首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic structure of three Indian sheep breeds from two different geographical locations (Nali, Chokla from north‐western arid and semi‐arid region; Garole from eastern saline marshy region) of India was investigated by means of 11 ovine‐specific microsatellite markers as proposed in FAOs MoDAD programme. Microsatellite analysis revealed high allelic and gene diversity in all the three breeds. Nali sheep showed higher mean number of alleles and gene diversity (6.27 and 0.65) than Chokla (5.63 and 0.64) and Garole (5.63 and 0.59). High within population inbreeding estimates observed in the three breeds (FIS, Chokla = 0.286, Nali = 0.284, Garole = 0.227) reflected deficit of heterozygotes. The overall estimates for F‐statistics were significantly (p < 0.05) different from zero. High values of FST (0.183) across all the loci revealed substantial degree of breed differentiation. Based on pair wise FST and Nm between different breeds, Nali and Chokla (FST = 6.62% and Nm = 4.80) were observed to be the closest followed by Garole and Nali (FST = 20.9% and Nm = 1.80), and Garole and Chokla (FST = 21.4% and Nm = 1.71). In addition, genetic distance estimates, phylogeny analysis and individual assignment test used to evaluate interbreed genetic proximity and population structure also revealed substantial genetic differentiation between Garole and the other two Rajasthani (Nali and Chokla) sheep. This divergent status of Garole sheep indicated genetic uniqueness of this breed suggesting higher priority for its conservation.  相似文献   

2.
In this study we examined the genetic diversity of yak populations in the northernmost part of their current global distribution. Five Mongolian and one Russian yak populations as well as one Chinese yak population from the Qinghai–Tibetan Plateau, the putative centre of yak domestication, were analysed with 15 microsatellite loci to determine the level of genetic variation within populations as well as the genetic differentiation and relationship between populations. A total of 116 microsatellite alleles were identified. The mean number of alleles per locus (MNA) across populations was 7.73 ± 1.98 and the mean expected heterozygosity (HE) was 0.696 ± 0.026. The relative magnitude of gene differentiation (FST) among populations was 4.1%, and all genetic differentiations (FST) between populations were significant (p < 0.001). A significant inbreeding effect (FIS) was detected in the Hovsgol yak (p < 0.01). There was no indication of a recent bottleneck in any of the populations studied. The results showed that yak populations in Mongolia and Russia have maintained high genetic diversity within populations and a low, although significant, genetic differentiation between populations. Both phylogenetic and principal component analyses support a close genetic relationship between the Gobi Altai, south Gobi and north Hangai populations, and between the Hovsgol and Buryatia populations respectively. Our results indicate that these yak populations should be considered as distinct genetic entities in respect of conservation and breeding programmes.  相似文献   

3.
Information is presented on the genetic diversity and relationship among six Indian sheep breeds/populations belonging to the Southern peninsular and Eastern agroecological zones, based on microsatellite markers. Parameters of genetic variation, viz., allele diversity, observed heterozygosity, gene diversity and population inbreeding estimates, were calculated for the six breeds. The allele diversity ranged from 6.40 to 7.92, whereas the gene diversity varied from 0.617 to 0.727. The highest allele and gene diversity was observed for Nellore sheep, while the lowest was exhibited by Garole breed. Within population inbreeding estimate (F IS) revealed a significant deficit of heterozygotes in Deccani, Madgyal, Nellore and Garole, whereas Ganjam and Chhotanagpuri sheep showed an excess of heterozygotes. The contribution of each breed to the total diversity of the breeds was quantified by the Weitzman approach. The marginal loss of diversity incurred with removal of Nellore and Garole breeds was higher (>27%), whereas removal of Deccani breed resulted in lowest loss of diversity (3.84%) from the set. Estimation of the genetic differentiation (F ST) and genetic distance (D A) between the pairs of breeds revealed a close relationship between Deccani and Madgyal sheep (F ST = 0.017; D A = 0.080) and greatest demarcation between Madgyal and Garole breeds (F ST = 0.110; D A = 0.622). The information generated would help in shaping genetic management and conservation programs for the sheep breeds under consideration.  相似文献   

4.
The characterization of indigenous animal genetic resources is a requisite step in providing needed information for the conservation of useful genotypes against future needs. Thus, in this study, 22 microsatellite markers were used to genotype 114 local chickens from the Forest (n = 59) and Savannah (n = 55) eco‐zones of Ghana and the results compared to those of the ancestral red junglefowl (n = 15) and two European commercial chicken populations – a broiler (n = 25) and white leghorn (n = 25). A total of 171 alleles were observed, with an average of 7.8 alleles per locus. The local Ghanaian chickens showed higher diversity in terms of the observed number of alleles per locus (6.6) and observed heterozygosity (0.568) compared with the combined control populations (6.0 and 0.458, respectively). However, Wright's F‐statistics revealed negligible genetic differentiation (FST) in local Ghanaian chicken populations. In addition, 65% of the Savannah chickens were inferred to be more likely from the Forest, suggesting a south‐north dispersal of chickens from their probable original location in the Forest zone to the Savannah areas. It is concluded that the Forest and Savannah chickens of Ghana are a single, randomly mating unselected population, characterized by high genetic diversity and constitute a valuable resource for conservation and improvement.  相似文献   

5.
The oriental white stork (Ciconia boyciana) is a threatened species, and their numbers are still in decline due to habitat loss and poaching. China is a breeding and main wintering area for this animal and in recent years some individuals have been found breeding in wintering areas and at some stopover sites. These new breeding colonies are an exciting sign, however, little is understood of the genetic structure of this species. Based on the analysis of a 463‐bp mitochondrial DNA (mtDNA) control region, we investigated the genetic structure and genetic diversity of 66 wild oriental white storks from a Chinese population. We analyzed the sequences of 66 storks obtained in this study and the data of 17 storks from a Japanese population. Thirty‐seven different haplotypes were detected among the 83 samples. An analysis of molecular variance showed a significant population subdivision between the two populations (FST= 0.316, P < 0.05). However, the phylogenetic analysis revealed that the samples from the different populations did not form separate clusters and that there were genetic exchanges between the two populations. Compared with the Japanese population, the Chinese population had a relatively higher genetic diversity with a haplotype diversity (hπ SD) of 0.953 ± 0.013 and a nucleotide diversity (π± SD) of 0.013 ± 0.007. The high haplotype diversity and low nucleotide diversity indicate that this population might be in a rapidly increasing period from a small effective population. A neighbor‐joining tree analysis indicated that genetic exchange had occurred between the newly arisen southern breeding colony and the northern breeding colony wintering in the middle and lower Yangtze River floodplain. These results have important implications for the conservation of the oriental white stork population in China.  相似文献   

6.
Allozyme electrophoresis was used to evaluate genetic variability in painted reed frog (Hyperolius marmoratus) populations from the Northern Province and the Eastern Cape. Sixteen protein-encoding loci were resolved, of which seven displayed allelic polymorphism. Average heterozygosity (H) values in two permanent H. m. taeniatus populations from the Northern Province (7.9% and 6.3%) did not differ substantially from each other nor from the geographically distant Eastern Cape H. m. verrucosus (9.1%). An isolated Northern Province H. m. taeniatus population displayed more polymorphism than any other group with H=14.1%, which can probably be attributed to the periodic influx of reed frogs following dry periods. Genetic distances and gene diversity (FST) values conformed with expected values for conspecific populations. The results attained concur with the hypothesis of increased genetic heterogeneity among populations of small and relatively sedentary animals  相似文献   

7.
The genetic population structure of red snapper Lutjanus malabaricus and orange‐spotted grouper Epinephelus coiodes in Brunei and Sabah was investigated using allozyme electrophoresis. Samples were collected from three sites in Brunei for E. coiodes and from three sites in Brunei and Sabah for L. malabaricus. A total of 22 loci and 16 loci were scored, respectively. The index of fixation (FST) for the E. coiodes population was 0.176 but, in general, it lacked within‐population structuring. The FST was particularly high between Brunei Bay/Jerudong and Brunei Bay/ Kuala Belait, suggesting genetic subdivision on a small spatial scale. Isolation of Brunei Bay from the South China Sea may constrain the movement of adult fishes and larval dispersal, thereby reducing homogeneity among subpopulations. All variable loci for E. coiodes were in Hardy‐Weinberg equilibrium except for MDH* and GTDHP* (P < 0.01), in which two subpopulations showed an excess of heterozygotes (P < 0.01). The study on the L. malabaricus population showed a heterozygote deficit of approximately 60% in variable loci (FST genetic variation within population = 0.45; P < 0.05); however, the mean observed heterozygosity for the population far exceeded L. malabaricus populations in Australia and Indonesia. A FST value of 0.076 revealed moderate genetic differentiation among subpopulations of L. malabaricus. The genotypes were likely to be drawn from the same distribution in Jerudong and Kuala Belait. This study infers that sustainable management of snapper and grouper resources in Brunei waters must take into account the presence of a single stock and two stocks, respectively.  相似文献   

8.
The patterns of isolation by distance (IBD) entailing increased genetic differentiation among populations have aroused extensive concerns for evolutionary biologists. Although the IBD may act on spatial processes contributing to the genetic differentiation among populations in anuran species, the factors shaping the IBD of frogs among populations in natural systems are largely unknown. Here, we studied the genetic differentiation among six populations with 24 individuals of the spotted-leg treefrog along a latitudinal gradient (1860.31 km) based on 1020 single nucleotide polymorphisms from restriction site-associated DNA sequencing. The results showed that the genetic diversity differed significantly among populations and that the insular populations had higher genetic diversity than the mainland populations. Furthermore, we also found a significant genetic differentiation among populations (FST = 0.277) and no sign of inbreeding (FUNI = −0.145). The IBD was detected for all populations, and a higher degree of the IBD was indicated when controlling for the effects of the isolation between Hainan and mainland populations caused by the Qiongzhou Strait. Our findings suggest that the form of the Qiongzhou Strait plays a key role in shaping the genetic diversity and population differentiation in treefrogs.  相似文献   

9.
Designing strategies for conservation and improvement livestock should be based on assessment of genetic characteristics of populations under consideration. In Oman, conservation programs for local livestock breeds have been started. The current study assessed the genetic diversity and conservation potential of local chickens from Oman. Twenty-nine microsatellite markers were analyzed in 158 birds from six agroecological zones: Batinah, Dhofar, North Hajar, East Hajar, Musandam, and East Coast. Overall, a total of 217 alleles were observed. Across populations, the average number of alleles per locus was 7.48 and ranged from 2 (MCW98 and MCW103) to 20 (LEI094). The mean expected heterozygosity (H E) was 0.62. Average fixation index among populations (F ST) was 0.034, indicating low population differentiation, while the mean global deficit of heterozygotes across populations (F IT) was 0.159. Based on Nei’s genetic distance, a neighbor-joining tree was constructed for the populations, which clearly identified the Dhofar population as the most distant one of the Omani chicken populations. The analysis of conservation priorities identified Dhofar and Musandam populations as the ones that largely contribute to the maximal genetic diversity of the Omani chicken gene pool.  相似文献   

10.
The Casta Navarra lineage was one of the populations used to establish the fighting bull (FB) breed, and it has also been reproductively isolated from the others FBs. A total of 1284 individuals from two generations of 16 Casta Navarra herds were sampled to analyse their diversity, their genetic structure and the ability of 28 microsatellite markers to assign individuals to closely related populations. These animals were compared with closely related phylogenetic (FB) or geographical (Pirenaica and Monchina) populations. Hardy–Weinberg equilibrium analysis showed that 82% of the loci had a significant heterozygote deficit as a consequence of the Wahlund effect. The average proportion of genetic variation explained by farm differences was 9% by Wright's FST index. A phylogenetic tree constructed with a neighbour‐joining method based on Reynolds genetic distances and a Bayesian Markov chain Monte Carlo clustering approach revealed clear differences between farm groups that generally corresponded to historical information and could unambiguously differentiate Casta Navarra cattle from the other populations. The percentage of animals correctly assigned to the Casta Navarra population was 91.78% for a q threshold of >0.9. Admixture was only detected in 4.45% (< 0.8) of the cattle. These results are relevant for the maintenance and development of diversity and conservation in the Casta Navarra population.  相似文献   

11.
The spatial genetic structure is a topical issue in the studies of various aspects of ecology and evolution. Using the multilocus autocorrelation method with hypervariable microsatellite genetic markers, we investigated a fine-scale pattern of genetic structure in 5 local populations of the common shrew Sorex araneus separated by distances of 300–1000 m (the Moscow chromosomal race). Spatial genetic autocorrelation analysis based on 5 microsatellite loci (expected heterozygosity >0.79) with 90 alleles revealed a consistent pattern of significant positive genetic structure. By testing the autocorrelation at multiple scales from 25 to 500 m, we found that positive spatial genetic structure is detectable in distance classes of <500 m. The weaker spatial genetic structure positively correlated with a higher ratio of nonresident individuals to residents’ activity (number of captures). In contrast to nonresident animals, the residents demonstrated prominent genetic structure. Genetic difference (FST) between the populations was significant (0.016–0.051) and comparable with that between populations of different races analyzed previously (0.016–0.038). FST was not associated with geographic distance. These demographic patterns allowed us to propose a scheme of genetic-structure dynamics involving periodic appearance of more related local groups and renewal of allelic profiles from а common pool where the alleles are mixed. The scheme predicts fluctuating genetic structure and random similar differences among local populations.  相似文献   

12.
Japanese Black cattle are at risk for genetic homogeneity due to intensive use of a few sires. Therefore, assessment of the actual genetic diversity of this breed is important for future breeding plans. In the present study, we investigated the genetic diversity within and among eight subpopulations of Japanese Black cattle using 52 microsatellite markers. The parameters for genetic diversity of Japanese Black cattle were comparable to those of other cattle breeds, suggesting that the relatively high genetic diversity of the breed. However, upon comparison among the eight subpopulations, the Hyogo subpopulation showed markedly low genetic diversity. The results of the pairwise FST values, phylogenetic network and structure analysis indicated that the Hyogo population has remarkably high level of genetic differentiation from other populations, while Yamagata, Niigata, Hiroshima and Kagawa populations have low levels of genetic differentiation. Furthermore, multidimensional scaling plots indicated that individuals in some subpopulations were separated from individuals in the other subpopulations. We conclude that while the overall genetic diversity of Japanese Black cattle is still maintained at a relatively high level, that of a particular subpopulation is significantly reduced, and therefore the effective population size of the breed needs to be controlled by correct mating strategies.  相似文献   

13.
Massive actions have been and are being taken into protecting the world's primates from extinction, while the study of the properties of genetic diversity, demographic history, and ecological relationships will benefit the understanding of the long-term survival of a species. The Taihangshan macaque (Macaca mulatta tcheliensis), a subspecies of rhesus macaque (Macaca mulatta), is endemic to China and currently restricted to southern Mt. Taihangshan area. Herein, we evaluated the genetic diversity, population structure, and demographic history of this subspecies using mitochondrial (Cytb and high variable region I: HVR I) and nuclear markers (microsatellite loci) of 131 individuals collected from 9 localities covering the distribution range of this subspecies. Both phylogenetic analyses and genetic assignment revealed that the wild populations of Taihangshan macaques could be divided into 2 major highly divergent clades, THS-east and THS-west. Low genetic diversity (π: 0.00266 ± 0.00016) but high haplotype diversity (Hd: 0.80352 ± 0.015) were detected in the Taihangshan macaques, particularly in THS-east. Analyses of demographic history suggested that the Taihangshan macaques experienced first a stable historical population size from Holocene to early 19th century but a subtle decline and then slight growth in the recent 200 years. We suggest that bridging the neighbor populations (i.e. setting corridors) would facilitate the male-mediated gene flow and subsequently increase the genetic diversity of the Taihangshan macaque populations.  相似文献   

14.
Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case–control genome‐wide association study (GWAS), the Bayesian population differentiation analysis (FST) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome‐wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome‐wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.  相似文献   

15.
Between-breed genetic diversity is classically considered as a major criterion to be taken into account when setting priorities for conservation of domestic animal breeds. However, it has been argued that methods based on the between-breed component of genetic diversity may not be optimal because they ignore the within-breed component of variation. The paper considers the most common methods used to evaluate those two components when genetic diversity is evaluated on the basis of genetic markers, and proposes to define an aggregate diversity combining linearly the two components. This implies defining for each breed (or population) its contributions to the between-breed and to the within-breed diversity. When defining an aggregate diversity, one can weight these contributions by FST and 1−FST, respectively, since the fixation index FST of Wright represents the proportion of the total genetic variation which is due to differences in allelic frequencies between populations. Such an approach is valid when the objective is genetic improvement by selection within a so-called “meta-population”. However, in a more general context of animal breeding, when heterosis and complementarities between breeds have to be considered, as well as adaptation to specific environments, more weight should be given to the between-breed variation. The proper weight to apply may require solutions adapted to each particular situation. In a long-term conservation perspective, priorities should also take into account the degree of endangerment of each breed. By combining diversity contributions and probability of extinction, a cryopreservation potential (or priority) may be estimated for each breed. The problem is illustrated on a sample of 11 European pig breeds typed for 18 microsatellite loci.  相似文献   

16.
The aim of the present study was to analyse the genetic subdivision of the Old Kladruber horse population compared to the historically close Lipizzan breed and to estimate genetic relatedness between them. A set of 13 microsatellites was used for genotyping a total of 270 Old Kladruber horses representing grey and black colour varieties and 418 Lipizzan horses from Slovak and Slovenian studs. The proportion of obtained heterozygosity indicates no major loss of genetic diversity within them. At the individual level across analysed populations, the formation of clusters in respect to breed’s origin and particular studs was observed. The Wright’s FST and genetic distances indicated genetic segregation of both colour varieties at the intraspecific level of the Kladruber breed. Moreover, the membership probability outputs showed that the frequencies of alleles varied across the three main regions represented by both Old Kladruber varieties and Lipizzan, depending on breeding history and strategy of studs.  相似文献   

17.
The Catalonian donkey is one of the most endangered donkey breeds in the world. At present, five main subpopulations exist: AFRAC, which consists of many genetically connected Catalonian localities; Berga, which consists of a single herd located also in Catalunya but under private management; and three minor non‐Catalonian subpopulations (Huesca, Sevilla and Toledo). In this study, we analysed the pedigree information of the Catalonian donkey herdbook to assess the genetic diversity and population structure of the breed. We found that the Catalonian donkey has suffered an important loss of genetic diversity and moderate to high increases of inbreeding because of the abuse of a few individuals in matings. This scenario is mainly characterized by the fact that both the effective number of founders and ancestors for the whole population was 70.6 and 27, respectively, while the equivalent number of founders was 146.5 and the number of ancestors explaining overall genetic variability was 93. In addition, only 14% of animals born between the 1960s and 1970s were significantly represented in the pedigree. Our results also show that subpopulations where breeders exchanged reproductive individuals had low levels of inbreeding and average relatedness. One subpopulation, Berga, was reproductively isolated and showed high levels of inbreeding (F = 7.22%), with average relatedness (AR = 6.61%) playing an important role in increasing the values of these coefficients in the whole pedigree. Using genealogical F‐statistics we have found little evidence of population structuring (FST = 0.0083) with major genetic differences among non‐Catalonian subpopulations.  相似文献   

18.
The Alberes population is a native bovine breed of Catalonia with an unclear origin, which historically some authors have assumed as being composed of two different colour varieties (black and fawn). Sixteen microsatellite loci were analysed, all of them included in the AIRE2066 European Concerted Action list. Overall expected and observed heterozygosities reached values of 0.649 and 0.662, respectively. Genetic differences among black and fawn varieties were not significant (FST = 0.007), and therefore the population is a single variety with a great colour gradation. On the contrary, we detected significant genetic differences among herds (FST = 0.026; p < 0.001), showing a genetic heterogeneity over short geographical distances. The number of migrants per generation among pairs of herds oscillates between 1.46 (Roig and Freixe herds) and 5.62 (Castanyers and Roig herds). Moreover, inbreeding and bottleneck situations can be rejected. The Alberes breed has been grouped within the Cantabrian trunk, closely related to the Asturiana de la Montaña and Alistana breeds, although some other breeds may also have influenced the population along its history.  相似文献   

19.
Small populations are at risk of extinction from deterministic and stochastic factors. Less than 250 Asian elephants (Elephas maximus) remain in China, and are distributed in a few isolated areas; yet, population viability analyses of this endangered population have not been conducted. Here, the current genetic status of the Pu'Er‐Mengyang Asian elephant populations in China was analyzed, and the risk of extinction was predicted over the next 500 years. Factors affecting the viability of this population were determined through simulations. The genetic diversity of the population was very low (mean allele number: 3.1; expected heterozygosity: 0.463), even though a recent population bottleneck was not detected. The effective population size was approximately 24.1 adult elephants. Enough adult breeding individuals exist to maintain population viability. VORTEX simulation model showed that this population would not go extinct in the next 500 years. However, illegal poaching and harvesting could negatively affect population size. A sensitivity analysis showed that the mean stochastic growth rate of the study population is sensitive to sex ratio, number of breeding females, mortality of females of different age classes, carrying capacity, and lethal equivalents. Based on our results, we suggest that action should be taken to alleviate inbreeding and any further loss of genetic diversity, by connecting fragmented elephant habitat or by translocating individual elephants. In addition, human–elephant conflict should be mitigated using various modern approaches, including crop guarding techniques, and by encouraging farmers to switch to crops and income sources not vulnerable to elephant raids.  相似文献   

20.
Cattle play a very important role in agriculture and food security in Vietnam. A high level of cattle diversity exists and serves different needs of Vietnamese cattle keepers but has not yet been molecularly characterized. This study evaluates the genetic diversity and structure of Vietnamese indigenous cattle populations, using microsatellite markers. A total of 410 individuals from six indigenous cattle populations and an exotic breed was characterized using 27 microsatellite markers A total of 362 alleles was detected and the number of alleles per locus ranged from 8 (INRA005 and ILSTS005) to 17 (ETH185). The level of gene diversity was high indicated by a mean expected heterozygosity (He) across populations and loci of 0.73. Level of inbreeding (mean FIS=0.05) and genetic differentiation (mean FST=0.04) was moderate. The phylogenetic tree based on Reynolds genetic distance reflected geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels of genetic diversity and distinct genetic structures. Based on these results, we recommend that for conservation homogenous populations (Nghe An, Thanh Hoa and Phu Yen) can be grouped to reduce costs and U Dau Riu, Lang Son and Ha Giang populations should be conserved separately to avoid loss of genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号