首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

2.
鸡马立克氏病三价疫苗的安全性及免疫效力研究   总被引:1,自引:0,他引:1  
将MD三价疫苗以25000PFU/只的剂量颈部皮下接种1日龄SPF雏鸡,结果表明,疫苗的接种不影响鸡体重的增加;不引起鸡法氏囊、脾脏等组织器官发生MD组织病理学变化,对鸡安全无毒性。用SPF鸡评价MD三价疫苗的免疫效力,三批疫苗对RB1B超强毒株攻击的平均保护效力为95.99%,而且无论是用RB1B超强毒株还是用BJMDV-1血毒攻击,MD三价疫苗的保护效力明显高于HVT+SB1二价疫苗及HVT冻干苗,好于CV1988疫苗;接种MD三价疫苗的4个品系的商品鸡群,抗RB1B超强毒株攻毒的平均保护效力为94.60%;在模拟MD强毒自然传染的试验中,MD三价疫苗的保护效力达到95.65%。上述效力试验的结果说明:MD三价疫苗的免疫接种可使鸡形成抗MD强毒攻击的坚强免疫力。  相似文献   

3.
OBJECTIVE: To examine effects of virus exposure on embryonic lymphoid organ structure, apoptosis, and lymphoid cell subpopulations. ANIMALS: Eggs of specific pathogen free (SPF) White Leghorn chickens at embryonation day (ED) 17. PROCEDURES: Eggs were inoculated with 2,000 plaque-forming units (PFU) of serotype 1 herpesvirus (Marek's disease virus [MDV 1]), 2,000 PFU of herpesvirus of turkeys (MDV 3), or 1,000 embryo infectious doses (EID50) of infectious bursal disease virus (IBDV). On post-inoculation days (PID) 3 and 5, lymphoid organ to body weight ratios were determined, and bursa of Fabricius, thymus, and spleen were evaluated for lesions and apoptosis. Proportions of lymphoid cell subpopulations of PID-3 chicken embryos and 7- to 10-day-old chicks were quantitated by flow cytometry. RESULTS: Lymphoid organ weights were similar in virus-free, MDV1, and IBDV groups. Embryos inoculated with 2,000 PFU MDV 3/egg had lower bursal weights than virus-free controls. In a repeated trial, MDV 3 (1,000 PFU to 4,000 PFU) did not reduce bursal weights among groups. Histologic changes were seen in bursae after MDV 1 and IBDV inoculation. Apoptosis was greater in bursae of MDV 1-infected embryos than controls. Lymphoid cell subpopulations were similar among all groups with the exception of CD8+ and IgM+ cells in spleens of IBDV-infected 10-day-old chicks. CONCLUSIONS AND CLINICAL RELEVANCE: Infection with pathogenic strains of MDV 1 and IBDV did not alter lymphocyte subpopulations in embryos or cause complete destruction of lymphoid organs. Changes in lymphoid cell subpopulations exposed as embryos to IBDV were seen only after hatching.  相似文献   

4.
J M Sharma 《Avian diseases》1987,31(3):570-576
Several oncogenic and non-oncogenic isolates of Marek's disease virus (MDV) were inoculated into embryonated eggs on embryonation day (ED) 16 to 18, and embryos or chicks hatching from inoculated eggs were examined for infectious virus and viral internal antigen (VIA) in lymphoid organs. There was no evidence of extensive replication of MDV in any of the embryonic tissues examined. Levels of VIA peaked 4-5 days after chicks hatched. This indicated that MDV remained inactive during embryonation and did not initiate pathogenic events until chicks hatched. Because HVT replicated rapidly in the embryo but MDV did not, in ovo inoculation of HVT simultaneously with oncogenic MDV or several days after MDV resulted in significant protection (P less than 0.025) of hatched chicks against Marek's disease (MD). Little protection was obtained if HVT was given simultaneously with MDV or after MDV to chicks already hatched. The relative susceptibility of the embryo to extensive replication of the vaccine virus but not the challenge virus apparently accounted for protection against MD in chicks hatching from dually infected eggs.  相似文献   

5.
Vaccination with turkey herpesvirus (HVT) of 18-day-old chicken embryos from a commercial source or from a cross (15 X 7) of two inbred lines induced better protection against early post-hatch challenge with virulent Marek's disease virus (MDV) than vaccination at hatch, despite the presence in embryos of maternally derived antibodies to HVT or to HVT and MDV. However, 50%-protective-dose (PD50) assays revealed that maternal antibodies in embryos reduced vaccine efficacy. The PD50 assays were conducted by vaccinating 15 X 7 embryos with serial dilutions of HVT at the 18th day of incubation. Embryonally vaccinated and unvaccinated chicks were challenged with MDV on the day of hatch. In the absence of maternal antibodies, the PD50 values in plaque-forming units for cell-associated and cell-free HVT were 57 and 328, respectively. In the presence of maternal antibodies, PD50 values for cell-associated and cell-free HVT were 105 and greater than 4,000, respectively.  相似文献   

6.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

7.
Two experiments were conducted to study the cell-mediated cytotoxicity of peripheral blood leukocytes (PBL) from chickens inoculated with Marek's disease virus (MDV) against a Marek's disease-derived lymphoblastoid cell line (MSB-1) and to associate the cytotoxicity with incidence of disease. In experiment I, moderately susceptible random-bred, specific-pathogen-free chickens were inoculated with MDV (group 1), vaccinated with a herpesvirus of turkeys (HVT) and inoculated with MDV (group 2), vaccinated with HVT and inoculated with chicken kidney cells (CKC; group 3), and inoculated with CKC only (group 4). Cytotoxic activity in the PBL was detected initially during the first week after MDV inoculation and periodically throughout the observation period (groups 1, 2, and 3). Throughout the observation period, the magnitude of cytotoxic activity was similar in PBL from groups 1 and 2 chickens. The PBL from both surviving and fatally infected chickens (groups 1 and 2) were similarly cytotoxic when sampled during the first 16 days after MDV inoculation. In experiment II, inbred genetically susceptible (line 7) and resistant (line 6) chickens were used. Cytotoxic activity of PBL of significantly greater magnitude was associated with a lower mortality or incidence of gross lesions (or both) in MDV-inoculated line 6 (group B) and HVT-vaccinated and MDV-inoculated line 7 (group C) chickens compared with activity of PBL from MDV-inoculated line 7 (group A) chickens. The cytotoxic activity of PBL from individual inbred chickens did not correlate with the outcome of the infection.  相似文献   

8.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

9.
10.
A commercial infectious bronchitis virus (IBV) vaccine of the Massachusetts 41 strain was injected in embryonating chicken eggs on embryonation day (ED) 18. The IBV vaccine was pathogenic for embryos, and it was passaged in chicken kidney tissue culture to reduce the pathogenicity. At the 40th tissue culture passage (P40-IBV), the virus became apathogenic for the embryos. Maternal antibody-positive or -negative chicks hatching from eggs injected with P40-IBV developed antibody to IBV and were protected against challenge exposure at 4 weeks of age with virulent Massachusetts 41 IBV. Although P40-IBV protected chicks when administered on ED 18, this virus did not protect chicks well if given at hatch. When combined with the turkey herpesvirus (HVT), P40-IBV given on ED 18 did not interfere with the protection against challenge exposure with virulent Marek's disease virus, nor did the presence of HVT interfere with protection by P40-IBV. Thus, under laboratory conditions, IBV vaccine could be combined with HVT to form a bivalent embryonal vaccine.  相似文献   

11.
An enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the antibody response of commercial White Leghorn chickens to vaccination against Marek's disease (MD) at hatch (day 0) with serotype-1 (Rispens), -2 (SB-1), or -3 (turkey herpesvirus, HVT) vaccine virus and to challenge on day 21 with MD virus. Antigens for the test were whole chicken embryo fibroblast cells infected with Rispens, SB-1, or HVT. The chickens were progeny of stock that had been vaccinated with HVT, and on day 21 the nonvaccinated group had higher levels of maternal antibodies to HVT than to other antigens (P < 0.05). Only SB-1 vaccine had induced antibodies by day 21, and this was detected only against homologous antigens. On day 49, all three vaccines had induced higher levels of antibodies to homologous than to heterologous antigens. Marek's Disease virus (MDV) induced antibodies to all three antigens, but challenging vaccinated chicks did not significantly increase levels of antibodies on day 81 to any of the three antigens. It was concluded that an ELISA using whole cells as antigens would have potential value for monitoring the antibody response induced by MD vaccines and virulent MDV.  相似文献   

12.
We recently reported a comparison of glycoprotein-encoding genes of different Marek's disease virus pathotypes (MDVs). One mutation found predominantly in very virulent (vv)+MDVs was a 12-bp (four-amino acid) deletion in the glycoprotein L (gL)-encoding gene in four of 23 MDV strains examined (three were vv+MDVs and one was a vvMDV). This mutation was noted in the gL of the TK (615K) strain, but not in the RL (615J) strain of MDV. These strains have identical mutations in the meq gene characteristic of vv+MDVs but can be distinguished by the mutation in the gL-encoding gene. The TK strain was originally isolated from vaccinated chickens and appeared to confer or enhance horizontal transmission of the vaccine virus, herpesvirus of turkeys (HVT). Because the molecular basis for increased virulence of MDV field strains is unknown, we hypothesized that one mechanism might be by coreplication of MDV-1 strains with HVT and that it could be mediated by the mutation of gL, an essential component of the glycoprotein H/L complex. In this study, we compared the pathogenicity of TK (615K) and RL (615J) strains of MDV in the presence and absence of simultaneous HVT coinfection. MDV infections were monitored at the levels of viremia (for both MDV-1 and HVT), clinical signs of MD, tumor incidence, and mortality in 1) inoculated chickens, 2) chickens exposed at 1 day of age, 3) chickens exposed at 2 wk of age, and 4) chickens exposed to both TK/HVT- and RL/HVT-infected chickens at 6 wk of age. We found high incidences of clinical MD signs in all inoculated treatment groups and all chickens exposed to TK and RL viruses, regardless of the presence of HVT. The median time to death of chickens exposed to TK1HVT-infected chickens, however, was lower than the other treatment groups for contact-exposed chickens. Although this difference was not considered to be statistically significant to a rigorously interpreted degree because of the removal of chickens for sampling from the test groups, these data suggest that replication of the TK strain and HVT, when coadministered, might incrementally affect the virulence of MDV-1 strains. The strict correlation of this enhancement of virulence with the mutation in gL, however, requires additional experiments with genetically identical MDV background strains.  相似文献   

13.
HVT国内株的分离鉴定   总被引:3,自引:0,他引:3  
用来自国内某火鸡饲养场的健康火鸡血白细胞 ,接种于鸡胚成纤维细胞 ,分离到一株火鸡疱疹病毒的野毒—SY8_2。电镜下可观察到分离株SY8_2的鸡胚成纤维细胞培养物中存在典型的火鸡疱疹病毒粒子 ;分离株SY8_2的细胞培养物经卵黄囊途径接种 4日龄鸡胚 ,14天后在绒毛尿囊膜上形成痘斑 ;用分离物SY8_2细胞培养物接种 1日龄SPF雏鸡 ,感染雏鸡可产生病毒血症 ,并能从感染雏鸡的血液白细胞中重新分离到病毒 ;经 2个月的临床观察人工感染鸡无不良反应 ,剖检无任何病理解剖学变化 ;用HVT特异性单克隆抗体L78(3型 )做间接免疫荧光染色试验证实分离株SY8_2为MD血清 3型病毒—HVT。  相似文献   

14.
The metabolic NO pathway, catalyzed by the enzyme NO synthase in macrophages, is a key defense element against viruses and tumors. However, arginase is an other enzyme able to metabolize the substrate L-arginine, and the two enzymes are alternatively regulated by Th1 and Th2 cytokines in murine macrophages. Marek's disease is characterized by strong immunosuppression and development of T-cell lymphomas in chickens. Inoculation of the very virulent strain of MDV RB-1B induced strong and long-lasting arginase macrophage-dependent activity, which was inhibited by L-norvaline in vitro, but induced low NO production in monocytes and splenocytes from highly susceptible B(13)/B(13) chickens. By contrast, in B(21)/B(21) chickens genetically resistant to tumor development, RB-1B induced a weak and transient increase in arginase activity and strong NO production. The vaccinal HVT strain did not induce any arginase activity in monocytes or splenocytes. Moreover, vaccination with HVT prevented tumor appearance after RB-1B challenge and increase in arginase activity, but favored NO production in susceptible chickens. Differential expression of NO synthase and arginase was modulated in chicken macrophages, with IFN-gamma and LPS being strong inducers of both, depending on the type of macrophage, and TGF-beta 1 and PGE(2) stimulating only arginase activity. This increase in arginase activity in macrophages from chickens inoculated with Marek's disease virus might thus be due to a direct effect of the virus on macrophages, possibly through viral products, or to indirect effects on the cytokine balance.  相似文献   

15.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

16.
J M Sharma 《Avian diseases》1981,25(4):882-893
Chickens of 2 genetic lines (lines P and N) were inoculated with a pathogenic strain of Marek's disease (MD) virus (MDV) and chronologically examined for disease response and natural killer (NK) cell expression. The NK cell reactivity was assayed in an in vitro cytotoxicity assay in which effector cells from the spleen of test chickens were reacted with 51Cr-labeled LSCC-RP9 target cells. Chickens of line P developed progressive debilitating disease and a high incidence of gross tumors and death. The NK cell reactivity of line-P chickens infected with MDV was significantly lower than that of uninfected control hatchmates. In contrast, NK cell levels were significantly elevated in MDV-inoculated line-N chickens that were resistant to MD and in chickens of lines P or N that had been inoculated with herpesvirus of turkeys (HVT). NK cell levels were also elevated in line P if chickens were vaccinated with HVT before infection with MDV. Inhibition of NK reactivity in susceptible chickens and elevation of reactivity in naturally resistant or vaccinated chickens may indicate a role for the NK cell system in regulating resistance to MD.  相似文献   

17.
Interferon (IFN)-γ has been shown to be associated with immunity to Marek’s disease virus (MDV). The overall objective of this study was to investigate the causal relationship between IFN-γ and vaccine-conferred immunity against MDV in chickens. To this end, 3 small interfering RNAs (siRNAs) targeting chicken IFN-γ, which had previously been shown to reduce IFN-γ expression in vitro, and a control siRNA were selected to generate recombinant avian adeno-associated virus (rAAAV) expressing short-hairpin small interfering RNAs (shRNAs). An MDV challenge trial was then conducted: chickens were vaccinated with herpesvirus of turkey (HVT), administered the rAAAV expressing shRNA, and then challenged with MDV. Tumors were observed in 4 out of 10 birds that were vaccinated with HVT and challenged but did not receive any rAAAV, 5 out of 9 birds that were administered the rAAAV containing IFN-γ shRNA, and 2 out of 10 birds that were administered a control enhanced green fluorescent protein siRNA. There was no significant difference in MDV genome load in the feather follicle epithelium of the birds that were cotreated with the vaccine and the rAAAV compared with the vaccinated MDV-infected birds. These results suggest that AAAV-based vectors can be used for the delivery of shRNA into chicken cells. However, administration of the rAAAV expressing shRNA targeting chicken IFN-γ did not seem to fully abrogate vaccine-induced protection.  相似文献   

18.
鸡马立克氏病活疫苗免疫效力比较试验   总被引:1,自引:0,他引:1  
用HVT冻干苗、HVT细胞结合苗、CVI988细胞结合苗、SB1+FC126双价活疫苗、301B/1+FC126双价活疫苗和Z4+FC126双价活疫苗等6种鸡马立克氏病(MD)疫苗免疫SPF白来航鸡或普通伊莎鸡,用鸡马立克氏病病毒(MDV)强毒GA株、京-1血毒以及鸡马立克氏病超强毒vvMDV-Md5毒株分别攻击进行免疫效力比较试验。试验表明,MD单价苗的免疫效力强弱顺序依次是CVI988、HVT细胞结合苗和HVT冻干苗,这3种MD单价苗均能给免疫鸡群提供有效的免疫保护力。SB1+FC126、Z4+FC126和301B/1+FC126等3种MD双价苗免疫效力显著高于MD单价苗,均能给免疫鸡群提供较强的免疫保护力,并能有效地抵抗vvMDV-Md5毒株的致瘤作用。Z4+FC126和301B/1+FC126MD双价苗免疫效力无显著差异  相似文献   

19.
为研究具有不同抗性的马立克氏病(MD)疫苗免疫鸡羽髓后,疫苗毒和超强毒(vvMDV)的复制动力学及两种病毒载量的相关性,本实验对经火鸡疱疹病毒(HVT)FC126疫苗株免疫1周后(1wpv),攻击vvMDV Md5株G3系和G7系鸡羽髓中的HVT和vvMDV载量进行定量检测及相关性分析。结果显示,G3系和G7系鸡群羽髓中的vvMDV载量始终高于疫苗毒。其中,G3系鸡群在免疫和攻毒后的相同时间内,疫苗毒与vvMDV载量的消长规律基本一致,均在感染后第4周(4wpi)出现峰值,6wpi降至最低水平,两种病毒载量多表现为正相关,6wpv~8wpv为持续显著正相关;G7系的两种病毒的复制动力学存在差异:vvMDV载量从攻毒后第6周呈增长趋势,而疫苗毒在4wpv出现峰值后迅速下降,两种病毒载量多表现为负相关。本研究表明,免疫遗传基因在对病毒的抵抗中起主要作用,为MDV的感染机制和疫苗免疫机理的研究提供实验依据。  相似文献   

20.
The pathogenicity of Marek's disease (MD) strain CVI-988 vaccine, eight plaque-purified preparations originating from this strain, and the vaccine HVT FC126 (based on herpesvirus of turkeys) was determined by intramuscular administration of high virus doses to day-old specific-pathogen-free Rhode Island Red (RIR) chickens, which are extremely MD-susceptible. Paralysis and neuritis were observed in 88% of RIR chickens inoculated with MDV CVI-988 at the cell-passage level of the commercial vaccine. HVT FC126 caused paralysis in two of 39 RIR chickens tested, of which one had an endoneural lymphoma, and another three had endoneural inflammation. Five plaque-purified MDV CVI-988 virus preparations at various cell-culture-passage levels caused no lesions. Of another three clones, two caused inflammatory B-type lesions in the nerves of 1/10 chickens, and the third clone caused inflammatory nonneoplastic MD lesions in the liver of 1/11 chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号