首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Contrast‐enhanced ultrasound of the spleen enables the dynamic assessment of the perfusion of this organ, however, both subjective and quantitative evaluation can be strongly influenced by sedative agent administration. The purpose of this prospective, experimental study was to test effects of two sedative agents on splenic perfusion during contrast‐enhanced ultrasound of the spleen in a sample of healthy dogs. Contrast‐enhanced ultrasound of the spleen was repeated in six healthy Beagles following a cross‐over study design comparing three protocols: awake, butorphanol 0.2 mg/Kg intramuscular (IM), and dexmedetomidine 500 μg/m2 IM. After intravenous injection of a phospholipid stabilized sulfur hexafluoride microbubble solution (SonoVue®, Bracco Imaging, Milano, Italy), the enhancement intensity and perfusion pattern of the splenic parenchyma were assessed and perfusion parameters were calculated. Normal spleen was slightly heterogeneous in the early phase, but the parenchyma was homogeneous at a later phase. Sedation with butorphanol did not modify perfusion of the spleen. Dexmedetomidine significantly reduced splenic enhancement, providing diffuse parenchymal hypoechogenicity during the entire examination. Measured parameters were significantly modified, with increased arrival time (AT; (< 0.0001) and time to peak (TTP; P < 0.0001), and decreased peak intensity (PI; P = 0.0108), wash‐in (P = 0.0014), and area under the curve (AUC; P = 0.0421). Findings supported the use of butorphanol and contraindicated the use of dexmedetomidine as sedatives for splenic contrast ultrasound procedures in dogs. Short‐term and diffuse heterogeneity of the spleen in the early venous phase was determined to be a normal finding.  相似文献   

2.
Contrast‐enhanced multi‐detector computed tomography (CE‐MDCT) is used routinely in evaluating human patients with acute abdominal symptoms. Contrast‐enhanced ultrasound (CEUS) continues to be in its infancy as it relates to evaluation of the acute abdomen. The purpose of this study was to compare survey radiography, B‐mode ultrasound, CEUS, and CE‐MDCT findings in canine patients presenting with acute abdominal signs; with a focus on the ability to differentiate surgical from non‐surgical conditions. Nineteen dogs were prospectively enrolled. Inclusion required a clinical diagnosis of acute abdominal signs and confirmed surgical or non‐surgical causes for the clinical signs. Agreement for the majority of recorded imaging features was at least moderate. There was poor agreement in the identification of pneumoperitoneum and in the comparison of pancreatic lesion dimensions for B‐mode vs. CEUS. The CT feature of fat stranding was detected in cases including, but not limited to, gastric neoplasia with perforation, pancreatitis, and small intestinal foreign body. Ultrasound underestimated the size and number of specific lesions when compared with CE‐MDCT. Contrast‐enhanced ultrasound was successful in detecting bowel and pancreatic perfusion deficits that CE‐MDCT failed to identify. Accuracy for differentiation of surgical vs. non‐surgical conditions was high for all modalities; 100%, 94%, and 94% for CE‐MDCT, ultrasonography and survey radiography respectively. Findings indicated that CE‐MDCT is an accurate screening test for differentiating surgical from non‐surgical acute abdominal conditions in dogs. Focused CEUS following CE‐MDCT or B‐mode ultrasonography may be beneficial for identifying potentially significant hypoperfused lesions.  相似文献   

3.
Our goal was to develop and validate a technique to identify the sentinel lymph nodes of the mammary glands of healthy dogs with contrast‐enhanced ultrasound, and evaluate the feasibility of obtaining representative samples of a sentinel lymph node under ultrasound guidance using a new biopsy device. Three healthy intact female adult hounds were anesthetized and each received an injection of octafluoropropane‐filled lipid microspheres and a separate subcutaneous injection of methylene blue dye around a mammary gland. Ultrasound was then used to follow the contrast agent through the lymphatic channel to the sentinel lymph node. Lymph node biopsy was performed under ultrasound guidance, followed by an excisional biopsy of the lymph nodes and a regional mastectomy procedure. Excised tissues were submitted for histopathologic examination and evaluated as to whether they were representative of the node. The ultrasound contrast agent was easily visualized with ultrasound leading up to the sentinel lymph nodes. Eight normal lymph nodes (two inguinal, one axillary in two dogs; two inguinal in one dog) were identified and biopsied. Lymphoid tissue was obtained from all biopsy specimens. Samples from four of eight lymph nodes contained both cortical and medullary lymphoid tissue. Contrast‐enhanced ultrasound can be successfully used to image and guide minimally invasive biopsy of the normal sentinel lymph nodes draining the mammary glands in healthy dogs. Further work is needed to evaluate whether this technique may be applicable in patients with breast cancer or other conditions warranting evaluation of sentinel lymph nodes in animals.  相似文献   

4.
Contrast‐enhanced ultrasound offers a noninvasive means of subjectively and quantitatively evaluating renal perfusion in cats with renal disease, or in renal transplant patients. In this study, we characterized the pattern of ultrasonographic contrast enhancement in 16 normal feline kidneys in eight cats using contrast‐enhanced power Doppler and contrast‐enhanced harmonic ultrasound techniques. Mean time to peak contrast enhancement for the whole kidney was longer using contrast‐enhanced harmonic ultrasound (16.8s, SD 4.7s) than contrast‐enhanced power Doppler ultrasound (12.2s, SD 1.8s). The time to peak enhancement for the cortex alone in contrast‐enhanced harmonic ultrasound was 13s (SD 3.2s), and for the renal medulla was 25.5s (SD 8.7s). The half time for washout of contrast agent was 39s (SD 14.5s) for contrast‐enhanced harmonic ultrasound. The pattern of contrast enhancement in these normal feline kidneys can be used as normal reference values for the evaluation of clinical patients. Contrast‐enhanced harmonic ultrasound may allow the differentiation between cortical and medullary perfusion patterns.  相似文献   

5.
6.
Gall‐bladder diseases are common in dogs and two‐dimensional ultrasonography is a current standard method for diagnosis and treatment planning. However, findings from this modality can be nonspecific. The aim of this retrospective, case series study was to describe conventional and contrast‐enhanced ultrasound (using SonoVue®) findings in a group of dogs with histologically confirmed gall bladder disease. A total of 65 dogs were included. Branchlike, heterogeneous, and homogeneous contrast enhancement of echogenic intraluminal mass‐forming lesions was a contrast‐enhanced ultrasound characteristic of polypoid lesions due to cystic mucosal hyperplasia of the gallbladder and/or tumor, which had different wash‐in and washout characteristics. In dogs with mobile or immobile biliary sludge or mucocele, the echogenic intraluminal masses remained unenhanced. A double rim mark or enhancement defect in the gallbladder wall was a characteristic of edema or necrosis/rupture of the wall, respectively. Conventional ultrasonography correctly identified biliary sludge or mucocele in 36/37 dogs, cholecystitis/edema in 44/47 dogs, necrosis/rupture in 19/25 dogs, and gallbladder neoplasia in three of three dogs with these pathologies. It falsely identified biliary sludge or mucocele in eight of 28 dogs, cholecystitis/edema in three of 15 dogs, necrosis/rupture in 13/37 dogs, and gall‐bladder neoplasia in 20/59 dogs that did not have these pathologies. Contrast‐enhanced ultrasound correctly identified cholecystitis/edema in 42/47 dogs, but falsely identified cholecystitis/edema in three of 18 dogs. It correctly identified necrosis/rupture, benign polypoid lesions, and gallbladder neoplasia in all dogs with no false‐positive results. Findings supported contrast‐enhanced ultrasound as a complement to conventional ultrasonography for dogs with suspected gallbladder pathologies such as edema, necrosis, and rupture.  相似文献   

7.
Contrast‐enhanced voiding urosonography (CE‐VUS) has been generally considered as a promising tool to diagnose vesicoureteral reflux and abnormalities in lower urinary tract in human patients, especially in children. The purpose of this prospective study is to evaluate the quality of images of the urinary bladder and urethra obtained by CE‐VUS using a second‐generation ultrasound contrast agent (SonoVue®) in healthy dogs and to investigate the safety profile of SonoVue® after intravesical administration. Eighty‐four CE‐VUS examinations with SonoVue® were successfully performed in both unsedated (39/84) and sedated (45/84) dogs. Contrast‐enhanced voiding urosonography examination of urinary bladder was technically successful in all (84/84) dogs. The image quality was not considered adequate in five (5/84) dogs including three dogs in whom layering of contrast media during filling phase was observed and two dogs with premature destruction of microbubbles. In these five dogs, the problem was readily recognized and corrected such that the procedure was still successfully undertaken. The assessment of the urethra during spontaneous micturition was successfully performed in all (84/84) dogs in whom voiding was elicited during the examination. No side effects were observed after intravesical application of SonoVue®. This study demonstrates that CE‐VUS is a feasible and valuable technique to evaluate low urinary tract morphology and function in dogs. Based on our review of the literature, there are no published reports about the use of this method in dogs.  相似文献   

8.
ObjectiveTo evaluate the dexmedetomidine‐induced reduction in organ blood flow with quantitative contrast‐enhanced ultrasound (CEUS) method and to observe the influence of MK‐467 on such reduction.Study designRandomized cross‐over study.AnimalsSix adult purpose‐bred laboratory beagle dogs (mean body weight 15.3 ± 1.9 kg).MethodsContrast‐enhanced ultrasound was performed on six conscious healthy laboratory beagles. The animals on separate occasions underwent three treatments: awake without any medication (CTRL), dexmedetomidine 10 μg kg?1 (DEX) and DEX + MK‐467 500 μg kg?1 (DMK) intravenously (IV). The kidney (10–15 minutes post‐treatment), spleen (25–30 minutes post‐treatment), small intestine (40–45 minutes post‐treatment) and liver (50–55 minutes post‐treatment) were examined with CEUS. A time curve was generated and the following perfusion parameters were analysed: arrival time (AT), time to peak from injection (TTPinj), peak intensity (PI) and wash‐in rate (Wi). In addition to CEUS, renal glomerular filtration rate was indirectly estimated by the rate of iohexol elimination.ResultsAT and TTPinj were significantly higher for DEX than for CTRL in all studied organs. The same parameters were significantly higher for DEX than for DMK in the kidney, spleen and small intestine. PI was significantly lower for DEX than for CTRL or DMK in the kidney. Wi was significantly lower for DEX than for CTRL or DMK in the kidney and significantly lower than for CTRL only in the small intestine. Plasma concentration of iohexol was significantly higher after DEX than CTRL administration.ConclusionsContrast‐enhanced ultrasound was effective in detecting DEX‐induced changes in blood flow. MK‐467 attenuated these changes.Clinical relevanceClinicians should consider the effects of the sedation protocol when performing CEUS. Addition of MK‐467 might beneficially impact the haemodynamic function of sedation with alpha‐2 adrenoceptor agonists.  相似文献   

9.
Contrast‐enhanced magnetic resonance (MR) imaging with a new liver‐specific contrast agent gadolinium‐ethoxybenzyl‐diethylenetriamine penta‐acetic acid (Gd‐EOB‐DTPA; EOB·Primovist®) was studied in 14 normal beagles and 9 dogs with focal liver lesions. Gd‐EOB‐DTPA accumulates in normally functioning hepatocytes 20 min after injection. As with Gd‐DTPA, it is also possible to perform a dynamic multiphasic examination of the liver with Gd‐EOB‐DTPA, including an arterial phase and a portal venous phase. First, a reliable protocol was developed and the appropriate timings for the dynamic study and the parenchymal phase in normal dogs using Gd‐EOB‐DTPA were determined. Second, the patterns of these images were evaluated in patient dogs with hepatic masses. The optimal time of arterial imaging was from 15 s after injection, and the optimal time for portal venous imaging was from 40 s after injection. Meanwhile, the optimal time to observe changes during the hepatobiliary phase was from 20 min after injection. In patient dogs, 11 lesions were diagnosed as malignant tumors; all were hypointense to the surrounding normal liver parenchyma during the hepatobiliary phase. Even with a low‐field MR imaging unit, the sequences afforded images adequate to visualize the liver parenchyma and to detect tumors within an appropriate scan time. Contrast‐enhanced MR imaging with Gd‐EOB‐DTPA provides good demarcation on low‐field MR imaging for diagnosing canine focal liver lesions.  相似文献   

10.
A 1‐year‐old male French Lop rabbit (Oryctolagus cuniculus) was presented with a sudden onset of hyporexia. Physical examination revealed cranial abdominal discomfort. Liver enzymes were elevated on serum biochemistry profile. Abdominal radiographs showed diffusely gas‐dilated small intestinal loops. On abdominal ultrasound, a lobe in the right aspect of the liver was hypoechoic with rounded margins and was surrounded by hyperechoic fat and anechoic fluid. Contrast‐enhanced ultrasonography showed complete lack of perfusion in the abnormal right liver lobe. Exploratory laparotomy revealed torsion of the quadrate liver lobe. Diffuse coagulation necrosis was noted on histopathologic examination. The rabbit fully recovered after surgery.  相似文献   

11.
Contrast‐enhanced ultrasonography is useful in differentiating adrenal gland adenomas from nonadenomatous lesions in human patients. The purposes of this study were to evaluate the feasibility and to describe contrast‐enhanced ultrasonography of the normal canine adrenal gland. Six healthy female Beagles were injected with an intravenous bolus of a lipid‐shelled contrast agent (SonoVue®). The aorta enhanced immediately followed by the renal artery and then the adrenal gland. Adrenal gland enhancement was uniform, centrifugal, and rapid from the medulla to the cortex. When maximum enhancement was reached, a gradual homogeneous decrease in echogenicity of the adrenal gland began and simultaneously enhancement of the phrenicoabdominal vessels was observed. While enhancement kept decreasing in the adrenal parenchyma, the renal vein, caudal vena cava, and phrenicoabdominal vein were characterized by persistent enhancement until the end of the study. A second contrast enhancement was observed, corresponding to the refilling time. Objective measurements were performed storing the images for off‐line image analysis using Image J (ImageJ©). The shape of the time–intensity curve reflecting adrenal perfusion was similar in all dogs. Ratios of the values of the cortex and the medulla to the values of the renal artery were characterized by significant differences from initial upslope to the peak allowing differentiation between the cortex and the medulla for both adrenal glands only in this time period. Contrast‐enhanced ultrasonography of the adrenal glands is feasible in dogs and the optimal time for adrenal imaging is between 5 and 90 s after injection.  相似文献   

12.
We describe a case of a 2‐year‐old mare that presented with a large firm swelling on the lateral aspect of the right tarsus. Diagnostic ultrasound demonstrated a fluid filled cavernous mass that was not clearly demarcated from the surrounding subcutaneous tissue. Contrast radiography with intralesional injection of contrast medium showed accumulation of the medium in the caverns of the mass and in the saphenous vein. Contrast enhanced computed tomography demonstrated 2 vascular meshes, one deep and one more superficially, closely associated with the mass. Surgical excision of the mass was performed and a vascular hamartoma was diagnosed based on histopathology. The horse showed no signs of recurrence 7 months after surgery.  相似文献   

13.
Pancreatitis is the most frequent disease affecting the exocrine pancreas in dogs and reliable diagnostic techniques for predicting fatal complications are lacking. Contrast‐enhanced ultrasound (CEUS) improves detection of tissue perfusion as well as organ lesion vascular pattern. Objectives of this prospective case control study were to compare perfusion characteristics and enhancement patterns of the pancreas in healthy dogs and dogs with pancreatitis using CEUS. Ten healthy dogs and eight dogs with pancreatitis were selected based on physical examination, abdominal ultrasound, and blood analysis findings. A CEUS study of the pancreas was performed for each dog and two observers who were aware of clinical status used advanced ultrasound quantification software to analyze time‐intensity curves. Perfusion patterns were compared between healthy and affected dogs. In dogs with acute pancreatitis, mean pixel and peak intensity of the pancreatic parenchyma was significantly higher than that of normal dogs (P = 0.05) in between 6 and 60 s (P = <0.0001–0.046). This corresponds to a 311% increase in mean pixel intensity in dogs with acute pancreatitis compared to healthy dogs. Wash‐in rates were greater and had a consistently steeper slope to peak in dogs with pancreatitis as opposed to healthy dogs. All dogs with pancreatitis showed a decrease in pixel intensity 10–15 days after the initial examination (P = 0.011) and their times to peak values were prolonged compared to the initial exam. Findings from the current study supported the use of CEUS for diagnosing pancreatitis, pancreatic necrosis, and disease monitoring following therapy in dogs.  相似文献   

14.
Contrast‐enhanced ultrasonography (CEUS) is increasingly available for veterinary patients, however limited studies describe the use of this method for characterizing intrathoracic mass lesions. The aim of this prospective, observational study was to describe CEUS enhancement patterns for intrathoracic mass lesions in a sample of cats and dogs. Sixty patients (36 dogs, 24 cats) were included. Standardized CEUS examinations were performed for 41 pulmonary masses (68%) and 19 mediastinal masses (32%). Final diagnosis was based on cytology and/or histopathology. Absolute time to enhancement (TTE) values were recorded for the intrathoracic mass lesions and spleen. The spleen was used as a reference parenchymal organ to calculate relative TTE (rTTE) values. Absolute TTE of the spleen and intrathoracic mass lesions differed for dogs and cats (P = 0.001). The rTTE values significantly differed between lesions of neoplastic versus non‐neoplastic origin (P = 0.004). The majority of neoplastic pulmonary masses were supplied by bronchial arteries (63%), while most nonneoplastic pulmonary masses were supplied by pulmonary arteries (78%). The sensitivity and specificity for detecting pulmonary neoplastic masses with rTTE were 63% and 78%, respectively. Enhancement patterns for mediastinal thymomas and lymphomas significantly differed (P = 0.002). Thymomas enhanced heterogeneously in a centripetal pattern (86%), whereas lymphomas typically enhanced uniformly in a centrifugal pattern (75%). Findings indicated that CEUS is a feasible method for characterizing intrathoracic mass lesions in dogs and cats, however, the diagnostic sensitivity for detecting neoplastic pulmonary masses was low.  相似文献   

15.
Contrast‐enhanced ultrasound may be helpful for detecting early renal microvascular damage and dysfunction in dogs. However, before this noninvasive imaging method can be tested as an early‐stage screening tool in clinical patients, an improved understanding of long‐term variation in healthy animals is needed. In this prospective, secondary, longitudinal, serial measurements study, variability of contrast‐enhanced ultrasound renal perfusion parameters was described for eight healthy dogs, using seven time points and a period of 83 weeks. Dogs were sedated with butorphanol (0.4 mg/kg), and contrast‐enhanced ultrasound of each kidney was performed after an intravenous bolus injection of a microbubble contrast agent (0.04 mL/kg). Time‐intensity curves were created from regions‐of‐interest drawn in the renal cortex and medulla. Intensity‐related parameters representing blood volume and time‐related parameters representing blood velocity were determined. A random‐effects model using restricted maximum likelihood was used to estimate variance components. Within‐dog coefficient of variation was defined as the ratio of the standard deviation over the mean. Time‐related parameters such as time‐to‐peak, rise and fall time had lowest within‐dog variability. Intensity‐related parameters such as peak enhancement, wash‐in and wash‐out area under the curve, total area under the curve, and wash‐in and washout rates had high within‐dog variability (coefficient of variation > 45%). Authors therefore recommend the use of time‐related parameters for future studies of renal perfusion. Within‐dog variability for bilateral kidney measurements was extremely low, therefore contrast‐enhanced ultrasound may be particularly useful for detecting unilateral changes in renal perfusion. Future studies are needed to compare contrast‐enhanced ultrasound findings in healthy dogs versus dogs with renal disease.  相似文献   

16.
Herein, we describe the normal contrast‐enhanced harmonic, color, and power Doppler ultrasonographic characteristics of the medial iliac lymph nodes in healthy dogs. Contrast‐enhanced harmonic ultrasonography of the medial iliac lymph nodes was performed on 14 healthy dogs after intravenous administration of the lipoprotein‐bound inert gas‐filled microbubble contrast media Definity®. Time–pixel intensity curves were generated for 1‐min postinjection. Quantification of these curves was performed using Philips QLab software. Non‐contrast‐enhanced power and color Doppler examinations were performed in each node to assess vascular patterns subjectively. Normal lymph nodes exhibited a mean contrast wash‐in phase beginning at 6.3 s from the time of injection with mean peak pixel intensity at 12.1 s. Angioarchitecture was best visualized with contrast‐enhanced harmonic ultrasound compared with power and color Doppler. Normal lymph nodes in dogs have a central artery with a centrifugal and uniform branching pattern. Contrast‐enhanced harmonic ultrasonography is a noninvasive examination that demonstrates improved visibility of the intranodal architecture of healthy medial iliac lymph nodes in dogs compared with conventional, non‐contrast‐enhanced Doppler methods that may have future clinical applications.  相似文献   

17.
Contrast‐enhanced ultrasound with sulphur hexafluoride microbubbles was performed in seven healthy dogs without a history of reproductive pathology and with histologically confirmed normal testes and in 42 dogs with chronic scrotal anomalies. All dogs underwent orchiectomy and histological examination. Enhancement patterns and perfusion parameters (peak intensity and regional blood flow) of testes of healthy dogs and testes with chronic lesions were compared. Fourteen non‐pathologic and 60 pathologic testes were considered. Forty testes were neoplastic (24 interstitial cell tumours, 9 seminomas, 7 Sertoli cell tumours), 20 were non‐neoplastic (16 testicular degenerations, 2 chronic orchitis, 1 testicular atrophy, 1 interstitial cell hyperplasia). In healthy dogs, the contrast medium flow had a rapid homogeneous wash‐in and wash‐out, with a short peak phase. With contrast ultrasound, testes that were inhomogeneous with a hyperenhancing pattern were associated with neoplasia (sensitivity: 87.5%, specificity: 100%). Lesions with persistent inner vessels and a hypo‐to‐isoechoic background were significantly associated with seminomas (sensitivity: 77.8%, specificity: 100%). Testes with non‐neoplastic lesions were characterized by a scant/moderate homogeneous enhancement. Perfusion parameters were higher in neoplastic lesions. Contrast ultrasound was a feasible diagnostic tool in the assessment of testicular lesions, with hyperenhancement being an important feature in the diagnosis of malignancy.  相似文献   

18.
Contrast‐enhanced ultrasound can be used to quantify tissue perfusion based on region of interest (ROI) analysis. The effect of the location and size of the ROI on the obtained perfusion parameters has been described in phantom, ex vivo and in vivo studies. We assessed the effects of location and size of the ROI on perfusion parameters in the renal cortex of 10 healthy, anesthetized cats using Definity® contrast‐enhanced ultrasound to estimate the importance of the ROI on quantification of tissue perfusion with contrast‐enhanced ultrasound. Three separate sets of ROIs were placed in the renal cortex, varying in location, size or depth. There was a significant inverse association between increased depth or increased size of the ROI and peak intensity (P<0.05). There was no statistically significant difference in the peak intensity between the ROIs placed in a row in the near field cortex. There was no significant difference in the ROIs with regard to arrival time, time to peak intensity and wash‐in rate. When comparing two different ROIs in a patient with focal lesions, such as suspected neoplasia or infarction, the ROIs should always be placed at same depth and be as similar in size as possible.  相似文献   

19.
Vascular alterations play important roles in many orthopedic diseases such as osteoarthritis, tendonitis, and synovitis in both human and equine athletes. Understanding these alterations could enhance diagnosis, prognosis, and treatment. Contrast‐enhanced ultrasound (CEUS) could be a valuable method for evaluation of blood flow and perfusion of these processes in the equine distal limb, however no reports were found describing feasibility or safety of the technique. The goal of this prospective, experimental study was to describe the feasibility and safety of distal limb CEUS in a sample of six horses. For each horse, CEUS of the distal limb was performed after intravenous injections of 5 and 10 ml, as well as intra‐arterial injections of 0.5 and 1 ml contrast medium. Vital parameters were monitored and CEUS images were assessed qualitatively and quantitatively for degree of contrast enhancement. None of the horses had clinically significant changes in their vital parameters after contrast medium injection. One horse had a transient increase in respiratory rate, and several horses had mild increases of systolic blood pressure of short duration after intravenous, but not after intra‐arterial injections. Intra‐arterial injection was possible in all horses and resulted in significantly improved contrast enhancement both quantitatively (P = 0.027) and qualitatively (P = 0.019). Findings from this study indicated that CEUS is a feasible and safe diagnostic test for evaluation of the equine distal limb. Future studies are needed to assess the clinical utility of this test for horses with musculoskeletal diseases.  相似文献   

20.
Ultrasound‐guided percutaneous renal biopsy may be associated with complications, especially when using larger needles. Contrast harmonic ultrasound increases blood pool echo intensity, enhancing parenchymal lesions. Therefore, contrast harmonic ultrasound is a potential alternative screening method for postbiopsy renal lesions. Renal biopsies were performed using 14 G needles in 11 healthy Beagles, at three occasions: 0 (“Baseline Biopsy”; BB), 4 (“Biopsy 2”; B2), and 6 months (“Biopsy 3”; B3). Ultrasound and contrast harmonic ultrasound of biopsied kidneys were performed approximately 30 min after biopsy (week 0) at BB and B2, and repeated once every week (weeks 1–3) until normal appearance. At B3, only contrast harmonic ultrasound was performed, both immediately and 30‐min postbiopsy. Contrast harmonic ultrasound images were reviewed using subjective and semiquantitative methods to describe lesions including number, shape, size, sharpness, echogenicity, and evolution. More renal lesions were detected with contrast harmonic ultrasound (22/22) compared with conventional ultrasound (14/22). The majority appeared at week 0 as hypoechoic tract(s) (27/33), the other (6/33) as ill‐defined areas or area/tract combination, all having variable size, shape, and echogenicity. Seven tracts had a small subcapsular hematoma. In most kidneys, similar or gradual decrease of size and sharpness, and increased echogenicity was observed until normal appearance occurred at week 1 (1/22), week 2 (18/22), or week 3 (22/22). Two Beagles developed complications. At B3, immediately postbiopsy, tracts were hyperechoic in 9/11 kidneys, becoming hypoechoic again 30 min later. Contrast harmonic ultrasound is a valuable method to evaluate postbiopsy renal lesions in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号