白基因家族特异性引物扩增酪蛋白基因家族序列,进行生物信息学分析,并利用实时荧光定量PCR法分别检测酪蛋白家族基因mRNA水平。结果显示,克隆得到CSN1S1、CSN1S2、CSN2和CSN3基因cDNA序列分别为919、832、805和715bp,其CDS区全长分别为645、669、690和585bp,分别编码214、222、259和194个氨基酸残基。类乌齐牦牛酪蛋白基因家族与黄牛亲缘关系最近,其次是印度水牛,而与单胃动物猪的亲缘关系最远。组织表达结果显示,酪蛋白基因家族在组织中广泛表达,其中在乳腺组织中的表达量最高,其次是骨骼肌组织。在乳腺组织中CSN1S1、CSN1S2、CSN2基因之间表达量差异不显著(P>0.05),但CSN2基因表达量显著高于CSN3基因(P<0.05)。以上结果为酪蛋白基因家族在牦牛乳腺蛋白质代谢调控机制的研究提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号