首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米乳又称纳米乳液、纳米乳状液、纳米乳剂等,是由水、油、表面活性剂和助表面活性剂按适当比例形成的粒径为10~100纳米的热力学稳定,各向同性,低粘度,透明或半透明的均相分散体系,具有极高的稳定性和对溶质的高度分散性及吸附能力。  相似文献   

2.
<正>微乳(micro emulsion)又称纳米乳,由油相、水相、表面活性剂和助表面活性剂按适当比例和方式混合后形成的一种稳定透明且黏度低,相同性的分散匀质热力学稳定体系[1],粒径10~100 nm,一般认为油相、水相、表面活性剂和助表面活性剂按适当比例就可形成稳定的微乳。但是,随着加工技术和工艺的发展,某些新化合物的发现和应用,不用助表面活性剂也可形成某些稳定的微乳[2]。国内于  相似文献   

3.
呋喃西林纳米乳的制备及体外抑菌试验   总被引:2,自引:0,他引:2  
纳米乳(nanoemulsion)是由表面活性剂、助表面活性剂、油相及水相在适当比例下形成的澄清透明液体,粒径为10~100 nm,是一种新型、理想的药物载体,能增溶疏水性药物,增强药物疗效,降低用药次数和剂量.  相似文献   

4.
微乳液是由两种互不相溶的液体在表面活性剂分子界面膜的作用下生成的热力学稳定的、各向同性的、透明的分散体系。这种由水、油、表面活性剂和助活性剂(如醇类)等四个组分以适当的比例自发形成的透明或半透明的稳定体系,称为"微乳状液"或"微乳液"。  相似文献   

5.
微乳是由水相、油相、表面活性剂与助表面活性剂在适当比例自发形成的一种透明或半透明的、低粘度的、各向同性且热力学稳定的油水混合系统。制作微乳的水相一般用纯化水或注射用水.油相一般用油酸、棕榈酸等多种长链脂肪酸油,表面活性剂有聚乙二醇、司盘、吐温等长链脂肪醇类,助表面活性剂有乙醇、丙二醇等短链醇类。  相似文献   

6.
在煤泥水处理领域为了实现对煤泥水的沉降澄清,往往要利用界面性质对矿物颗粒进行处理。目前煤泥水难以处理的主要原因为:在煤泥水中,黏土类矿物容易泥化而难以沉降;矿物颗粒表面荷电,颗粒之间由于静电斥力和范德华力作用相互排斥,煤泥水处于稳定分散状态。目前在煤泥水处理中,主要借助于无机电解质、表面活性剂等方法,通过对矿物颗粒界面进行调控实现矿物聚团沉降,从而实现煤泥水沉降澄清。目前对煤泥水中矿物颗粒界面调控方法的作用机理需要进行深入的研究,需要深入研究药剂与矿物之间的作用机理提高药剂的选择性。  相似文献   

7.
微乳(Microemulsion,ME)是由表面活性剂、辅助表面活性剂、油和水在适当比例自发形成的一种均匀、低粘度、热力学稳定的透明或半透明分散体系,是介于乳状液和胶团溶液之间的一种过度中间状态溶液,具有极高的稳定性和对溶质的高度分散性及吸附能力.微乳是由英国化学家Schulman等学者在1943年首先提出的.虽然微乳与传统的乳状液有着许多相似之处,但它们之间却存在着本质的区别,是完全不同的两种状态.自20世纪70年代以来,人们对微乳的微观结构、形成理论、理化性质进行了较为深入的研究,并将微乳应用于工业、日用化工领域,在20世纪90年代,人们又对微乳作为药物的递药系统进行了研究,并逐渐引起了人们的重视.  相似文献   

8.
为了确定妥曲珠利纳米乳的处方和制备工艺,选用液体石蜡、乙酸乙酯、大豆油、IPM、油酸为油相,RH-40、EL-40、OP-10、吐温-80、司盘-80为表面活性剂,乙醇、1,2-丙二醇、异丙醇、丙三醇、PEG-400为助表面活性剂,通过伪三元相图筛选制备妥曲珠利纳米乳的最佳处方.结果表明,油相为乙酸乙酯、表面活性剂为吐温-80,助表面活性剂为1,2-丙二醇可形成纳米乳.优化处方为表面活性剂∶助表面活性剂∶油相∶水相=2∶1∶2∶5,增溶剂添加量为10%,在该处方下制备的妥曲珠利纳米乳稳定性良好.  相似文献   

9.
纳米混悬剂(Nanosuspensions)是以表面活性剂为助悬剂将药物颗粒分散在水中,通过粉碎或者控制析晶技术形成的稳定的纳米胶态分散体,与传统意义上的基质骨架型纳米体系不同,纳米混悬剂无需载体材料,它可通过表面活性剂的稳定作用,将纳米尺度的药物粒子分散在水中形成稳定的体系。由于纳米混悬剂的特性,其在各种给药途径中都体现出了独特的优势。国外从20世纪末开始就已经展开了对纳米混悬剂的研究,国内有关研究近几年也相继增多,现将国内对纳米混悬剂优势和应用的研究情况介绍如下。  相似文献   

10.
表面活性剂是一种新型的反刍动物饲料添加剂,根据表面活性剂的分子结构,可将其分为阴离子型、阳离子型、两性离子型和非离子型表面活性剂,其作用机理是通过改变瘤胃微生物种群数量进而增加瘤胃内源性酶的分泌量、分泌酶活性或促进酶与底物之间的相互作用,改变瘤胃发酵模式,提高瘤胃微生物对粗饲料的降解能力,进而提高反刍动物生产性能。作者主要综述了表面活性剂的分类及几种常见的表面活性剂对反刍动物瘤胃发酵调控的影响,其中包括非离子型(吐温、烷基多糖苷、茶皂素)、两性离子型(甜菜碱、大豆磷脂)和阴离子型(十二烷基苯磺酸钠、磺基丁二酸钠二辛酯);介绍了日粮中添加不同离子型表面活性剂对反刍动物瘤胃微生物种群数量、内源酶活、发酵产物等影响,为新型表面活性剂的开发和表面活性剂在反刍动物日粮中的合理应用提供参考依据。  相似文献   

11.
<正>纳米混悬剂是以表面活性剂为助悬剂,将药物颗粒分散在水中,通过粉碎或者控制析晶技术形成的稳定的纳米胶态分散体。不论是难溶于水的药物还是既难溶于水又难溶于油的药物,均可以通过纳米技术制备得到相应的纳米混悬剂。作为一种中间剂型,可利用纳米混悬剂进一步制备适合口服、注射或其他给药途径的药物剂型,以提高药物的吸收和生物利用度。与传统意义上的基质骨架型纳米体系不同,纳  相似文献   

12.
正纳米乳是新型药物的优势载体,在透皮给药、口服给药、注射给药、黏膜给药以及疫苗应用等方面优势明显。在兽医药剂学领域有广泛的应用前景,为新兽药的研发开辟了广阔空间。1纳米乳纳米乳是各向同性的热力学稳定体系,组成成分一般包括油相、水相、表面活性剂。某些情况下助表面活性剂的加入可以起到增加载药量、稳定体系的作用。纳米乳粒径大小一般认可的说法是分布于1~100 nm。与某些药物制剂相比,  相似文献   

13.
为方便乙酰甲喹的临床使用,提高乙酰甲喹的生物利用度,本实验使用油相、表面活性剂、助表面活性剂和水制备了乙酰甲喹纳米乳。结果显示,乙酰甲喹纳米乳为黄色澄明液体,粒径区间在30~50nm,在稀释试验和高速离心试验及长期放置条件下,未见乳液分层、破乳和药物析出现象,稳定性较好。  相似文献   

14.
生物表面活性剂是由微生物代谢过程中产生的具有表面活性的生物化合物,大多具有抗细菌、真菌、支原体和病毒的特性以及抗粘附的功能。由益生菌产的生物表面活性剂,除具备上述功能,还在安全性方面具有独特优势,因此在预防和治疗某些疾病方面具有广阔的应用前景。本文针对产生物表面活性剂的益生菌的种类、筛选、产物的制备分离及应用等方面做一综述。  相似文献   

15.
[目的]通过绘制伪三元相图优选处方的方法,制备了甘草黄酮纳米乳并对其稳定性进行评价。[方法]以EL-40、Span-80为表面活性剂,肉豆蔻酸异丙酯(IPM)为油相,组成混合溶液,以甘油为助表面活性剂制备甘草黄酮纳米乳,将甘草黄酮纳米乳应用高温、高湿、恒温加速试验检验其稳定性。[结果]纳米乳处方为:0.2 g甘草黄酮、1.2 g EL-40、0.3 g Span-80、0.5 g甘油、0.5 g IPM、4.0 g蒸馏水,经试验验证甘草黄酮纳米乳仍为澄清透明纳米乳状液,未出现分层现象,性质稳定。[结论]该方法操作简单,纳米乳稳定性良好。  相似文献   

16.
试验研究了表面活性剂的不同添加量在黄霉素发酵过程中对促进黄霉素效价的影响。结果显示,在发酵摇瓶中添加不同比例的表面活性剂,有助于黄霉素发酵效价的提高,其中以添加0.7%的表面活性剂效果最佳。  相似文献   

17.
旨在制备复方利福昔明纳米乳,并对其理化性质进行评价。以纳米乳的载药量、稳定性为考查指标,筛选油相、表面活性剂、助表面活性剂;绘制伪三元相图确定最佳配方;利用透射电子显微镜、激光粒度测定仪考查其微观形态和粒径,采用染色法鉴别纳米乳的类型;经光照试验、温度试验、高速离心试验考查纳米乳的稳定性。结果表明,复方利福昔明纳米乳的最佳配方为利福昔明1%、肉桂醛2.44%、聚乙二醇-2004.88%、聚氧乙烯醚-40-蓖麻油19.51%、蒸馏水72.17%;复方利福昔明纳米乳为水包油型(O/W),可以无限稀释;在透射电镜下观察,纳米乳呈圆球形,无粘连,平均粒径为11.8nm;光照试验、温度试验、长期试验显示,纳米乳稳定性良好。复方利福昔明纳米乳制备方法简单,质量可控,为利福昔明广泛应用于畜禽肠道细菌感染的治疗提供了理论依据。  相似文献   

18.
研制针对蛋鸡的复合维生素混饮剂纳米乳,并加入生物活性物质丝兰皂苷,通过伪三元相图的绘制,依据乳区面积的大小来确定复合维生素纳米乳最佳表面活性剂,用苏丹红/亚甲基蓝染色法判断复合维生素纳米乳类型,使用透射电子显微镜来观察复合维生素纳米乳的乳滴微观形态及其粒径分布,通过激光粒度测定仪测定复合维生素纳米乳的粒径大小,用高效液相色谱法测定复合维生素混饮剂纳米乳的成分及其含量,通过离心加速试验来验证复合维生素混饮剂纳米乳的稳定性。结果显示,复合维生素纳米乳的最佳表面活性剂为吐温-80,复合维生素纳米乳各组分质量分数为混合维生素油相3.15%、吐温-80 12.6%、水溶性维生素8.2%、蒸馏水74.2%;复合维生素纳米乳的类型为水包油型纳米乳,肉眼观为黄色、澄清透明样液体;透射电子显微镜下,纳米乳的粒子形态呈现球状,大小分布均匀;离心加速试验显示复合维生素混饮剂纳米乳不分层。说明制备的复合维生素纳米乳混饮剂符合纳米乳制剂的质量要求,为规模化生产饲用复合维生素混饮剂提供了模板意义。  相似文献   

19.
研制复方吡喹酮纳米乳并对其质量、安全性进行评价.将吡喹酮和芬苯达唑以一定的比例与选取的油相、表面活性剂、助表面活性剂混合制成复方纳米乳,用激光粒度分析仪测纳米乳的粒径,在不同温度、不同时间下放置观察和以4 000 r/min,离心30 min试验,检测复方吡喹酮纳米乳的稳定性.通过经口急性毒性试验对复方吡喹酮纳米乳进行安全性评价.复方吡喹酮纳米乳的最佳配方是吡喹酮12.0g,芬苯达唑0.4g,乙酸乙酯119.8 g,N,N-二甲基乙酰胺53.9g,乙醇291.7 g,冰醋酸28.3g,吐温-80为230.2 g,二甲基亚砜199.7 g和蒸馏水64.0g组成,总组分为1 000 g;所研制的复方吡喹酮纳米乳澄清透明,稳定性良好;测出的平均粒径为11.2 nm,粒径小于9nm<15%,大于20 nm<2.5%,9 nm~20 nm约占82.5%.复方吡喹酮纳米乳LD50为649.01 mg/kg,LD50的95%可信限为560.09mg/kg~752.04mg/kg,复方吡喹酮纳米乳研制成功,属于低毒药物.  相似文献   

20.
为了制备恩诺沙星纳米乳并确定其抑菌效果,试验采用低能乳化法中的相转变法制备恩诺沙星纳米乳,对制备的恩诺沙星纳米乳进行了乳液类型的判定、形态观察、粒径分布测定,研究存放时间、存放温度对制备的恩诺沙星纳米乳外观状态及粒径的影响,以及测定恩诺沙星纳米乳的抑菌活性。结果表明:以肉豆蔻酸异丙酯(IPM)为油相、聚氧乙烯蓖麻油-40 (EL-40)为表面活性剂、乙酸为助表面活性剂,纯化水为水相制备的水包油(O/W)型恩诺沙星纳米乳外观澄清、透明,电镜下观察恩诺沙星纳米乳粒子呈圆球形,分布均匀,不粘连;粒径范围为10~100 nm,粒径大小在纳米乳标准范围内,乳液多分散系数(PDI)为0.192;8 000 r/min离心15 min不分层,乳液性质稳定;10%恩诺沙星纳米乳对大肠杆菌、沙门氏菌、金黄色葡萄球菌的抑菌圈直径分别为3.72,2.71,3.82 cm, 10%恩诺沙星可溶性粉为2.73,1.30,2.84 cm, 10%恩诺沙星溶液为3.55,2.56,3.64 cm; 10%恩诺沙星纳米乳对金黄色葡萄球菌和沙门氏菌抑菌效果较好,最小抑菌浓度(MIC)均为0.062 5μg/mL,对大肠...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号