首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveTo characterize the pharmacokinetics of buprenorphine and norbuprenorphine in isoflurane-anesthetized cats.Study designProspective experimental study.AnimalsA group of six healthy adult male neutered cats.MethodsCats were anesthetized with isoflurane in oxygen. Catheters were placed in a jugular vein for blood sampling and in a medial saphenous vein for buprenorphine and lactated Ringer’s solution administration. Buprenorphine hydrochloride (40 μg kg–1 over 5 minutes) was administered intravenously. Blood samples were collected before buprenorphine administration and at various times up to 12 hours after administration. Plasma buprenorphine and norbuprenorphine concentrations were measured using liquid chromatography/tandem mass spectrometry. Compartment models were fitted to the time-concentration data using nonlinear mixed effect (population) modeling.ResultsA five-compartment model (three compartments for buprenorphine and two compartments for norbuprenorphine) best fitted the data. Typical value (% interindividual variability) for the three buprenorphine volumes of distribution, and the metabolic clearance to norbuprenorphine, the remaining metabolic clearance and the two distribution clearances were 157 (33), 759 (34) and 1432 (43) mL kg–1, and 5.3 (33), 16.4 (11), 58.7 (27) and 6.0 (not estimated) mL minute–1 kg–1, respectively. Typical values (% interindividual variability) for the two norbuprenorphine volumes of distribution, and the norbuprenorphine metabolic and distribution clearances were 1437 (30) and 8428 (not estimated) mL kg–1 and 48.4 (68) and 235.9 (not estimated) mL minute–1 kg–1, respectively.Conclusions and clinical relevanceThe pharmacokinetics of buprenorphine in isoflurane-anesthetized cats were characterized by a medium clearance.  相似文献   

2.
ObjectivesAssess effects of benzodiazepine administration on the propofol dose required to induce anaesthesia in healthy cats, investigate differences between midazolam and diazepam, and determine an optimal benzodiazepine dose for co-induction.Study designProspective, randomised, blinded, placebo-controlled clinical trial.AnimalsNinety client-owned cats (ASA I and II) with a median (interquartile range) body mass of 4.0 (3.4–4.9) kg.MethodsAll cats received 0.01 mg kg−1 acepromazine and 0.2 mg kg−1 methadone intravenously (IV). Fifteen minutes later, sedation was scored on a scale of 1–5, with 5 indicating greatest sedation. Propofol, 2 mg kg−1, administered IV, was followed by either midazolam or diazepam at 0.2, 0.3, 0.4 or 0.5 mg kg−1 or saline 0.1 mL kg−1. Further propofol was administered until endotracheal intubation was possible. Patient signalment, sedation score, propofol dosage and adverse reactions were recorded.ResultsMidazolam and diazepam (all doses) significantly reduced the propofol dose required compared with saline (p < 0.001). There was no difference between midazolam and diazepam in propofol dose reduction (p = 0.488). All individual doses of midazolam reduced propofol requirement compared with saline (0.2 mg kg−1, p = 0.028; 0.3 mg kg−1, p = 0.006; 0.4 mg kg−1, p < 0.001; 0.5 mg kg−1, p = 0.009). Diazepam 0.2 mg kg−1 did not reduce the propofol dose compared with saline (p = 0.087), but the remaining doses did (0.3 mg kg−1, p = 0.001; 0.4 mg kg−1, p = 0.032; 0.5 mg kg−1, p = 0.041). Cats with sedation scores of 3 required less propofol than cats with scores of 2 (p = 0.008). There was no difference between groups in adverse events.Conclusions and clinical relevanceMidazolam (0.2–0.5 mg kg−1) and diazepam (0.3–0.5 mg kg−1) administered IV after 2 mg kg−1 propofol significantly reduced the propofol dose required for tracheal intubation.  相似文献   

3.
ObjectiveTo characterize the pharmacokinetics of vatinoxan in isoflurane-anesthetized cats.Study designProspective experimental study.AnimalsA group of six adult healthy male neutered cats.MethodsCats were anesthetized using isoflurane in oxygen. Venous catheters were placed to administer the drug and sample blood. Vatinoxan, 1 mg kg–1, was administered intravenously over 5 minutes. Blood was sampled before and at various times during and up to 8 hours after vatinoxan administration. Plasma vatinoxan concentration was measured using liquid chromatography/tandem mass spectrometry. Compartment models were fitted to the time–concentration data using population methods and nonlinear mixed effect modeling.ResultsA three-compartment model best fitted the data. Typical value (% interindividual variability) for the three volumes (mL kg–1), the metabolic clearance and two distribution clearances (mL minute–1 kg–1) were 34 (55), 151 (35), 306 (18), 2.3 (34), 42.6 (25) and 5.6 (0), respectively. Hypotension increased the second distribution clearance to 10.6.Conclusion and clinical relevanceThe pharmacokinetics of vatinoxan in anesthetized cats were characterized by a small volume of distribution and a low clearance. An intravenous bolus of 100 μg kg–1 of vatinoxan followed by constant rate infusions of 55 μg kg–1 minute–1 for 20 minutes, then 22 μg kg–1 minute–1 for 60 minutes and finally 10 μg kg–1 minute–1 for the remainder of the infusion time is expected to maintain the plasma concentration within 90%–110% of the plasma vatinoxan concentration previously shown to attenuate the cardiovascular effects of dexmedetomidine (25 μg kg–1) in conscious cats.  相似文献   

4.
ObjectiveTo evaluate selected effects of midazolam or lidocaine administered prior to etomidate for co-induction of anesthesia in healthy dogs.Study designProspective crossover experimental study.AnimalsA group of 12 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.3 mg kg–1), and anesthesia was induced with etomidate following midazolam (0.3 mg kg–1), lidocaine (2 mg kg–1) or physiologic saline (1 mL) IV. Heart rate (HR), arterial blood pressure, respiratory rate (fR) and intraocular pressure (IOP) were recorded following butorphanol, after co-induction administration, after etomidate administration and immediately following intubation. Baseline IOP values were also obtained prior to sedation. Etomidate dose requirements and the presence of myoclonus, as well as coughing or gagging during intubation were recorded. Serum cortisol concentrations were measured prior to premedication and 6 hours following etomidate administration.ResultsBlood pressure, fR and IOP were similar among treatments. Blood pressure decreased in all treatments following etomidate administration and generally returned to sedated values following intubation. HR increased following intubation with midazolam and lidocaine but remained stable in the saline treatment. The dose of etomidate (median, interquartile range, range) required for intubation was lower following midazolam (2.2, 2.1–2.6, 1.7–4.1 mg kg−1) compared with lidocaine (2.7, 2.4–3.6, 2.2–5.1 mg kg−1, p = 0.012) or saline (3.0, 2.8–3.8, 1.9–5.1 mg kg−1, p = 0.015). Coughing or gagging was less frequent with midazolam compared with saline. Myoclonus was not observed. Changes in serum cortisol concentrations were not different among treatments.Conclusions and clinical relevanceMidazolam administration reduced etomidate dose requirements and improved intubation conditions compared with lidocaine or saline treatments. Neither co-induction agent caused clinically relevant differences in measured cardiopulmonary function, IOP or cortisol concentrations compared with saline in healthy dogs. Apnea was noted in all treatments following the induction of anesthesia and preoxygenation is recommended.  相似文献   

5.
ObjectiveTo evaluate the efficacy and cardiopulmonary effects of ketamine–midazolam for chemical restraint, isoflurane anesthesia and tramadol or methadone as preventive analgesia in spotted pacas subjected to laparoscopy.Study designProspective placebo-controlled blinded trial.AnimalsA total of eight captive female Cuniculus paca weighing 9.3 ± 0.9 kg.MethodsAnimals were anesthetized on three occasions with 15 day intervals. Manually restrained animals were administered midazolam (0.5 mg kg–1) and ketamine (25 mg kg–1) intramuscularly. Anesthesia was induced and maintained with isoflurane 30 minutes later. Tramadol (5 mg kg–1), methadone (0.5 mg kg–1) or saline (0.05 mL kg–1) were administered intramuscularly 15 minutes prior to laparoscopy. Heart rate (HR), respiratory rate, mean arterial pressure (MAP), peripheral oxygen saturation (SpO2), end-tidal CO2 partial pressure (Pe′CO2), end-tidal concentration of isoflurane (Fe′Iso), pH, PaO2, PaCO2, bicarbonate (HCO3?), anion gap (AG) and base excess (BE) were monitored after chemical restraint, anesthesia induction and at different laparoscopy stages. Postoperative pain was assessed by visual analog scale (VAS) for 24 hours. Variables were compared using anova or Friedman test (p < 0.05).ResultsChemical restraint was effective in 92% of animals. Isoflurane anesthesia was effective; however, HR, MAP, pH and AG decreased, whereas Pe′CO2, PaO2, PaCO2, HCO3? and BE increased. MAP was stable with tramadol and methadone treatments; HR, Fe′Iso and postoperative VAS decreased. VAS was lower for a longer time with methadone treatment; SpO2 and AG decreased, whereas Pe′CO2, PaCO2 and HCO3? increased.Conclusions and clinical relevanceKetamine–midazolam provided satisfactory restraint. Isoflurane anesthesia for laparoscopy was effective but resulted in hypotension and respiratory acidosis. Tramadol and methadone reduced isoflurane requirements, provided postoperative analgesia and caused hypercapnia, with methadone causing severe respiratory depression. Thus, the anesthetic protocol is adequate for laparoscopy in Cuniculus paca; however, methadone should be avoided.  相似文献   

6.
ObjectiveTo determine the effects of midazolam on the minimum anesthetic concentration (MAC) reduction of end-tidal isoflurane concentration (Fe′Iso) measured using an electrical stimulus in Quaker parrots (Myiopsitta monachus).Study designRandomized crossover experimental study.AnimalsA group of six adult Quaker parrots, weighing 98–124 g.MethodsBirds were anesthetized with isoflurane in oxygen delivered by mask, then tracheally intubated and mechanically ventilated. Three treatments were applied with a 4 day interval between anesthetic events. Each anesthetized bird was administered midazolam (1 mg kg−1; treatment MID1), midazolam (2 mg kg−1; treatment MID2) or electrolyte solution (control) intramuscularly. The treatments were administered using a replicated Latin square design and the observers were blinded. Based on a pilot bird, the starting Fe′Iso was 1.8%. After equilibration for 10 minutes, a supramaximal stimulus was delivered using an electrical current (20 V and 50 Hz for 10 ms) and birds were observed for non-reflex movement. The Fe′Iso was titrated by 0.1% until a crossover event was observed. The MAC was estimated using logistic regression.ResultsThe MAC of isoflurane (MACISO) was estimated at 2.52% [95% confidence interval (CI), 2.19–2.85] with a range of 1.85–2.65%. MACISO in MID1 was 2.04% (95% CI, 1.71–2.37) and in MID2 was 1.81% (95% CI, 1.48–2.14); reductions in MACISO from control of 19% (p = 0.001) and 28% (p < 0.001), respectively. Heart rate, temperature, sex and anesthetic time were not different among treatments.ConclusionsMidazolam (1–2 mg kg−1) intramuscularly resulted in a significant isoflurane-sparing effect in response to a noxious stimulus in Quaker parrots without observable adverse effects.Clinical relevanceMidazolam can be used as part of a balanced anesthetic approach using isoflurane in Quaker parrots, and potentially in other psittacine species.  相似文献   

7.
ObjectiveTo describe the pharmacokinetics of ketamine following a short intravenous (IV) infusion to isoflurane-anesthetized rabbits.Study designProspective experimental study.AnimalsA total of six adult healthy female New Zealand White rabbits.MethodsAnesthesia was induced with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the isoflurane concentration was reduced to 0.75 MAC and ketamine hydrochloride (5 mg kg–1) was administered IV over 5 minutes. Blood samples were collected before and at 2, 5, 6, 7, 8, 9, 13, 17, 21, 35, 65, 125, 215 and 305 minutes after initiating the ketamine infusion. Samples were processed immediately and the plasma separated and stored at –80 °C until analyzed for ketamine and norketamine concentrations using liquid chromatography–mass spectrometry. Compartment models were fitted to the concentration–time data for ketamine and for ketamine plus norketamine using nonlinear mixed-effects (population) modeling.ResultsA three- and five-compartment model best fitted the plasma concentration–time data for ketamine and for ketamine plus norketamine, respectively. For the ketamine only model, the volume of distribution at steady state (Vss) was 3217 mL kg–1, metabolic clearance was 88 mL minute–1 kg–1 and the terminal half-life was 59 minutes. For the model including both ketamine and norketamine, Vss were 3224 and 2073 mL kg–1, total metabolic clearance was 107 and 52 mL minute–1 kg–1 and terminal half-lives were 52 and 55 minutes for the parent drug and its metabolite, respectively.Conclusions and clinical relevanceThis study characterized the pharmacokinetics of ketamine and norketamine in isoflurane-anesthetized New Zealand White rabbits following short IV infusion. The results obtained herein will be useful to determine ketamine infusion regimens in isoflurane-anesthetized rabbits.  相似文献   

8.
ObjectiveTo compare, versus a control, the sensory, sympathetic and motor blockade of lidocaine 1% and 2% administered epidurally in bitches undergoing ovariohysterectomy.Study designRandomized, blinded, controlled clinical trial.AnimalsA total of 24 mixed-breed intact female dogs.MethodsAll dogs were administered dexmedetomidine, tramadol and meloxicam prior to general anesthesia with midazolam–propofol and isoflurane. Animals were randomly assigned for an epidural injection of lidocaine 1% (0.4 mL kg−1; group L1), lidocaine 2% (0.4 mL kg−1; group L2) or no injection (group CONTROL). Heart rate (HR), respiratory rate (fR), end-tidal partial pressure of carbon dioxide (Pe′CO2), and invasive systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were recorded every 5 minutes. Increases in physiological variables were treated with fentanyl (3 μg kg−1) intravenously (IV). Phenylephrine (1 μg kg−1) was administered IV when MAP was <60 mmHg. Postoperative pain [Glasgow Composite Pain Score – Short Form (GCPS–SF)] and return of normal ambulation were recorded at 1, 2, 3, 4 and 6 hours after extubation.ResultsThere were no differences over time or among groups for HR, fR, Pe′CO2 and SAP. MAP and DAP were lower in epidural groups than in CONTROL (p = 0.0146 and 0.0047, respectively). There was no difference in the use of phenylephrine boluses. More fentanyl was administered in CONTROL than in L1 and L2 (p = 0.011). GCPS–SF was lower for L2 than for CONTROL, and lower in L1 than in both other groups (p = 0.001). Time to ambulation was 2 (1–2) hours in L1 and 3 (2–4) hours in L2 (p = 0.004).Conclusions and clinical relevanceEpidural administration of lidocaine (0.4 mL kg−1) reduced fentanyl requirements and lowered MAP and DAP. Time to ambulation decreased and postoperative pain scores were improved by use of 1% lidocaine compared with 2% lidocaine.  相似文献   

9.
ObjectiveTo evaluate the anaesthetic and cardiorespiratory effects of four anaesthetic protocols in red foxes (Vulpes vulpes).Study designProspective, blinded and randomized complete block design.AnimalsTen adult captive red foxes.MethodsFoxes were anaesthetized by intramuscular (IM) injection using four protocols in random order: medetomidine 40 μg kg?1, midazolam 0.3 mg kg?1 and butorphanol 0.1 mg kg?1 (MMiB), medetomidine 40 μg kg?1 and ketamine 4 mg kg?1 (MK40/4), medetomidine 60 μg kg?1 and ketamine 4 mg kg?1 (MK60/4), medetomidine 40 μg kg?1 and tiletamine/zolazepam 2 mg kg?1 (MTZ). Time to lateral recumbency, induction time and time to recovery following IM administration of atipamezole 0.2 mg kg?1 were recorded. Heart rate (HR), respiratory rate (fR) and rhythm, blood pressure, rectal temperature, end-tidal CO2 tension (Pe′Co2), functional oxygen saturation and presence/absence of interdigital, palpebral and ear reflexes were recorded every 10 minutes, and following administration of atipamezole. Data were analysed using two-way repeated-measures anova with Bonferroni post tests; p < 0.05 was considered significant.ResultsAll protocols produced profound sedation with good muscle relaxation. Only the MMiB protocol diverged significantly from the others. Induction of anaesthesia and recovery time following atipamezole were significantly longer, and fR and initial HR significantly lower with MMiB than with the other protocols. With all protocols, mean arterial blood pressure (MAP) was initially relatively high (140–156 mmHg), and decreased significantly over time. With all protocols, the administration of atipamezole resulted in a rapid, significant decrease in MAP and an increase in HR.Conclusions and clinical relevanceAll four protocols provided anaesthetic conditions suitable for minor procedures and allowed endotracheal intubation. The cyclohexanone protocols provided quicker and more reliable inductions and recoveries than the MMiB protocol.  相似文献   

10.
ObjectiveTo assess the effect of a benzodiazepine co–induction on propofol dose requirement for induction of anaesthesia in healthy dogs, to describe any differences between midazolam and diazepam and to determine an optimal benzodiazepine dose for co–induction.Study designProspective, randomised, blinded placebo controlled clinical trial.AnimalsNinety client owned dogs (ASA I–III, median body mass 21.5kg (IQR 10–33)) presented for anaesthesia for a variety of procedures.MethodsDogs were randomised to receive saline 0.1 mL kg?1, midazolam or diazepam at 0.2, 0.3, 0.4 or 0.5 mg kg?1. All dogs received 0.01 mg kg?1 acepromazine and 0.2 mg kg?1 methadone intravenously (IV). Fifteen minutes later, sedation was assessed and scored prior to anaesthetic induction. Propofol, 1 mg kg?1, was administered IV, followed by the treatment drug. Further propofol was administered until endotracheal intubation was possible. Recorded data included patient signalment, sedation score, propofol dosage and any adverse reactions.ResultsMidazolam (all groups combined) significantly reduced propofol dose requirement compared to saline (p < 0.001) and diazepam (p = 0.008). Midazolam (0.4 mg kg?1) significantly reduced propofol dose requirement (p = 0.014) compared to saline, however other doses failed to reach statistical significance. Diazepam did not significantly reduce propofol dose requirement compared to saline (p = 0.089). Dogs weighing <5 kg, regardless of treatment group, required a greater propofol dose than those weighing 5–40 kg (p = 0.002) and those >40 kg (p = 0.008). Dogs which were profoundly sedated required less propofol than those which were mildly sedated (p < 0.001) and adequately sedated (p = 0.003).Conclusions and clinical relevanceMidazolam (0.4 mg kg?1) given IV after 1 mg kg?1 of propofol significantly reduced the further propofol dose required for intubation compared to saline. At the investigated doses, diazepam did not have significant propofol dose sparing effects.  相似文献   

11.
ObjectiveTo determine the possible additive effect of midazolam, a GABAA agonist, on the end-tidal concentration of isoflurane that prevents movement (MACNM) in response to noxious stimulation.Study designRandomized cross-over experimental study.AnimalsSix healthy, adult intact male, mixed-breed dogs.MethodsAfter baseline isoflurane MACNM (MACNM-B) determination, midazolam was administered as a low (LDS), medium (MDS) or high (HDS) dose series of midazolam. Each series consisted of two dose levels, low and high. The LDS was a loading dose (Ld) of 0.2 mg kg?1 and constant rate infusion (CRI) (2.5 μg kg?1 minute?1) (LDL), followed by an Ld (0.4 mg kg?1) and CRI (5 μg kg?1 minute?1) (LDH). The MDS was an Ld (0.8 mg kg?1) and CRI (10 μg kg?1 minute?1) (MDL) followed by an Ld (1.6 mg kg?1) and CRI (20 μg kg?1 minute?1) (MDH). The HDS was an Ld (3.2 mg kg?1) and CRI (40 μg kg?1 minute?1) (HDL) followed by an Ld (6.4 mg kg?1) and CRI (80 μg kg?1 minute?1) (HDH). MACNM was re-determined after each dose in each series (MACNM-T).ResultsThe median MACNM-B was 1.42. MACNM-B did not differ among groups (p >0.05). Percentage reduction in MACNM was significantly less in the LDS (11 ± 5%) compared with MDS (30 ± 5%) and HDS (32 ± 5%). There was a weak correlation between the plasma midazolam concentration and percentage MACNM reduction (r = 0.36).Conclusion and clinical relevanceMidazolam doses in the range of 10–80 μg kg?1 minute?1 significantly reduced the isoflurane MACNM. However, doses greater than 10 μg kg?1 minute?1 did not further decrease MACNM indicating a ceiling effect.  相似文献   

12.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

13.
ObjectiveTo assess the effects of varying the sequence of midazolam and propofol administration on the quality of induction, cardiorespiratory parameters and propofol requirements in dogs.Study designRandomized, controlled, clinical study.AnimalsThirty‐three client owned dogs (ASA I‐III, 0.5–10 years, 5–30 kg).MethodsDogs were premedicated with acepromazine (0.02 mg kg?1) and morphine (0.4 mg kg?1) intramuscularly. After 30 minutes, group midazolam‐propofol (MP) received midazolam (0.25 mg kg?1) intravenously (IV) before propofol (1 mg kg?1) IV, group propofol‐midazolam (PM) received propofol before midazolam IV at the same doses, and control group (CP) received saline IV, instead of midazolam, before propofol. Supplementary boluses of propofol (0.5 mg kg?1) were administered to effect to all groups until orotracheal intubation was completed. Behaviour after midazolam administration, quality of sedation and induction, and ease of intubation were scored. Heart rate (HR), respiratory rate, and systolic arterial blood pressure were recorded before premedication, post‐premedication, after midazolam or saline administration, and at 0, 2, 5, and 10 minutes post‐intubation. End‐tidal CO2 and arterial oxygen haemoglobin saturation were recorded at 2, 5 and 10 minutes post‐intubation.ResultsQuality of sedation and induction, and ease of intubation were similar in all groups. Incidence of excitement was higher in the MP compared to CP (p = 0.014) and PM (p = 0.026) groups. Propofol requirements were decreased in MP and PM groups with respect to CP (p < 0.001), and in PM compared to MP (p = 0.022). The HR decreased after premedication in all groups, and increased after midazolam and subsequent times in MP (p = 0.019) and PM (p = 0.001) groups. Incidence of apnoea and paddling was higher in CP (p = 0.005) and MP (p = 0.031) groups than in PM.Conclusions and clinical relevanceAdministration of midazolam before propofol reduced propofol requirements although caused mild excitement in some dogs. Administration of propofol before midazolam resulted in less excitatory phenomena and greater reduction of propofol requirements.  相似文献   

14.
ObjectiveTo compare the effects of meloxicam or carprofen on glomerular filtration rate (GFR), and to evaluate the effect of meloxicam on urinary N-acetyl-β-D-glucosaminidase (NAG) activity, of cats after dental surgery.Study designRandomized, blinded, controlled trial.AnimalsA total of 24 mixed breed cats.MethodsCats were randomly assigned to one of three groups (n = 8 per group): meloxicam (0.2 mg kg–1); carprofen (4 mg kg–1); or saline (2 mL). Acepromazine (0.04 mg kg–1) and buprenorphine (0.02 mg kg–1) were administered intramuscularly as preanaesthetic medication. Test drugs were injected subcutaneously at the time of preanaesthetic medication. Anaesthesia was induced with intravenous propofol and maintained with isoflurane in oxygen. Mean arterial blood pressure (MAP), respiratory rate (fR), heart rate (HR) and haemoglobin oxygen saturation values (SpO2) were recorded. All cats underwent ultrasonic dental scaling with polishing. Teeth extraction involved mucosal flap creation, removal of alveolar bone and flap closure. Plasma iohexol clearance (ICL), a measure of GFR, was estimated before and 24 hours after anaesthesia induction in all cats. Urinary NAG index was estimated in saline and meloxicam groups at the same time points as GFR. Between-group and -time point differences in GFR and NAG index were compared using mixed model analyses. Data are presented as mean ± standard deviation (p < 0.05).ResultsThere was no significant difference in plasma ICL rate (range: from 1.22 ± 0.05 to 1.27 ± 0.04 mL kg minute–1) between groups or between time points. Urinary NAG index (range: from 1.0 ± 0.19 to 1.36 ± 0.29 Units gram–1) was not significantly different between meloxicam and saline groups. MAP, HR, fR and SpO2 did not differ significantly between groups.Conclusions and clinical relevanceMeloxicam and carprofen appeared to produce nonsignificant effects on GFR, and meloxicam did not affect the urinary NAG activity, of cats after dental surgery.  相似文献   

15.
ObjectiveTo evaluate the cardiorespiratory effects and plasma concentrations of medetomidine-midazolam-ketamine (MMK) combinations administered by intramuscular (IM) or subcutaneous (SC) injection in sable ferrets (Mustela putorius furo).Study designProspective randomized experimental study.AnimalsEighteen adult ferrets: weight median 1.19 (range 0.81–1.60) kg.MethodsAnimals were allocated to one of three groups: group IM07 received 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 7 mg kg?1 ketamine IM; group IM10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine IM; and group SC10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine SC. Following instrumentation, cardiorespiratory parameters and plasma drug concentrations were measured every 5 minutes (T5–T30) for 30 minutes Ferrets were then euthanased. Data were analysed using anova for repeated measures. p < 0.05 was considered significant.ResultsResults are mean ± SD. Induction of anaesthesia (minutes) in IM07 and IM10 [2 (1)] was significantly faster than in SC10 [5 (2)]. All groups demonstrated the following: results given as groups IM07, IM10 and SC10 respectively. Mean arterial blood pressures (mmHg) were initially high [186 (13); 174 (33) and 174 (9) at T5] but decreased steadily. Pulse rates were initially 202 (20), 213 (17) and 207 (33) beats minute?1, decreasing with time. PaO2 (mmHg) was low [54.0 (8), 47.7 (10) and 38.5 (1)] at T5, although in groups IM07 and IM10 it increased over time. Plasma concentrations of all drugs were highest at T5 (36, 794 and 8264 nmol L?1 for medetomidine, midazolam and ketamine, respectively) and decreased thereafter: for both midazolam and ketamine, concentrations in IM07 and IM10 were higher than SC10.Conclusions and clinical relevanceMMK combinations containing either 7 or 10 mg kg?1 ketamine and given IM are suitable combinations for anaesthetising ferrets, although the observed degree of hypoxaemia indicates that oxygen administration is vital.  相似文献   

16.
ObjectiveTo compare the sedative and cardiopulmonary effects of intranasal (IN) and intramuscular (IM) administration of dexmedetomidine and midazolam combination in New Zealand White rabbits.Study designA randomized, crossover experimental study.AnimalsA total of eight healthy New Zealand White rabbits, aged 6–12 months, weighing 3.1 ± 0.3 kg (mean ± standard deviation).MethodsThe animals were randomly assigned to administration of dexmedetomidine (0.1 mg kg–1) with midazolam (2 mg kg–1) by either IN or IM route separated by 2 weeks. The electrocardiogram, pulse rate (PR), peripheral haemoglobin oxygen saturation (SpO2), mean noninvasive arterial pressure (MAP), respiratory frequency (fR) and rectal temperature were measured before drug administration (baseline), T0 (onset of sedation) and at 5 minute intervals until recovery. The onset of sedation, duration of sedation and sedation score (SS) were also recorded.ResultsThe PR was significantly lower in treatment IM than in treatment IN over time (p = 0.027). MAP < 60 mmHg developed in two and four rabbits in treatments IN and IM, respectively. SpO2 progressively decreased over time in both treatments. fR was lower than baseline at several time points in both treatments. Onset of sedation was shorter in treatment IN (90 ± 21 seconds) than in treatment IM (300 ± 68 seconds) (p = 0.036). Duration of sedation was longer in treatment IM (55.2 ± 8.7 minutes) than in treatment IN (39.6 ± 2.1 minutes) (p = 0.047). No significant difference in SS was observed between treatments (p > 0.05).Conclusions and clinical relevanceCombination of dexmedetomidine (0.1 mg kg–1) and midazolam (2 mg kg–1) decreased fR, PR and SpO2 regardless of the administration route in New Zealand White rabbits. A more rapid action and shorter duration of sedation were observed after treatment IN than after treatment IM administration.  相似文献   

17.
ObjectiveThe aim of the present study was to compare intranasal (INS) and intramuscular (IM) routes of administration of a ketamine-midazolam combination in cats.Study designRandomized block design.AnimalsTwelve healthy mixed breed cats (six males and six females).MethodsThe drug combination was ketamine (14 mg kg−1) and midazolam (0.5 mg kg−1). In the IM group, drugs were injected into quadratus femoris muscle; in the INS. group, the combination dropped equally into the two nostrils. Pulse and respiratory rates, peripheral haemoglobin oxygen saturation (SpO2) and rectal temperature were monitored before and at intervals after drug administration. Time to onset and duration of sedation and, during recovery to head up, sternal recumbency and recovery were recorded.ResultsThere were no significant differences between the groups in any time measured except for recovery to sternal recumbency, where time was lower in the INS than in the IM (p = 0.034). Respiratory rate was greater in the INS than in the IM group (p = 0.029), but there was no difference between groups in other physiological parameters. In both groups SpO2 was low before and fell further during sedation.ConclusionsThe results substantiated that INS ketamine-midazolam can produce effective sedation in cats.Clinical relevanceIntranasal (INS) administration of ketamine-midazolam is atraumatic, and its use may avoid the pain of injection of ketamine combinations when this drug is used to induce sedation in cats.  相似文献   

18.
Dexmedetomidine is an alpha-2 adrenoceptor agonist, and vatinoxan is an alpha-2 antagonist believed to poorly cross the blood–brain barrier in cats. Dexmedetomidine–vatinoxan combinations are of interest in anesthetized cats because the anesthetic sparing effect of dexmedetomidine may be preserved while vatinoxan attenuates the adverse cardiovascular effects of dexmedetomidine. The aim of this study was to characterize the pharmacokinetics of dexmedetomidine in cats during administration of isoflurane and vatinoxan. Six healthy adult male castrated cats were anesthetized with isoflurane in oxygen. Vatinoxan was administered using a target-controlled infusion system intended to maintain a plasma concentration of 4 µg/ml. Dexmedetomidine, 35 µg/kg was administered intravenously over 5 min. Plasma dexmedetomidine and vatinoxan concentrations were measured at selected time points ranging from prior to 8 hr after dexmedetomidine administration using liquid chromatography/tandem mass spectrometry. Compartment models were fitted to the time-concentration data using nonlinear mixed-effect modeling. A three-compartment model best fitted the data. Typical value (% interindividual variability) for the three-compartment volumes (ml/kg), the metabolic clearance and the two intercompartment distribution clearances (ml min−1kg−1) were 168 (259), 318 (35), 1,425 (18), 12.4 (31), 39.1 (18), and 29.6 (17), respectively. Mean ± standard deviation plasma vatinoxan concentration was 2.6 ± 0.6 µg/ml.  相似文献   

19.
ObjectiveTo determine the effect of intravenous vatinoxan administration on bradycardia, hypertension and level of anaesthesia induced by medetomidine–tiletamine–zolazepam in red deer (Cervus elaphus).Study design and animalsA total of 10 healthy red deer were included in a randomised, controlled, experimental, crossover study.MethodsDeer were administered a combination of 0.1 mg kg–1 medetomidine hydrochloride and 2.5 mg kg–1 tiletamine–zolazepam intramuscularly, followed by 0.1 mg kg–1 vatinoxan hydrochloride or equivalent volume of saline intravenously (IV) 35 minutes after anaesthetic induction. Heart rate (HR), mean arterial blood pressure (MAP), respiration rate (fR), end-tidal CO2 (Pe′CO2), arterial oxygen saturation (SpO2), rectal temperature (RT) and level of anaesthesia were assessed before saline/vatinoxan administration (baseline) and at intervals for 25 minutes thereafter. Differences within treatments (change from baseline) and between treatments were analysed with linear mixed effect models (p < 0.05).ResultsMaximal (81 ± 10 beats minute–1) HR occurred 90 seconds after vatinoxan injection and remained significantly above baseline (42 ± 4 beats minute–1) for 15 minutes. MAP significantly decreased from baseline (122 ± 10 mmHg) to a minimum MAP of 83 ± 6 mmHg 60 seconds after vatinoxan and remained below baseline until end of anaesthesia. HR remained unchanged from baseline (43 ± 5 beats minute–1) with the saline treatment, whereas MAP decreased significantly (112 ± 16 mmHg) from baseline after 20 minutes. Pe′CO2, fR and SpO2 showed no significant differences between treatments, whereas RT decreased significantly 25 minutes after vatinoxan. Level of anaesthesia was not significantly influenced by vatinoxan.Conclusions and clinical relevanceVatinoxan reversed hypertension and bradycardia induced by medetomidine without causing hypotension or affecting the level of anaesthesia in red deer. However, the effect on HR subsided 15 minutes after vatinoxan IV administration. Vatinoxan has the potential to reduce anaesthetic side effects in non-domestic ruminants immobilised with medetomidine–tiletamine–zolazepam.  相似文献   

20.
ObjectiveTo determine the alfaxalone dose reduction during total intravenous anaesthesia (TIVA) when combined with ketamine or midazolam constant rate infusions and to assess recovery quality in healthy dogs.Study designProspective, blinded clinical study.AnimalsA group of 33 healthy, client-owned dogs subjected to dental procedures.MethodsAfter premedication with intramuscular acepromazine 0.05 mg kg-1 and methadone 0.3 mg kg-1, anaesthetic induction started with intravenous alfaxalone 0.5 mg kg-1 followed by either lactated Ringer’s solution (0.04 mL kg-1, group A), ketamine (2 mg kg-1, group AK) or midazolam (0.2 mg kg-1, group AM) and completed with alfaxalone until endotracheal intubation was achieved. Anaesthesia was maintained with alfaxalone (6 mg kg-1 hour-1), adjusted (±20%) every 5 minutes to maintain a suitable level of anaesthesia. Ketamine (0.6 mg kg-1 hour-1) or midazolam (0.4 mg kg-1 hour-1) were employed for anaesthetic maintenance in groups AK and AM, respectively. Physiological variables were monitored during anaesthesia. Times from alfaxalone discontinuation to extubation, sternal recumbency and standing position were calculated. Recovery quality and incidence of adverse events were recorded. Groups were compared using parametric analysis of variance and nonparametric (Kruskal-Wallis, Chi-square, Fisher’s exact) tests as appropriate, p < 0.05.ResultsMidazolam significantly reduced alfaxalone induction and maintenance doses (46%; p = 0.034 and 32%, p = 0.012, respectively), whereas ketamine only reduced the alfaxalone induction dose (30%; p = 0.010). Recovery quality was unacceptable in nine dogs in group A, three dogs in group AK and three dogs in group AM.Conclusions and clinical relevanceMidazolam, but not ketamine, reduced the alfaxalone infusion rate, and both co-adjuvant drugs reduced the alfaxalone induction dose. Alfaxalone TIVA allowed anaesthetic maintenance for dental procedures in dogs, but the quality of anaesthetic recovery remained unacceptable irrespective of its combination with ketamine or midazolam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号