首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The relationship of injected Fe doses on blood hematology and pig growth performance during both preweaning and postweaning periods was studied. In Exp. 1, the effect of BW of 347 pigs injected with 200 mg of Fe (dextran) intramuscularly (i.m.) at birth on hemoglobin (Hb) and percent hematocrit (Hct) at weaning was assessed. As BW increased there was a decline (P < 0.01) in Hb and Hct. In Exp. 2, Fe injection doses and timing of injected Fe on blood hematology and pig growth were evaluated. Injections were as follows: 1) 200 mg of Fe at birth; 2) 300 mg of Fe at birth; or 3) 200 mg of Fe at birth + 100 mg of Fe at d 10. A total of 269 pigs were allotted within litter to 3 treatments. The 2 greater quantities of injected Fe (i.e., 300 or 200 + 100 mg of Fe) had similar but greater (P < 0.05) Hb and Hct values than pigs receiving 200 mg of Fe, but growth rates were similar at weaning. The effects of injecting 200 mg of Fe at birth and either saline or 100 mg of Fe at 10 d of age were investigated in Exp. 3. Weaned pigs of each group were fed diets with 0, 80, or 160 mg/kg of added Fe for 35 d as a 2 × 3 factorial arrangement with 12 replicates (n = 360 pigs) in a randomized complete block design (RCB). The innate Fe contents of diets averaged 200 mg/kg. The greater Fe injection group (200 + 100 mg) had greater (P < 0.01) Hb and Hct values through 14 d postweaning (P < 0.05) and greater (P < 0.01) Hct values through 21 d postweaning. As dietary Fe increased, Hb was greater only at d 14 (P < 0.05 4), whereas Hct increased linearly to d 35 (P < 0.01) postweaning. Dietary Fe resulted in linear increases (P < 0.01) in ADG from d 21 to 35 and d 0 to 35. In Exp. 4, 3 dietary Fe (80, 160, and 240 mg/kg of diet), 2 injected Fe treatments (200 or 300 mg of Fe) at birth, and birth BW (<1.5 or ≥1.5 kg) were evaluated as a 2 × 2 × 3 factorial arrangement of treatments in a RCB design with 6 replicates (n = 280 pigs). The 300 mg of Fe injection group had lighter BW in both birth BW groups, with a birth BW × injected Fe interaction (P < 0.01). This resulted in the lighter birth BW pigs receiving 200 mg of Fe having greater BW gains to 240 mg/kg of dietary Fe, whereas light birth BW pigs injected with 300 mg of Fe plateaued at 160 mg/kg of Fe. Pigs in the heavy birth BW group injected with 200 or 300 mg of Fe at birth responded similarly to dietary Fe postweaning. These results indicate that blood Hb and Hct were affected by pig BW at weaning, but the additional 100 mg of Fe i.m. at 10 d of age increased blood hematology and that Fe injected preweaning affected initial postweaning performance.  相似文献   

2.
Three commercial trials were conducted to evaluate the use of dexamethasone (Dex) and/ or isoflupredone (Predef) in improving preweaning growth performance of neonatal pigs. The objectives of the commercial trials were threefold: 1) to evaluate Predef in comparison with Dex; 2) to address the sexual dimorphic growth response observed in a previous commercial trial; and 3) to determine whether there is any benefit of providing Dex treatment to pigs being fed supplemental milk. In Exp. 1, 276 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included saline (Control), Dex (2 mg/kg BW i.m. injection of Dex), or Predef (2 mg/kg BW i.m. injection of Predef 2X) within 24 h after birth. A treatment effect was observed for BW at weaning (P < 0.001), with pigs injected with Predef being 0.51 kg lighter than Control and Dex-treated pigs. The lower BW of Predef-treated pigs at weaning were a result of a lower ADG (P < 0.001) during the preweaning period compared with Control and Dex pigs. In Exp. 2, 703 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included either an i.m. injection of saline (Control), Dexl (1 mg/kg BW of Dex), or Dex2 (2 mg/kg BW of Dex) within 24 h after birth. No treatment effects were observed for BW at weaning (P = 0.24) or ADG (P = 0.19). In Exp. 3, 342 pigs (Genetiporc) were assigned according to birth weight and sex to two treatments. Treatments included either an i.m. injection of saline or Dex (2 mg/kg BW) within 24 h after birth. All pigs were provided supplemental milk from the time of treatment until weaning age. No treatment effects were observed for BW at weaning (P = 0.13) or ADG (P = 0.11). The negative response to Predef was similar to the growth-suppressive effects observed by others using chronic glucocorticoid treatment. In contrast to our previous findings, Dex did not improve preweaning growth performance regardless of dose or supplemental milk.  相似文献   

3.
The aim of this study was to determine the effect of dietary Forsythia suspensa extract (FSE) supplementation to lactating sows and nursery pigs on post-weaning performance, antioxidant capacity, immunoglobulins, and intestinal health. Based on backfat, body weight (BW), and parity, 24 gestating sows (Landrace × Yorkshire) with average parity of 3.38 ± 0.61 and BW of 234 ± 6.81 kg were allotted into two dietary treatments (control vs. 100 mg/kg FSE) with 12 sows per treatment from day 107 of gestation to day 21 of lactation. After weaning, based on the initial BW and source litter, 192 nursery pigs (Duroc × [Landrace × Yorkshire], average BW of 6.98 ± 0.32 kg, weaned at day 21) were allotted into four dietary treatments with eight replicate pens per treatment, six pigs per pen for a 4-wk study. The treatments included the following: 1) CC (sows and their piglets both fed control diet); 2) CF (sows fed control diet and their piglets fed FSE diet [containing 100 mg/kg FSE]); 3) FC (sows fed FSE diet and their piglets fed control diet); and 4) FF (sows and their piglets both fed FSE diet). The MIXED procedures of SAS for a split-plot arrangement with sow diet as the whole plot and nursery diet as split plot were used to analyze the data. After weaning, piglets from FSE-fed sows had improved (P < 0.05) average daily gain and feed efficiency, and lower (P < 0.05) diarrhea rate in overall (day 1 to 28) compared with those from sows fed control diet. Piglets from FSE-fed sows also had higher (P < 0.05) contents of immunoglobulin G (IgG), growth hormone, superoxide dismutase (SOD), total antioxidant capacity in serum, villus height in ileum, and villus height to crypt depth ratio in jejunum, as well as lower (P < 0.05) content of malondialdehyde (MDA) in serum and crypt depth in ileum compared with those from sows fed control diet. Piglets fed FSE during nursery had increased (P < 0.05) concentrations of IgG, SOD, and catalase, and decreased (P < 0.05) MDA and tumor nuclear factor-α levels in serum compared with those fed control diet during nursery. Piglets from FC group had increased (P < 0.05) protein expression of occludin in jejunal mucosa and relative abundance of Lactobacillus on genus level in colon compared with those from CC group. In conclusion, for the performance and intestinal health, diets supplemented with FSE during lactation phase seemed more efficient to alleviate weaning stress than the nursery phase. In terms of the antioxidant status and immunoglobulins, FSE supplemented in both phases were efficient for nursery pigs.  相似文献   

4.
为了探讨啤酒酵母葡聚糖在断奶仔猪日粮中的适宜添加剂量及其对断奶仔猪细胞免疫功能的影响,本研究进行了2个试验。试验1选用100头(28±2)d断奶的二元杂交断奶仔猪,按单因子试验设计随机分为5个处理,分别饲喂含葡聚糖0、25、50、100mg/kg和200mg/kg的日粮。结果表明:随葡聚糖添加剂量的增加,平均日增重在14 ̄28 d及0 ̄28 d呈二次曲线变化(P<0.05)。试验2选用80头(28±2)d断奶的二元杂交断奶仔猪,随机分为2个处理,分别饲喂含葡聚糖0mg/kg和50mg/kg的日粮。在试验的第14天和第28天,每重复取1头仔猪前腔静脉采血,测定外周血淋巴细胞转化率。结果显示,在断奶仔猪日粮中添加50mg/kg葡聚糖提高了仔猪在14 ̄28d及0 ̄28d的日增重(P<0.05)。而且,也提高了仔猪在0 ̄14 d、0 ̄28 d及28 ̄35 d的平均日采食量(P<0.05)。但是对淋巴细胞转化率没有影响。结果表明:在断奶仔猪日粮中添加50mg/kg啤酒酵母葡聚糖,可以提高断奶仔猪的生产性能,而且没有性别差异。  相似文献   

5.
Second-parity sows (n = 7) were fed diets containing organic or inorganic trace minerals, and their progeny (n = 68) were used to determine the Fe status of pigs at birth and nursing and postweaning phases. The experiment comprised 2 parts, in which the first experiment was a 2 x 2 factorial arrangement. Sow trace mineral (organic vs. inorganic) was the first factor evaluated, and the injection of Fe (0 or 200 mg) to neonatal pigs within litter was the second factor. In Exp. 2, half the pigs in each litter from each neonatal Fe injection group were injected with Fe (0 vs. 200 mg) at weaning as an added factor in a 2 x 2 x 2 factorial arrangement in a split-split-plot design. Weanling pigs were fed diets fortified with 90 mg/kg of Fe (sulfate), but the analyzed indigenous and fortified Fe content was 170 mg/kg. Pigs in both experiments were bled at periodic intervals to determine hemoglobin (Hb) concentration, percentage of hematocrit (Hct), and ceruloplasmin oxidase activity. Neonates and d-2 pigs from sows fed organic trace minerals had lower (P < 0.05) Hb concentrations compared with sows fed inorganic trace minerals, but they had similar percentages of Hct values. Blood Hb seemed to remain lower throughout the nursing period when sows were fed organic vs. inorganic Fe. Pigs without Fe injection had decreased ADG (P < 0.05) from 0 to 7 and 7 to 17 d than pigs injected with Fe. Although Hb values increased when neonatal pigs received Fe injection, they were somewhat lower when sows were fed the organic Fe. Ceruloplasmin oxidase activity was low at birth, increased to weaning in each treatment group, and was greater in pigs without Fe injection at d 13 (P < 0.05) and those from sows fed organic minerals at d 17 (P < 0.01). In Exp. 2, when the Fe-fortified diet was fed, BW and ADG responses were both greater (P < 0.01) to 28 d postweaning when neonates had received Fe injections. Neonates not injected with Fe at birth but injected at weaning had greater ADG, Hb, and Hct values, whereas pigs injected with Fe did not respond to Fe injection at weaning, which resulted in interactions (P < 0.05) in those criteria at most measurement periods. The results indicated a reduced Fe bioavailability when sows were fed the organic Fe source, but this may also have been due to the greater Fe need, lowered Fe status, or both, of the sow because of the greater number of pigs farrowed and heavier litter weights at parturition and weaning. The results also indicated that Fe injections at birth may be critical to achieving maximum pig growth response to weaning. There was no apparent advantage to injecting Fe at weaning when neonatal pigs received Fe injections.  相似文献   

6.
Three experiments were conducted to determine the true ileal digestible (TID) Lys and sulfur AA (SAA) requirement and to compare the bioefficacy of 2-hydroxy-4-(methylthio)butanoic acid (HMTBA) and dl-MET as Met sources in nursery pigs. Experiment 1 included 2 studies: 1 was 662 nursery pigs (Triumph 4 x PIC C22; initial BW 12.2 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID Lys concentrations ranging from 1.10 to 1.50%; and the second study was 665 nursery pigs (Triumph 4 x PIC C22; initial BW 12.3 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID SAA concentration ranging from 0.63 to 0.90%. In Exp. 2, 638 nursery pigs (Triumph 4 x PIC C22; initial BW 13.0 +/- 0.16 kg) were allotted to the same 5 SAA dietary treatments as in Exp. 1. In Exp. 3, 1,232 pigs (Triumph 4 x PIC C22; initial BW 11.0 +/- 0.30 kg) were allotted to 1 of 7 dietary treatments. The basal diet (diet 1) was supplemented with high concentrations of synthetic AA but no Met; this resulted in a dietary concentration of TID Lys of 1.30% and TID SAA of 0.50%. Diets 2 to 7 were the basal diet supplemented with 3 equimolar levels of HMTBA or dl-MET to provide TID SAA concentrations of 0.56, 0.62, and 0.68%, respectively. In Exp. 1, increasing TID Lys from 1.10 to 1.50% increased ADG (quadratic; P < 0.05) and improved G:F (linear; P < 0.002). The pooled data of Exp. 1 (SAA study) and Exp. 2 indicated that increasing TID SAA from 0.63 to 0.90% increased ADG (quadratic; P < 0.01) and improved G:F (quadratic; P < 0.01). Various methods of analyzing the growth response surface indicated that the optimal TID Lys concentration ranged from 1.28 to 1.32% for ADG (Exp. 1), and the optimal TID SAA concentration ranged from 0.73 to 0.77% for ADG and 0.80 to 0.83% for G:F (pooled Exp. 1 and 2), respectively. In Exp. 3, increasing TID SAA concentrations from 0.50 to 0.68% resulted in a linear improvement of ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.001). The best fit comparison of HMTBA and dl-MET was determined by the Schwartz Bayesian Information Criteria index, which indicated the average relative efficacy of HMTBA vs. dl-MET was 111%, with 95% confidence interval of 83 to 138%, within the range of TID SAA tested. Thus, the TID Lys and SAA requirements of modern lean-genotype pigs from 11- to 26-kg were greater than the 1998 NRC recommendations, and both HMTBA and dl-MET as Met sources can supply equimolar amounts of Met activity.  相似文献   

7.
Two experiments were conducted to evaluate dose–response and supplemental effects of whey permeate on growth performance and intestinal health of nursery pigs. In experiment (exp.) 1, 1,080 pigs weaned at 6.24 kg body weight (BW) were allotted to five treatments (eight pens/treatment) with increasing levels of whey permeate in three phases (from 10% to 30%, 3% to 23%, and 0% to 9% for phase 1, 2, and 3, respectively) fed until 11 kg BW and then fed a common phase 4 diet (0% whey permeate) until 25 kg BW in a 48-d feeding trial. Feed intake and BW were measured at the end of each phase. In exp. 2, 1,200 nursery pigs at 7.50 kg BW were allotted to six treatments (10 pens/treatment) with increasing levels of whey permeate from 0% to 18.75% fed until 11 kg BW. Feed intake and BW were measured during 11 d. Six pigs per treatment (1 per pens) were euthanized to collect the jejunum to evaluate tumor necrosis factor-alpha, interleukin-8 (IL-8), transforming growth factor-beta 1, mucin 2, histomorphology, digestive enzyme activity, crypt cell proliferation rate, and jejunal mucosa-associated microbiota. Data were analyzed using contrasts in the MIXED procedure and a broken-line analysis using the NLIN procedure of SAS. In exp. 1, increasing whey permeate had a quadratic effect (P < 0.05) on feed efficiency (G:F; maximum: 1.35 at 18.3%) in phase 1. Increasing whey permeate linearly increased (P < 0.05) average daily gain (ADG; 292 to 327 g/d) and G:F (0.96 to 1.04) of pigs in phase 2. In exp. 2, increasing whey permeate linearly increased (P < 0.05) ADG (349 to 414 g/d) and G:F (0.78 to 0.85) and linearly increased (P < 0.05) crypt cell proliferation rate (27.8% to 37.0%). The breakpoint from a broken-line analysis was obtained at 13.6% whey permeate for maximal G:F. Increasing whey permeate tended to change IL-8 (quadratic, P = 0.052; maximum: 223 pg/mg at 10.9%), to decrease Firmicutes:Bacteroidetes (P = 0.073, 1.59 to 1.13), to increase (P = 0.089) Bifidobacteriaceae (0.73% to 1.11%), and to decrease Enterobacteriaceae (P = 0.091, 1.04% to 0.52%) and Streptococcaceae (P = 0.094, 1.50% to 0.71%) in the jejunal mucosa. In conclusion, dietary inclusion of whey permeate increased the growth of nursery pigs from 7 to 11 kg BW. Pigs grew most efficiently with 13.6% whey permeate. Improvement in growth performance is partly attributed to stimulating intestinal immune response and enterocyte proliferation with positive changes in jejunal mucosa-associated microbiota in nursery pigs.  相似文献   

8.
Four experiments with 1,040 weanling pigs (17 +/- 2 d of age at weaning) were conducted to evaluate the effects of spray-dried animal plasma source, drying technique, and methods of bacterial reduction on nursery pig performance. In Exp. 1, 180 barrows and gilts (initial BW 5.9 +/- 1.8 kg) were used to compare effects of animal plasma, animal plasma source, drying technique (spray-dried or freeze-dried), and plasma irradiation in nursery pig diets. From d 0 to 10, pigs fed diets containing irradiated spray-dried animal plasma had increased ADG and ADFI (P < 0.05) compared with pigs fed diets containing nonirradiated spray-dried animal plasma. Pigs fed irradiated animal plasma Sources 1 and 2 were similar in ADG and ADFI, but pigs fed animal plasma Source 1 had greater ADG (P < 0.05) than pigs fed animal plasma Source 2 and pigs not fed plasma. Pigs fed freeze-dried animal plasma had growth performance similar (P > 0.36) to pigs fed spray-dried animal plasma. Overall (d 0 to 24), pigs fed irradiated spray-dried animal plasma were heavier (P < 0.05) than pigs fed no animal plasma, whereas pigs fed nonirradiated spray-dried plasma were intermediate. In Exp. 2, 325 barrows and gilts (initial BW 5.8 +/- 1.7 kg) were used to compare the effects of irradiation or formaldehyde treatment of animal plasma and formaldehyde treatment of the whole diet. Pigs fed diets containing irradiated animal plasma had greater ADG (P < 0.05) than pigs fed nonirradiated plasma. Pigs fed formaldehyde-treated plasma had greater ADG and ADFI (P < 0.05) than pigs fed diets with either nonirradiated plasma or whole diet treated with formaldehyde. In Exp. 3 (360 barrows and gilts; initial BW 6.3 +/- 2.7 kg) and Exp. 4 (175 barrows and gilts; initial BW 6.1 +/- 1.7 kg), the irradiation of feed (high bacteria) and food-grade (low bacteria) animal plasma in nursery pig diets was examined. Pigs fed irradiated feed-grade plasma Product 2 had increased ADG (P < 0.05) compared with pigs fed nonirradiated plasma Product 2 and pigs fed the control diet without plasma. In Exp. 3 and 4, pigs fed irradiated food-grade plasma had growth performance similar to pigs fed nonirradiated food-grade plasma (P > 0.12). These studies indicate that bacterial reduction of feed-grade, but not food-grade animal plasma, improves nursery pig performance.  相似文献   

9.
Three experiments were conducted to investigate the effects of beta-glucan supplementation on pig performance and immune function. In Exp. 1, 100 weaned pigs (8.65 +/- 0.42 kg of BW and 28 +/- 2 d of age) were used in a 35-d experiment to determine the effects of graded levels of beta-glucan. Pigs were randomly allotted to 1 of 5 treatments containing beta-glucan supplemented at 0, 25, 50, 100, or 200 ppm. Each treatment was replicated using 5 pens containing 4 pigs per pen. The ADG of pigs between d 14 to 28 and d 0 to 28 responded to dietary beta-glucan in a quadratic fashion (P < 0.05), whereas beta-glucan had no effect on ADFI and G:F in any period. In Exp. 2, 80 crossbred pigs (8.23 +/- 0.56 kg of BW and 28 +/- 2 d of age) were used in a 35-d experiment. Pigs were allotted to 1 of 2 dietary treatments (0 or 50 ppm of beta-glucan in the diet) using 10 pens with 4 pigs per pen. Pigs treated with beta-glucan had greater ADG in the 14- to 28-d (P = 0.05) and 0-to 28-d (P = 0.035) periods. The ADFI of pigs receiving beta-glucan was increased (P < 0.05) in the periods from 0 to 14, 0 to 28, and 28 to 35 d. The lymphocyte proliferation index in response to phytohemagglutinin (P = 0.051) and concanavalin A (P = 0.052) tended to decrease on d 14 in pigs supplemented with beta-glucan compared with pigs without supplementation. In Exp. 3, 24 barrows (8.89 +/- 0.20 kg of BW and 28 d of age) were used to investigate the immunological and somatotropic responses of pigs challenged with lipopolysaccharide (LPS). Experimental treatments were arranged in a 2 x 2 factorial, with the main effects of LPS challenge (saline vs. LPS) and dietary addition of beta-glucan (0 vs. 50 ppm). Pigs were raised individually in metabolic cages. Pigs were fed 0 or 50 ppm of beta-glucan for 28 d and then challenged with LPS (25 microg/kg of BW) or saline. After LPS injection, blood was obtained at 0, 1.5, 3, 4.5, 6, and 7.5 h to determine cytokine production and the somatotropic response. Dietary beta-glucan increased plasma interleukin-6 at 1.5, 3, and 4.5 h and tumor necrosis factor-alpha at 3 and 4.5 h and increased plasma interleukin-10 from 3 to 7.5 h after LPS challenge. The beta-glucan treatments had no effect on growth hormone. In conclusion, beta-glucan can selectively influence performance and partially offer benefits on somatotropic axis and immune function in weaned piglets challenged with LPS.  相似文献   

10.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

11.
Two experiments were conducted to evaluate the effects of live yeast supplementation on nursery pig performance, nutrient digestibility, and fecal microflora and to determine whether live yeast could replace antibiotics and growth-promoting concentrations of Zn and Cu in nursery pigs. In Exp. 1, 156 pigs were weaned at 17 d of age (BW = 5.9 kg) and allotted to a 2 x 2 factorial randomized complete block design (six or seven pigs per pen with six pens per treatment). Factors consisted of 1) dietary supplementation with oat products (oat flour and steam-rolled oats; 0 or 27.7%) and 2) yeast supplementation at 0 or 1.6 x 10(7) cfu of Saccharomyces cerevisiae SC47/g of feed. In Exp. 2, 96 pigs were weaned at 17 d of age and allotted to a 2 x 2 factorial randomized complete block design (four pigs per pen with six pens per treatment) with factors of 1) diet type (positive control containing growth-promoting concentrations of Zn, Cu, and antibiotics or negative control) and 2) live yeast supplementation (0 or 2.4 x 10(7) cfu of Saccharomyces cerevisiae SC47/g of feed). The inclusion of oat products in Exp. 1 decreased (P < 0.10) overall ADG and final BW. Yeast supplementation did not affect growth performance of pigs in Exp. 1 (P = 0.65); however, ADG in Exp. 2 was 10.6% greater (P < 0.01) and ADFI was increased by 9.4% (P < 0.10) in pigs supplemented with yeast in the positive control diet. Addition of Zn, Cu, and antibiotics to the diet improved gain:feed ratio during the prestarter period (P < 0.02) and overall (P = 0.10). In Exp. 1, inclusion of oat products increased (P < 0.01) total bacteria in feces when measured on d 10. Fecal lactobacilli measured on d 28 were reduced (P < 0.05) in pigs fed diets with oat products and yeast (interaction, P < 0.05). In Exp. 2, yeast supplementation decreased (P < 0.05) total bacteria and lactobacilli. Dietary yeast resulted in a greater (P < 0.05) yeast count in feces of pigs during the starter phase of Exp. 1. Yeast decreased (P < 0.10) the digestibility of DM, fat, and GE in the prestarter phase and DM, fat, P, and GE in the starter phase, whereas oat products increased the digestibility of DM, CP, fat, and GE (P < 0.05) in the prestarter phase. Results indicate that live yeast supplementation had a positive effect on nursery pig performance when diets contained growth-promoting antimicrobials. Nonetheless, the response was variable, and the conditions under which a response might be expected need to be further defined.  相似文献   

12.
A total of 2,184 pigs (DNA 600 × PIC L42) were used to evaluate the effects of weaning age and antibiotic (AB) use on pig performance from weaning to marketing in a commercial production system. Experimental treatments were arranged in a 3 × 2 factorial with main effects of weaning age (18.5, 21.5, or 24.5 d of age) and with the use of ABs or an antibiotic-free (NAE) program. At birth, pigs were ear tagged, and the date of birth and sex recorded. Pigs were weaned from a 4,000-sow farm over four consecutive weeks. Four weaning batches (one per week) of 546 pigs were used. Each weaning batch had one-third of pigs of each weaning age. Pigs were placed in pens by weaning age and then randomly assigned to an AB or NAE program. There were 14 replicate pens per treatment and 26 pigs per pen (13 barrows and 13 gilts). Pigs allocated to the AB program were fed a diet containing 441 mg/kg chlortetracycline (CTC) from day 8 to 21 postweaning. They were also administered 22 mg/kg of body weight (BW) of CTC via drinking water for five consecutive days after a porcine respiratory and reproductive syndrome outbreak during week 7 after weaning. In the first 42 d postweaning, increasing weaning age improved (linear, P < 0.001) BW at day 42, average daily gain (ADG), and average daily feed intake (ADFI). From weaning to 197 d of age, increasing weaning age increased (linear, P < 0.001) ADG and ADFI. Pigs on the AB program had greater (P = 0.031) ADG and ADFI compared with NAE pigs. An interaction (linear, P = 0.005) was observed for feed efficiency (G:F). When ABs were provided, increasing weaning age did not result in any change in G:F; however, in the NAE program, increasing weaning age increased G:F. Pigs on the AB program had lower (P < 0.001) total losses (mortality and removals) than those on the NAE program. Increasing weaning age marginally (linear, P = 0.097) decreased total losses. Increasing weaning age decreased (quadratic, P < 0.001) the number of pigs treated with an injectable AB but the AB program did not (P = 0.238). The weight sold (at 197 d of age) per pig weaned was increased (linear, P = 0.050) by increasing weaning age and by using AB in feed and water (P = 0.019). In summary, increasing weaning age linearly improved most of the pig performance criteria and relatively the short-term use of ABs reduced mortality and removals with both factors contributing to increased weight sold per pig weaned.  相似文献   

13.
A total of 720 nursery pigs in three experiments were used to evaluate the effects of blood meal with different pH (a result of predrying storage time) and irradiation of spray-dried blood meal in nursery pig diets. In Exp. 1, 240 barrows and gilts (17 +/- 2 d of age at weaning) were used to determine the effects of blood meal pH (7.4 to 5.9) in diets fed from d 10 to 31 postweaning (7.0 to 16.3 kg of BW). Different lots of dried blood meal were sampled to provide a range in pH. Overall (d 0 to 21), pigs fed diets containing blood meal had greater ADG (P < 0.05) and ADFI (P < 0.05) than pigs fed diets without blood meal. Ammonia concentrations in blood meal rose as pH decreased. However, blood meal pH did not influence (P > 0.16) ADG, ADFI, or gain:feed (G:F). In Exp. 2, 180 barrows (17 +/- 2 d of age at weaning) were used to determine the effects of post drying pH (7.6 to 5.9) and irradiation (gamma ray, 9.5 kGy) of blood meal on growth performance of nursery pigs from d 5 to 19 postweaning (6.8 to 10.1 kg of BW). One lot of whole blood was isolated with 25% of the total lot dried on d 0, 3, 8, and 12 after collection to create a range in pH. Overall, pigs fed blood meal had improved G:F (P < 0.01) compared to pigs fed the control diet. Similar to Exp. 1, the ammonia concentration of blood meal increased with decreasing pH. Blood meal pH did not influence ADG, ADFI, or G:F (P > 0.21), but pigs fed irradiated blood meal (pH 5.9) had greater ADG and G:F (P < 0.05) than pigs fed nonirradiated blood meal (pH 5.9). In Exp. 3, 300 barrows (17 +/- 6 d of age at weaning) were used to determine the effects of blood meal irradiation source (gamma ray vs. electron beam) and dosage (2.5 to 20.0 kGy) on growth performance of nursery pigs from d 4 to 18 postweaning (8.7 to 13.2 kg of BW). Overall, the mean of all pigs fed blood meal did not differ in ADG, ADFI, or G:F (P > 0.26) compared to pigs fed the control diet without blood meal. Pigs fed irradiated blood meal had a tendency (P < 0.10) for increased G:F compared with pigs fed nonirradiated blood meal. No differences in growth performance were detected between pigs fed blood meal irradiated by either gamma ray or electron beam sources (P > 0.26) or dosage levels (P > 0.11). These studies suggest that pH alone as an indicator of blood meal quality is not effective and irradiation of blood meal improved growth performance in nursery pigs.  相似文献   

14.
Two experiments were conducted to determine the interactive effects of phytase with and without a trace mineral premix (TMP) in diets for nursery, growing, and finishing pigs on growth performance, bone responses, and tissue mineral concentrations. Pigs (initial and final BW of 5.5 and 111.6 kg [Exp. 1] or 5.4 and 22.6 kg [Exp. 2]) were allotted to treatments on the basis of BW with eight (Exp. 1) or six (Exp. 2) replications of six or seven pigs per replicate pen. Pigs were started on the diets the day of weaning (average of 18 d). In both experiments, the treatments were with or without 500 phytase units/kg of diet and with or without the TMP in a 2 x 2 factorial arrangement. The Ca and available P concentrations were decreased by 0.10% in diets with phytase. The nursery phase consisted of Phase I (7 d), Phase II (14 d), and Phase III (13 d) periods. In Exp. 1, 26 of 52 pigs fed the diet without the TMP and without phytase had severe skin lesions and decreased growth performance; therefore, pigs fed this diet were switched to the positive control diet. In Exp. 2, the treatment without the TMP and without phytase had 12 replications instead of six. At the end of Phase III, half these replications were switched to the positive control diet and half were switched to the diet without the TMP but with phytase. In Exp. 1 during Phases II and III and in the overall data, pigs fed the diet without the TMP had decreased ADG and ADFI, but the addition of phytase prevented these responses (phytase x TMP; P < 0.02). Growth performance was not affected by diet during the growing-finishing period. Coccygeal bone Zn and Na concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn and Fe concentrations. In Exp. 2 during Phases I and II, pigs fed the diet without the TMP had decreased ADG, but the addition of phytase prevented this response (phytase x TMP; P < 0.10). Pigs fed the diet without the TMP had decreased (P < 0.10) ADG (Phase II and overall), ADFI (Phases II and III and in the overall data), and G:F (Phase III). Coccygeal bone Zn and Cu concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn concentration in the bones. These data indicate that removing the TMP in diets for nursery pigs decreases growth performance and bone mineral content, and that phytase addition to the diet without the TMP prevented the decreased growth performance.  相似文献   

15.
Four experiments were conducted to determine the ideal ratio of true ileal digestible (TID) sulfur AA to Lys (SAA:LYS) in nursery pigs at two different BW ranges using both DL-Met and 2-hydroxy-4-(methylthio)-butanoic acid (HMTBA) as Met sources. In Exp. 1, 1,549 nursery pigs (Triumph 4 x PIC Camborough 22; initial BW 8.3 +/- 0.08 kg) were allotted to one of nine dietary treatments. The basal diet (Diet 1) was a semicomplex corn-soybean meal-based diet (1.32% TID Lys) with no supplemental HMTBA or DL-Met (47.7% TID SAA:LYS). Diets 2 to 9 consisted of the basal diet supplemented with four equimolar levels of DL-Met or HMTBA (52.7, 57.7, 62.7, and 67.7% TID SAA:LYS). In Exp. 2, 330 nursery pigs (Triumph 4 x PIC Camborough 22; initial BW 11.4 +/- 0.10 kg) were allotted to one of nine dietary treatments. The basal diet (Diet 1) was a corn-soybean meal-based diet (1.15% TID Lys) with no supplemental HMTBA or DL-Met (49% TID SAA:LYS). Diets 2 to 9 consisted of the basal diet supplemented with four equimolar levels of DL-Met or HMTBA (54, 59, 64, and 69% TID SAA:LYS). In Exp. 3, 1,544 nursery pigs (Triumph 4 x PIC Camborough 22; initial BW 12.4 +/- 0.13 kg) were allotted to one of nine dietary treatments as in Exp. 2. In Exp. 4, 343 nursery pigs (Genetiporc; initial BW 12.8 +/- 0.56 kg) were allotted to one of six dietary treatments. The basal diet (Diet 1) was a corn-soybean meal-based diet (1.05% TID Lys) with no supplemental DL-Met (49% TID SAA:LYS). Diets 2 to 5 consisted of the basal diet supplemented with four levels of DL-Met (54, 59, 64, and 69% TID SAA:LYS), and Diet 6 was the basal diet supplemented with one equimolar level of HMTBA to satisfy 59% TID SAA:LYS ratio. In all experiments, increasing the TID SAA:LYS ratio resulted in quadratic improvements in ADG (P < or = 0.09) and G:F (P < or = 0.05). Three different methods were used to estimate the optimal TID SAA:LYS ratio for each experiment. The two-slope broken-line regression model, x-intercept value of the broken-line and quadratic curve, and 95% of upper asymptote across the four experiments indicated that the average optimal TID SAA:LYS ratios were 59.3, 60.1, and 57.7% for ADG and 60.6, 61.7, and 60.1% for G:F, respectively. Thus, the optimal TID SAA:LYS ratio for 8- to 26-kg pigs based on the average value of these three estimates was 59.0% for ADG and 60.8% for G:F.  相似文献   

16.
17.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

18.
Two experiments using 415 weanling pigs (4.8 ± 0.98 kg and 14 ± 4 d of age) were conducted to determine the effect of increasing dietary niacin on pig performance. Pigs were blocked by BW and randomly allotted to one of five dietary treatments. There were five pigs per pen with seven pens per treatment in Exp. 1, and eight pigs per pen with six pens per treatment in Exp. 2. Diets were fed in four phases (d 0 to 4, 4 to 8, 8 to 22, and 22 to 35). Pigs were fed the control diet with no added niacin or the control diet with 28, 55, 83, or 110 mg/kg of added niacin; data from both trials were combined. From d 0 to 22, increasing niacin had no effect (P>0.10) on growth performance. From d 22 to 35, increasing niacin had no effect (P>0.10) on ADG or ADFI, but improved (linear, P<0.04) gain:feed ratio (G:F). Overall (d 0 to 35), increasing niacin had no affect (P>0.10) on ADG or ADFI, but tended to numerically (linear, P<0.10) improve G:F. In summary, diets high in dried whey and other specialty protein sources appear to contain adequate niacin to maximize growth performance for the first 3 wk after weaning. However, in the late nursery phase (d 22 to 35) when pigs are fed corn-soybean meal diets, up to 110 mg/kg of added niacin linearly (P<0.04) improves G:F.  相似文献   

19.
Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding 3,000 ppm added Zn as ZnO improves nursery pig performance; however, under certain nursery conditions the use of 500 ppm added Zn as SQM-Zn may also enhance performance. The major factor affecting nutrient excretion appears to be dietary concentration, independent of source.  相似文献   

20.
Three experiments were conducted to evaluate pet food-grade poultry by-product meal (PBM) as a replacement protein source for fish meal (FM), blood meal (BM), and spray-dried plasma protein (SDPP) in weanling pig diets. In the first study, 200 crossbred pigs (initial BW = 6.5 kg) were weaned (21 d) and randomly allotted to one of four dietary treatments, which included a control and three test diets where PBM was substituted for FM, blood products, or both. Experimental diets were fed during Phase I (d 0 to 5 postweaning) and Phase II (d 5 to 19), and a common Phase III diet was fed from d 19 to 26. Overall (d 0 to 26), there was no difference in performance of pigs fed PBM in place of the other ingredients. However, during Phase I, BW (P < 0.05), ADG (P < 0.02), and intake (P < 0.001) in pigs fed diets containing SDPP were greater than those fed diets with PBM. In Exp. 2, the performance of pigs (n = 100, initial BW = 6.5 kg) fed diets containing 20% PBM (as-fed basis, replacing SDPP, BM, FM, and a portion of the soybean meal) in all phases of the nursery diet was compared with a group fed conventional diets without PBM. There were no differences in overall performance (d 0 to 26); however, ADG (P < 0.10) and feed intake were higher (P < 0.01) for pigs fed the conventional diet than for pigs fed the 20% PBM diet during Phase I (d 0 to 5). Experiment 3 was a slope-ratio assay to determine the ability of PBM to replace SDPP. A total of 320 pigs (initial BW = 7.32 kg) was weaned (21 d) and allotted to five treatment groups in three trials in a blocked design with product (SDPP or PBM) as the first factor, and lysine level (1.08, 1.28, 1.49%; as-fed basis) as the second factor. Growth rate increased with increasing lysine (P < 0.05), regardless of the source. These results indicate that PBM can be used in nursery diets in place of blood meal and fish meal without affecting performance. Furthermore, although feeding PBM in Phase I diets was not equivalent to SDPP during the first week, there was no overall difference in performance at the end of the nursery phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号