首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ObjectiveTo determine the effect of maropitant, an NK-1 receptor antagonist on the minimum alveolar concentration (MAC) of sevoflurane after intravenous and epidural administration to dogs.Study designProspective experimental study.AnimalsSeven, adult, spayed-female dogs (24.8 ± 1.9 kg).MethodsEach dog was anesthetized twice with sevoflurane in oxygen, with at least 10 days separating the anesthetic events. The minimum alveolar concentration (MAC) of sevoflurane was determined using the tail-clamp technique. During the first anesthetic event, the MAC of sevoflurane was determined initially and again after intravenous administration of maropitant (5 mg kg?1) and an infusion (150 μg kg?1 hour?1). During the second anesthetic event, an epidural catheter was advanced to the 4th lumbar vertebra and MAC was determined after administration of saline and maropitant (1 mg kg?1) epidurally. All MAC determinations were done in duplicate. The MAC values were adjusted to sea level and compared using student's t-test.ResultsThe baseline MAC for sevoflurane was 2.08 ± 0.25%. Intravenous maropitant decreased (p < 0.05) MAC by 16% (1.74 ± 0.17%). In contrast, epidural administration of either saline or maropitant did not change (p > 0.05) the MAC (2.17 ± 0.34% and 1.92 ± 0.12%, respectively).Conclusion and clinical relevanceMaropitant decreased the MAC of sevoflurane when administered intravenously to dogs but not after epidural administration.  相似文献   

2.
ObjectiveTo evaluate selected effects of midazolam or lidocaine administered prior to etomidate for co-induction of anesthesia in healthy dogs.Study designProspective crossover experimental study.AnimalsA group of 12 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.3 mg kg–1), and anesthesia was induced with etomidate following midazolam (0.3 mg kg–1), lidocaine (2 mg kg–1) or physiologic saline (1 mL) IV. Heart rate (HR), arterial blood pressure, respiratory rate (fR) and intraocular pressure (IOP) were recorded following butorphanol, after co-induction administration, after etomidate administration and immediately following intubation. Baseline IOP values were also obtained prior to sedation. Etomidate dose requirements and the presence of myoclonus, as well as coughing or gagging during intubation were recorded. Serum cortisol concentrations were measured prior to premedication and 6 hours following etomidate administration.ResultsBlood pressure, fR and IOP were similar among treatments. Blood pressure decreased in all treatments following etomidate administration and generally returned to sedated values following intubation. HR increased following intubation with midazolam and lidocaine but remained stable in the saline treatment. The dose of etomidate (median, interquartile range, range) required for intubation was lower following midazolam (2.2, 2.1–2.6, 1.7–4.1 mg kg−1) compared with lidocaine (2.7, 2.4–3.6, 2.2–5.1 mg kg−1, p = 0.012) or saline (3.0, 2.8–3.8, 1.9–5.1 mg kg−1, p = 0.015). Coughing or gagging was less frequent with midazolam compared with saline. Myoclonus was not observed. Changes in serum cortisol concentrations were not different among treatments.Conclusions and clinical relevanceMidazolam administration reduced etomidate dose requirements and improved intubation conditions compared with lidocaine or saline treatments. Neither co-induction agent caused clinically relevant differences in measured cardiopulmonary function, IOP or cortisol concentrations compared with saline in healthy dogs. Apnea was noted in all treatments following the induction of anesthesia and preoxygenation is recommended.  相似文献   

3.
OBJECTIVE-To compare the effect of oral administration of tramadol alone and with IV administration of butorphanol or hydromorphone on the minimum alveolar concentration (MAC) of sevoflurane in cats. DESIGN-Crossover study. ANIMALS-8 Healthy 3-year-old cats. PROCEDURES-Cats were anesthetized with sevoflurane in 100% oxygen. A standard tail clamp method was used to determine the MAC of sevoflurane following administration of tramadol (8.6 to 11.6 mg/kg [3.6 to 5.3 mg/lb], PO, 5 minutes before induction of anesthesia), butorphanol (0.4 mg/kg [0.18 mg/lb], IV, 30 minutes after induction), hydromorphone (0.1 mg/kg [0.04 mg/lb], IV, 30 minutes after induction), saline (0.9% NaCl) solution (0.05 mL/kg [0.023 mL/lb], IV, 30 minutes after induction), or tramadol with butorphanol or with hydromorphone (same doses and routes of administration). Naloxone (0.02 mg/kg [0.009 mg/lb], IV) was used to reverse the effects of treatments, and MACs were redetermined. RESULTS-Mean +/- SEM MACs for sevoflurane after administration of tramadol (1.48 +/- 0.20%), butorphanol (1.20 +/- 0.16%), hydromorphone (1.76 +/- 0.15%), tramadol and butorphanol (1.48 +/- 0.20%), and tramadol and hydromorphone (1.85 +/- 0.20%) were significantly less than those after administration of saline solution (2.45 +/- 0.22%). Naloxone reversed the reductions in MACs. CONCLUSIONS AND CLINICAL RELEVANCE-Administration of tramadol, butorphanol, or hydromorphone reduced the MAC of sevoflurane in cats, compared with that in cats treated with saline solution. The reductions detected were likely mediated by effects of the drugs on opioid receptors. An additional reduction in MAC was not detected when tramadol was administered with butorphanol or hydromorphone.  相似文献   

4.
ObjectiveTo evaluate the physiological variables, arterial blood gas values, induction of anesthesia quality, and recovery quality using the combination of butorphanol, midazolam and alfaxalone in dogs.AnimalsTen healthy adult Beagle dogs weighing 8.3 ± 3.1 kg.MethodsRectal temperature (T), pulse rate (PR), respiratory rate (fR), mean arterial pressure (MAP), and arterial blood gases were measured and recorded prior to intravenous (IV) administration of butorphanol, prior to administration of both midazolam and alfaxalone IV 10 minutes later, then every 5 minutes for 20 minutes. M-mode echocardiographic left ventricular (LV) indices were measured before and 5 minutes after administration of alfaxalone. Qualitative scores for induction of anesthesia and recovery were allocated, duration of anesthesia and recovery were calculated, and adverse events were recorded.ResultsScores for induction and recovery quality were excellent. No significant adverse events were observed. Mean ± SD time from induction to extubation and to standing (full recovery) was 29 ± 6 and 36 ± 8 minutes, respectively. There were statistically significant changes in PR, fR and MAP after drug administration. Transient hypercarbia developed after alfaxalone injection. The echocardiographic LV indices were reduced after alfaxalone injection, although those changes were not statistically significant.Conclusions and clinical relevanceThe combination of butorphanol, midazolam and alfaxalone provided excellent quality of induction of anesthesia and exerted minimal cardiopulmonary effects in healthy dogs.  相似文献   

5.
ObjectiveTo investigate effects of vatinoxan in dogs, when administered as intravenous (IV) premedication with medetomidine and butorphanol before anaesthesia for surgical castration.Study designA randomized, controlled, blinded, clinical trial.AnimalsA total of 28 client-owned dogs.MethodsDogs were premedicated with medetomidine (0.125 mg m?2) and butorphanol (0.2 mg kg?1) (group MB; n = 14), or medetomidine (0.25 mg m?2), butorphanol (0.2 mg kg?1) and vatinoxan (5 mg m?2) (group MB-VATI; n = 14). Anaesthesia was induced 15 minutes later with propofol and maintained with sevoflurane in oxygen (targeting 1.3%). Before surgical incision, lidocaine (2 mg kg?1) was injected intratesticularly. At the end of the procedure, meloxicam (0.2 mg kg?1) was administered IV. The level of sedation, the qualities of induction, intubation and recovery, and Glasgow Composite Pain Scale short form (GCPS-SF) were assessed. Heart rate (HR), respiratory rate (fR), mean arterial pressure (MAP), end-tidal concentration of sevoflurane (Fe′Sevo) and carbon dioxide (Pe′CO2) were recorded. Blood samples were collected at 10 and 30 minutes after premedication for plasma medetomidine and butorphanol concentrations.ResultsAt the beginning of surgery, HR was 61 ± 16 and 93 ± 23 beats minute?1 (p = 0.001), and MAP was 78 ± 7 and 56 ± 7 mmHg (p = 0.001) in MB and MB-VATI groups, respectively. No differences were detected in fR, Pe′CO2, Fe′Sevo, the level of sedation, the qualities of induction, intubation and recovery, or in GCPS-SF. Plasma medetomidine concentrations were higher in group MB-VATI than in MB at 10 minutes (p = 0.002) and 30 minutes (p = 0.0001). Plasma butorphanol concentrations were not different between groups.Conclusions and clinical relevanceIn group MB, HR was significantly lower than in group MB-VATI. Hypotension detected in group MB-VATI during sevoflurane anaesthesia was clinically the most significant difference between groups.  相似文献   

6.
ObjectiveTo determine the magnitude and duration of sevoflurane minimum alveolar concentration (MAC) reduction following a single intravenous (IV) dose of methadone in cats.Study designProspective experimental study.AnimalsEight (four females and four males) healthy mixed-breed adult (1–2 years) cats weighing 5.82 ± 0.42 kg.MethodsAnesthesia was induced and maintained with sevoflurane. Intravenous catheters facilitated administration of methadone and lactated Ringer’s solution. After baseline MAC determination in triplicate using a tail clamp technique, 0.3 mg kg?1 of methadone was administered IV. End-tidal sevoflurane concentration (e′SEVO) was reduced and MAC was redetermined. In an effort to determine the duration of MAC reduction, measurements were repeated in a stepwise manner until MAC values returned to baseline. After the last stimulation, the e′SEVO was increased to 1.2 individual MAC for 15 minutes, then sevoflurane was discontinued and cats were allowed to recover from anesthesia.ResultsBaseline sevoflurane MAC was 3.18 ± 0.06%. When compared with baseline the sevoflurane MAC after methadone administration was significantly reduced by 25, 15 and 7% at 26, 76 and 122 minutes, respectively. The final MAC value (3.09 ± 0.07%) determined 156 minutes after methadone administration was not significantly different from baseline.Conclusions and clinical relevanceIntravenous methadone (0.3 mg kg?1) significantly decreased MAC of sevoflurane in cats but the effect was short-lived.  相似文献   

7.
ObjectiveTo determine if acute opioid tolerance (AOT) or opioid-induced hyperalgesia (OIH) could develop and limit the remifentanil-induced reduction in the sevoflurane minimum alveolar concentration (MAC). The response to mechanical nociceptive threshold (MNT) was evaluated and related to OIH.Study designA crossover, randomized, experimental animal study.AnimalsA total of nine Beagle dogs.MethodsThe dogs were anaesthetized with sevoflurane in 50% oxygen. Baseline sevoflurane MAC was measured (MACb1). Remifentanil (0.3 μg kg–1 minute–1) or 0.9% saline constant rate infusion (CRI) was administered intravenously (IV). Sevoflurane MAC was determined 20 minutes after CRI was initiated (MACpostdrug1), 30 minutes after MACpostdrug1 determination (MACpostdrug2) and after 1 week (MACb2). The MNT was determined at baseline (before anaesthesia), 3 and 7 days after anaesthesia. An increase of MACpostdrug2 ≥0.25% compared to MACpostdrug1 was considered evidence of AOT. A decrease in MNT at 3 and 7 days or an increase in MACb2 or both with respect to MACb1 were considered evidence of OIH.ResultsRemifentanil CRI reduced sevoflurane MACpostdrug1 by 43.7% with respect to MACb1. MACpostdrug2 was no different from MACpostdrug1 with the saline (p = 0.62) or remifentanil (p = 0.78) treatments. No significant differences were observed in the saline (p = 0.99) or remifentanil (p = 0.99) treatments between MACb1 and MACb2, or for MNT values between baseline, 3 and 7 days.Conclusion and clinical relevanceIn dogs, under the study conditions, remifentanil efficacy in reducing sevoflurane MAC did not diminish in the short term, suggesting remifentanil did not induce AOT. Hyperalgesia was not detected 3 or 7 days after the administration of remifentanil. Contrary to data from humans and rodents, development of AOT or OIH in dogs is not supported by the findings of this study.  相似文献   

8.
ObjectiveTo investigate the impact of intramuscular (IM) co-administration of the peripheral α2-adrenoceptor agonist vatinoxan (MK-467) with medetomidine and butorphanol prior to intravenous (IV) ketamine on the cardiopulmonary and anaesthetic effects in dogs, followed by atipamezole reversal.Study designRandomized, masked crossover study.AnimalsA total of eight purpose-bred Beagle dogs aged 3 years.MethodsEach dog was instrumented and administered two treatments 2 weeks apart: medetomidine (20 μg kg–1) and butorphanol (100 μg kg–1) premedication with vatinoxan (500 μg kg–1; treatment MVB) or without vatinoxan (treatment MB) IM 20 minutes before IV ketamine (4 mg kg–1). Atipamezole (100 μg kg–1) was administered IM 60 minutes after ketamine. Heart rate (HR), mean arterial (MAP) and central venous (CVP) pressures and cardiac output (CO) were measured; cardiac (CI) and systemic vascular resistance (SVRI) indices were calculated before and 10 minutes after MVB or MB, and 10, 25, 40, 55, 70 and 100 minutes after ketamine. Data were analysed with repeated measures analysis of covariance models. A p-value <0.05 was considered statistically significant. Sedation, induction, intubation and recovery scores were assessed.ResultsAt most time points, HR and CI were significantly higher, and SVRI and CVP significantly lower with MVB than with MB. With both treatments, SVRI and MAP decreased after ketamine, whereas HR and CI increased. MAP was significantly lower with MVB than with MB; mild hypotension (57–59 mmHg) was recorded in two dogs with MVB prior to atipamezole administration. Sedation, induction, intubation and recovery scores were not different between treatments, but intolerance to the endotracheal tube was observed earlier with MVB.Conclusions and clinical relevanceHaemodynamic performance was improved by vatinoxan co-administration with medetomidine–butorphanol, before and after ketamine administration. However, vatinoxan was associated with mild hypotension after ketamine with the dose used in this study. Vatinoxan shortened the duration of anaesthesia.  相似文献   

9.
ObjectiveTo examine the anesthetic effects of a xylazine-diazepam-ketamine (XDK) combination in roosters.Study designProspective experimental trial.AnimalsSix healthy white Leghorn roosters weighing 2.03 ± 0.08 kg.MethodsEach rooster was pre-medicated with xylazine (3 mg kg−1, IM) and after 15 minutes anesthesia was induced with a diazepam (4 mg kg−1) and ketamine (25 mg kg−1) combination injected into the pectoral muscles. Heart and respiratory rates were recorded before anesthesia and every 15 minutes after induction for 165 minutes. Cloacal temperature was measured before and 15 minutes after pre-medication and every 75 minutes thereafter during anesthesia. Quality of induction and recovery were scored subjectively; duration of loss of righting reflex, abolition of response to a painful stimulus and palpebral reflex were also recorded.ResultsIntramuscular injection of xylazine smoothly induced loss of the righting reflex within 3–4 minutes. Loss of response to a painful stimulus occurred at 13.1 ± 2.9 minutes (mean ± SD) after the administration of the D-K combination, and lasted for 63.0 ± 5.3 minutes. Roosters anesthetized with this combination had a significant decrease in heart and respiratory rates and cloacal temperature. The recovery period lasted for up to 4 hours (227.5 ± 15.4 minutes). Quality of recovery was satisfactory for four roosters but excitation was noted in two birds.Conclusions and clinical relevanceThe XDK combination was a useful anesthetic technique for typhlectomy in roosters. Nevertheless this drug combination should be used with caution and cardiopulmonary parameters monitored carefully. Under the conditions of this experiment it was associated with a decreased cloacal temperature and prolonged recoveries.  相似文献   

10.
ObjectiveTo evaluate the effects of combined infusions of vatinoxan and dexmedetomidine on inhalant anesthetic requirement and cardiopulmonary function in dogs.Study designProspective experimental study.MethodsA total of six Beagle dogs were anesthetized to determine sevoflurane minimum alveolar concentration (MAC) prior to and after an intravenous (IV) dose (loading, then continuous infusion) of dexmedetomidine (4.5 μg kg–1 hour–1) and after two IV doses of vatinoxan in sequence (90 and 180 μg kg–1 hour–1). Blood was collected for plasma dexmedetomidine and vatinoxan concentrations. During a separate anesthesia, cardiac output (CO) was measured under equivalent MAC conditions of sevoflurane and dexmedetomidine, and then with each added dose of vatinoxan. For each treatment, cardiovascular variables were measured with spontaneous and controlled ventilation. Repeated measures analyses were performed for each response variable; for all analyses, p < 0.05 was considered significant.ResultsDexmedetomidine reduced sevoflurane MAC by 67% (0.64 ± 0.1%), mean ± standard deviation in dogs. The addition of vatinoxan attenuated this to 57% (0.81 ± 0.1%) and 43% (1.1 ± 0.1%) with low and high doses, respectively, and caused a reduction in plasma dexmedetomidine concentrations. Heart rate and CO decreased while systemic vascular resistance increased with dexmedetomidine regardless of ventilation mode. The co-administration of vatinoxan dose-dependently modified these effects such that cardiovascular variables approached baseline.Conclusions and clinical relevanceIV infusions of 90 and 180 μg kg–1 hour–1 of vatinoxan combined with 4.5 μg kg–1 hour–1 dexmedetomidine provide a meaningful reduction in sevoflurane requirement in dogs. Although sevoflurane MAC-sparing properties of dexmedetomidine in dogs are attenuated by vatinoxan, the cardiovascular function is improved. Doses of vatinoxan >180 μg kg–1 hour–1 might improve cardiovascular function further in combination with this dose of dexmedetomidine, but beneficial effects on anesthesia plane and recovery quality may be lost.  相似文献   

11.
ObjectiveTo compare physiological effects of sufentanil-midazolam with sevoflurane for surgical anaesthesia in medetomidine premedicated rabbits.Study designProspective, randomized controlled experimental study.AnimalsEighteen female Himalayan rabbits, weight 2.1 ± 0.1 kg.MethodsPremedication with 0.1 mg kg−1 medetomidine and 5 mg kg−1 carprofen subcutaneously, was followed by intravenous anaesthetic induction with sufentanil (2.3 μg mL−1) and midazolam (0.45 mg mL−1). After endotracheal intubation, anaesthesia was maintained with sufentanil-midazolam (n = 9) or sevoflurane (n = 9). Ovariohysterectomy was performed. Intermittent positive pressure ventilation was performed as required. Physiological variables were studied perioperatively. Group means of physiologic data were generated for different anaesthetic periods. Data were compared for changes from sedation, and between groups by anova. Post-operatively, 0.05 mg kg−1 buprenorphine was administered once and 5 mg kg−1 carprofen once daily for 2–3 days. Rabbits were examined and weighed daily until one week after surgery.ResultsSmooth induction of anaesthesia was achieved within 5 minutes. Sufentanil and midazolam doses were 0.5 μg kg−1 and 0.1 mg kg−1, during induction and 3.9 μg kg−1 hour−1 and 0.8 mg kg−1 hour−1 during surgery, respectively. End-tidal sevoflurane concentration was 2.1% during surgery. Assisted ventilation was required in nine rabbits receiving sufentanil-midazolam and four receiving sevoflurane. There were no differences between groups in physiologic data other than arterial carbon dioxide. In rabbits receiving sevoflurane, mean arterial pressure decreased pre-surgical intervention, heart rate increased 25% during and after surgery and body weight decreased 4% post-operatively. Post-operative problems sometimes resulted from catheterization of the ear artery.ConclusionSevoflurane and sufentanil-midazolam provided surgical anaesthesia of similar quality. Arterial blood pressure was sustained during sufentanil-midazolam anaesthesia and rabbits receiving sevoflurane lost body weight following ovariohysterectomy. Mechanical ventilation was required with both anaesthetic regimens.Clinical relevanceAnaesthesia with sufentanil-midazolam in medetomidine premedicated healthy rabbits is useful in the clinical and the research setting, as an alternative to sevoflurane.  相似文献   

12.
ObjectiveTo evaluate the effects of constant rate infusions (CRIs) of dexmedetomidine and remifentanil alone and their combination on minimum alveolar concentration (MAC) of sevoflurane in dogs.Study designRandomized crossover experimental study.AnimalsA total of six (three males, three females) healthy, adult neutered Beagle dogs weighing 12.6 ± 1.4 kg.MethodsAnesthesia was induced with sevoflurane in oxygen until endotracheal intubation was possible and anesthesia maintained with sevoflurane using positive-pressure ventilation. Each dog was anesthetized five times and was administered each of the following treatments: saline (1 mL kg–1 hour–1) or dexmedetomidine at 0.1, 0.5, 1.0 or 5.0 μg kg–1 loading dose intravenously over 10 minutes followed by CRI at 0.1, 0.5, 1.0 or 5.0 μg kg–1 hour–1, respectively. Following 60 minutes of CRI, sevoflurane MAC was determined in duplicate using an electrical stimulus (50 V, 50 Hz, 10 ms). Then, CRI of successively increasing doses of remifentanil (0.15, 0.60 and 2.40 μg kg–1 minute–1) was added to each treatment. MAC was also determined after 30 minutes equilibration at each remifentanil dose. Isobolographic analysis determined interaction from the predicted doses required for a 50% MAC reduction (ED50) with remifentanil, dexmedetomidine and remifentanil combined with dexmedetomidine, with the exception of dexmedetomidine 5.0 μg kg–1 hour–1, obtained using log-linear regression analysis.ResultsThe sevoflurane MAC decreased dose-dependently with increasing infusion rates of dexmedetomidine and remifentanil. Remifentanil ED50 values were lower when combined with dexmedetomidine than those obtained during saline–remifentanil. Synergistic interactions between dexmedetomidine and remifentanil for MAC reduction occurred with dexmedetomidine at 0.5 and 1.0 μg kg–1 hour–1.Conclusions and clinical relevanceCombined CRIs of dexmedetomidine and remifentanil synergistically resulted in sevoflurane MAC reduction. The combination of dexmedetomidine and remifentanil effectively reduced the requirement of sevoflurane during anesthesia in dogs.  相似文献   

13.
The anesthetic and cardiopulmonary effects of butorphanol followed by sevoflurane or isoflurane were compared in 23 male green iguanas (Iguana iguana). Heart and respiratory rates were recorded before administration of butorphanol (2 mg/kg i.m.) and at 30 min after premedication. Anesthesia was induced in 12 iguanas (group 1) with isoflurane (5%) and in 11 iguanas (group 2) with sevoflurane (7%). Heart rate, relative arterial oxygen hemoglobin saturation (SpO2), and end-tidal CO2 concentrations (EtCO2) were measured every minute for the first 5 min and every 5 min thereafter. Arterial blood gas parameters were determined at 10 and 40 min after induction. Thirty minutes after butorphanol administration, no significant changes in heart and respiratory rate were seen as compared with baseline values. Quality and time to induction were superior with butorphanol-sevoflurane (6 +/- 3 min) than with butorphanol-isoflurane (9 +/- 4 min). Vaporizer settings during maintenance ranged between 1-3% and 2-4%, respectively. No significant differences in heart rate were noted between groups. In the sevoflurane group, SpO2 values were > 90% throughout. Although SpO2, values were < 90% at 20, 25, and 30 min in the isoflurane group, no significant differences in SpO2 values were seen over time and between groups. A significant decrease in EtCO2 with time was present in both groups, with no significant differences between the groups. At 10 and 40 min, arterial blood oxygen saturation values were > 90% in both groups and no significant differences were noted with time and between groups. Recovery time was significantly longer in the butorphanol-isoflurane group (35 +/- 27 min) than in the butorphanol-sevoflurane group (7 +/- 4 min). The cardiopulmonary effects of butorphanol-isoflurane and butorphanol-sevoflurane assessed in this study are similar, and both inhalants appear to be safe and effective for induction and maintenance in the green iguana.  相似文献   

14.
ObjectiveTo evaluate the effect of tramadol on sevoflurane minimum alveolar concentration (MACSEVO) in dogs. It was hypothesized that tramadol would dose-dependently decrease MACSEVO.Study designRandomized crossover experimental study.AnimalsSix healthy, adult female mixed-breed dogs (24.2 ± 2.6 kg).MethodsEach dog was studied on two occasions with a 7-day washout period. Anesthesia was induced using sevoflurane delivered via a mask. Baseline MAC (MACB) was determined starting 45 minutes after tracheal intubation. A noxious stimulus (50 V, 50 Hz, 10 ms) was applied subcutaneously over the mid-humeral area. If purposeful movement occurred, the end-tidal sevoflurane was increased by 0.1%; otherwise, it was decreased by 0.1%, and the stimulus was re-applied after a 20-minute equilibration. After MACB determination, dogs randomly received a tramadol loading dose of either 1.5 mg kg?1 followed by a continuous rate infusion (CRI) of 1.3 mg kg?1 hour?1 (T1) or 3 mg kg?1 followed by a 2.6 mg kg?1 hour?1 CRI (T2). Post-treatment MAC determination (MACT) began 45 minutes after starting the CRI. Data were analyzed using a mixed model anova to determine the effect of treatment on percentage change in baseline MACSEVO (p < 0.05).ResultsThe MACB values were 1.80 ± 0.3 and 1.75 ± 0.2 for T1 and T2, respectively, and did not differ significantly. MACT decreased by 26 ± 8% for T1 and 36 ± 12% for T2. However, there was no statistically significant difference in the decrease between the two treatments.Conclusion and clinical relevanceTramadol significantly reduced MACSEVO but this was not dose dependent at the doses studied.  相似文献   

15.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

16.
ObjectiveTo evaluate the anesthetic and cardiopulmonary effects of xylazine–alfaxalone anesthesia in donkey foals undergoing field castration.Study designProspective clinical study.AnimalsA group of seven standard donkeys aged [median (range)] 12 (10–26) weeks, weighing 47.3 (37.3–68.2) kg.MethodsDonkeys were anesthetized with xylazine (1 mg kg−1) intravenously (IV) followed 3 minutes later by alfaxalone (1 mg kg−1) IV. Additional doses of xylazine (0.5 mg kg−1) and alfaxalone (0.5 mg kg−1) IV were administered as needed to maintain surgical anesthesia. Intranasal oxygen was supplemented at 3 L minute−1. Heart rate (HR), respiratory rate (fR) and mean arterial pressure (MAP) by oscillometry were recorded before drug administration and every 5 minutes after induction of anesthesia. Peripheral oxygen saturation (SpO2) was recorded every 5 minutes after induction. Time to recumbency after alfaxalone administration, time to anesthetic re-dose, time to first movement, sternal and standing after last anesthetic dose and surgery time were recorded. Induction and recovery quality were scored (1, very poor; 5, excellent).ResultsMedian (range) induction score was 5 (1–5), and recovery score 4 (1–5). Overall, two donkeys were assigned a score of 1 (excitement) during induction or recovery. HR and MAP during the procedure did not differ from baseline. fR was decreased at 5 and 10 minutes but was not considered clinically significant. SpO2 was <90% at one time point in two animals.Conclusions and clinical relevanceXylazine–alfaxalone anesthesia resulted in adequate conditions for castration in 12 week old donkeys. While the majority of inductions and recoveries were good to excellent, significant excitement occurred in two animals and may limit the utility of this protocol for larger donkeys. Hypoxemia occurred despite intranasal oxygen supplementation.  相似文献   

17.
ObjectiveVarious drugs administered to horses undergoing surgical procedures can release histamine. Histamine concentrations were evaluated in horses prepared for surgery and administered butorphanol or morphine intraoperative infusions.Study designProspective studies with one randomized.AnimalsA total of 44 client-owned horses.MethodsIn one study, anesthesia was induced with xylazine followed by ketamine–diazepam. Anesthesia was maintained with guaifenesin–xylazine–ketamine (GXK) during surgical preparation. For surgery, isoflurane was administered with intravenous (IV) morphine (group M: 0.15 mg kg–1 and 0.1 mg kg–1 hour–1; 15 horses) or butorphanol (group B: 0.05 mg kg–1 and 0.01 mg kg–1 hour–1; 15 horses). Histamine and morphine concentrations were measured using enzyme-linked immunoassay before opioid injection (time 0), and after 1, 2, 5, 30, 60 and 90 minutes. In a subsequent study, plasma histamine concentrations were measured in 14 horses before drug administration (baseline), 15 minutes after IV sodium penicillin and 15 minutes after starting GXK IV infusion. Statistical comparison was performed using anova for repeated measures. Pearson correlation compared morphine and histamine concentrations. Data are presented as mean ± standard deviation. Significance was assumed when p ≤ 0.05.ResultsWith histamine, differences occurred between baseline (3.2 ± 2.4 ng mL–1) and GXK (5.2 ± 7.1 ng mL–1) and between baseline and time 0 in group B (11.9 ± 13.4 ng mL–1) and group M (11.1 ± 12.4 ng mL–1). No differences occurred between baseline and after penicillin or between groups M and B. Morphine concentrations were higher at 1 minute following injection (8.1 ± 5.1 ng mL–1) than at 30 minutes (4.9 ± 3.1 ng mL–1) and 60 minutes (4.0 ± 2.5 ng mL–1). Histamine correlated with morphine at 2, 30 and 60 minutes.Conclusions and clinical relevanceGXK increased histamine concentration, but concentrations were similar with morphine and butorphanol.  相似文献   

18.
ObjectiveTo evaluate the sedative effects of intravenous (IV) medetomidine (1 μg kg?1) and butorphanol (0.1 mg kg?1) alone and in combination in dogs.Study designProspective, blinded, randomized clinical trial.AnimalsSixty healthy (American Society of Anesthesiologists I) dogs, aged 6.2 ± 3.2 years and body mass 26 ± 12.5 kg.MethodsDogs were assigned to four groups: Group S (sodium chloride 0.9% IV), Group B (butorphanol IV), Group M (medetomidine IV) and Group MB (medetomidine and butorphanol IV). The same clinician assessed sedation before and 12 minutes after administration using a numerical scoring system in which 19 represented maximum sedation. Heart rate (HR), respiratory rate, pulse quality, capillary refill time and rectal temperature were recorded after each sedation score assessment. Sedation scores, sedation score difference (score after minus score before administration) and patient variables were compared using one-way anova for normally distributed variables and Kruskal–Wallis test for variables with skewed distributions and/or unequal variances. Where significance was found, further evaluation used Bonferroni multiple comparisons for pair-wise testing.ResultsBreed, sex, neuter status, age and body mass did not differ between groups. Sedation scores before substance administration were similar between groups (p = 0.2). Sedation scores after sedation were significantly higher in Group MB (mean 9.5 ± SD 5.5) than in group S (2.5 ± 1.8) (p < 0.001), group M (3.1 ± 2.5) (p < 0.001) and group B (3.7 ± 2.0) (p = 0.003). Sedation score difference was significantly higher in Group MB [7 (0–13)] than in Group S [0 (?1 to 4)] (p < 0.001) and Group M [0 (0–6)] (p < 0.001). HR decreased significantly in Groups M and MB compared with Group S (p < 0.05).Conclusion and clinical relevanceLow-dose medetomidine 1 μg kg?1 IV combined with butorphanol 0.1 mg kg?1 IV produced more sedation than medetomidine or butorphanol alone. HR was significantly decreased in both medetomidine groups.  相似文献   

19.
ObjectiveTo compare ketamine–butorphanol–medetomidine (KBM) with butorphanol–midazolam–medetomidine (BMM) immobilization of serval.Study designBlinded, randomized trial.AnimalsA total of 23 captures [KBM: five females, six males; 10.7 kg (mean); BMM: 10 females, two males; 9.6 kg].MethodsServal were cage trapped and immobilized using the assigned drug combination delivered via a blow dart into gluteal muscles. Prior to darting, a stress score was assigned (0: calm; to 3: markedly stressed). Drug combinations were dosed based on estimated body weights: 8.0, 0.4 and 0.08 mg kg–1 for KBM and 0.4, 0.3 and 0.08 mg kg–1 for BMM, respectively. Time to first handling, duration of anaesthesia and recovery times were recorded. Physiological variables including blood glucose and body temperature were recorded at 5 minute intervals. Atipamezole (5 mg mg–1 medetomidine) and naltrexone (2 mg mg–1 butorphanol) were administered intramuscularly prior to recovery. Data, presented as mean values, were analysed using general linear mixed model and Spearman’s correlation (stress score, glucose, temperature); significance was p < 0.05.ResultsDoses based on actual body weights were 8.7, 0.4 and 0.09 mg kg–1 for KBM and 0.5, 0.4 and 0.09 mg kg–1 for BMM, respectively. Time to first handling was 10.2 and 13.3 minutes for KBM and BMM, respectively (p = 0.033). Both combinations provided cardiovascular stability during anaesthesia that lasted a minimum of 35 minutes. Recovery was rapid and calm overall, but ataxia was noted in KBM. Stress score was strongly correlated to blood glucose (r2 = 0.788; p = 0.001) and temperature (r2 = 0.634; p = 0.015).Conclusions and clinical relevanceBoth combinations produced similar effective immobilization that was cardiovascularly stable in serval. Overall, BMM is recommended because it is fully antagonizable. A calm, quiet environment before drug administration is essential to avoid capture-induced hyperglycaemia and hyperthermia.  相似文献   

20.
ObjectiveTo estimate the pharmacokinetics of midazolam and 1-hydroxymidazolam after midazolam administration as an intravenous bolus in sevoflurane-anesthetized cats.Study designProspective pharmacokinetic study.AnimalsA group of six healthy adult, female domestic cats.MethodsAnesthesia was induced and maintained with sevoflurane. After 30 minutes of anesthetic equilibration, cats were administered midazolam (0.3 mg kg–1) over 15 seconds. Venous blood was collected at 0, 1, 2, 4, 8, 15, 30, 45, 90, 180 and 360 minutes after administration. Plasma concentrations for midazolam and 1-hydroxymidazolam were measured using high-pressure liquid chromatography. The heart rate (HR), respiratory rate (fR), rectal temperature, noninvasive mean arterial pressure (MAP) and end-tidal carbon dioxide (Pe′CO2) were recorded at 5 minute intervals. Population compartment models were fitted to the time–plasma midazolam and 1-hydroxymidazolam concentrations using nonlinear mixed effect modeling.ResultsThe pharmacokinetic model was fitted to the data from five cats, as 1-hydroxymidazolam was not detected in one cat. A five-compartment model best fitted the data. Typical values (% interindividual variability where estimated) for the volumes of distribution for midazolam (three compartments) and hydroxymidazolam (two compartments) were 117 (14), 286 (10), 705 (14), 53 (36) and 334 mL kg–1, respectively. Midazolam clearance to 1-hydroxymidazolam, midazolam fast and slow intercompartmental clearances, 1-hydroxymidazolam clearance and 1-hydroxymidazolam intercompartment clearance were 18.3, 63.5 (15), 22.1 (8), 1.7 (67) and 3.8 mL minute–1 kg–1, respectively. No significant changes in HR, MAP, fR or Pe′CO2 were observed following midazolam administration.Conclusion and clinical relevanceIn sevoflurane-anesthetized cats, a five-compartment model best fitted the midazolam pharamacokinetic profile. There was a high interindividual variability in the plasma 1-hydroxymidazolam concentrations, and this metabolite had a low clearance and persisted in the plasma for longer than the parent drug. Midazolam administration did not result in clinically significant changes in physiologic variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号