首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands.  相似文献   

2.
The main purpose of this study was to explore the dynamic changes of greenhouse gas(GHG)from grasslands under different degradation levels during the growing seasons of Inner Mongolia, China.Grassland degradation is associated with the dynamics of GHG fluxes, e.g., CO_2, CH_4 and N_2O fluxes. As one of the global ecological environmental problems, grassland degradation has changed the vegetation productivity as well as the accumulation and decomposition rates of soil organic matter and thus will influence the carbon and nitrogen cycles of ecosystems, which will affect the GHG fluxes between grassland ecosystems and the atmosphere. Therefore, it is necessary to explore how the exchanges of CO_2,CH_4 and N_2O fluxes between soil and atmosphere are influenced by the grassland degradation. We measured the fluxes of CO_2, CH_4 and N_2O in lightly degraded, moderately degraded and severely degraded grasslands in Inner Mongolia of China during the growing seasons from July to September in 2013 and 2014. The typical semi-arid grassland of Inner Mongolia plays a role as the source of atmospheric CO_2 and N_2O and the sink for CH_4. Compared with CO_2 fluxes, N_2O and CH_4 fluxes were relatively low. The exchange of CO_2, N_2O and CH_4 fluxes between the grassland soil and the atmosphere may exclusively depend on the net exchange rate of CO_2 in semi-arid grasslands. The greenhouse gases showed a clear seasonal pattern, with the CO_2 fluxes of –33.63–386.36 mg/(m·h), CH_4 uptake fluxes of 0.113–0.023 mg/(m·h) and N_2O fluxes of –1.68–19.90 μg/(m·h). Grassland degradation significantly influenced CH_4 uptake but had no significant influence on CO_2 and N_2O emissions. Soil moisture and temperature were positively correlated with CO_2 emissions but had no significant effect on N_2O fluxes.Soil moisture may be the primary driving factor for CH_4 uptake. The research results can be in help to better understand the impact of grassland degradation on the ecological environment.  相似文献   

3.
The variation in soil organic carbon density(SOCD) has been widely documented at various spatial and temporal scales. However, an accurate method for examining the attribution of explanatory factors for change in SOCD is still lacking. This study aims to attribute and quantify the key climatic factors, anthropogenic activities, and soil properties associated with SOCD change in the native grasslands of Inner Mongolia, China, by comparing data between the 1960s and the 2010s. In 2007 and 2011, we resampled 142 soil profiles which were originally sampled during 1963–1964 in the native grasslands of Inner Mongolia. SOCD was determined in A horizon(eluvial horizon) of the soil. We selected the explanatory factors based on a random forest method, and explored the relationships between SOCD change and each of the explanatory factors using a linear mixed model. Our results indicated that the change in SOCD varied from the east to the west of Inner Mongolia, and SOCD was 18% lower in the 2010s than in the 1960s. The lower SOCD in the 2010s may primarily be attributed to the increasing in mean annual water surface evaporation, which explained approximately 10% and 50% of the total variation and explainable variation in the change in SOCD, respectively. The sand content of the soil is also a significant explanatory factor for the decrease in SOCD, which explained about 4% and 21% of the total variation and explainable variation in the change in SOCD, respectively. Furthermore, the collection of quantitative information on grazing frequency and duration may also help to improve our understanding of the anthropogenic factors that govern the change in SOCD.  相似文献   

4.
Quantitative information on the fate and efficiency of nitrogen (N) fertilizer applied to coarse textured calcareous soils in arid farming systems is scarce but, as systems intensify, is essential to support sustainable agronomic management decisions. A mesh house study was undertaken to trace the fate of N fertilizer applied to cotton (Gossypium hirsutum L. cv., Huiyuan701) growing on a reconstructed profile (0-100 cm) of a calcareous (>15% CaCO 3 ) sandy loam soil. Two irrigation methods (drip irrigation, DI; and furrow irrigation, FI) and four N application rates (0, 240, 360 and 480 kg/hm 2 , abbreviated as N 0 , N 240 , N 360 , and N 480 , respectively) were applied. 15 N-labelled urea fertilizer was applied in a split application. DI enhanced the biomass of whole plant and all parts of the plant, except for root; more fertilizer N was taken up and mostly stored in vegetative parts; N utilization efficiency (NUE) was significantly greater than in FI. N utilization efficiency (NUE) decreased from 52.59% in N 240 to 36.44% in N 480 . N residue in soil and plant N uptake increased with increased N dosage, but recovery rate decreased consistently both in DI and FI. Plant N uptake and soil N residue were greater in DI than in FI. N residue mainly stayed within 0-40 cm depth in DI but within 40-80 cm depth in FI. FI showed 17.89% of N leached out, but no N leaching occurred in DI. N recovery rate in the soil-plant system was 75.82% in DI, which was markedly greater than the 55.97% in FI. DI exhibited greater NUE, greater residual N in the soil profile and therefore greater N recovery rate than in FI; also, N distribution in soil profile shallowed in DI, resulting in a reduced risk of N leaching compared to FI; and enhanced shoot growth and reduced root growth in DI is beneficial for more economic yield formation. Compared to furrow irrigation, drip irrigation is an irrigation method where N movement favors the prevention of N from being lost in the plant-soil system and benefits a more efficient use of N.  相似文献   

5.
草原植被-土壤的关系及对干扰响应差异研究   总被引:2,自引:0,他引:2  
草原土壤跟植被有密切的关系,它们之间的关系对草地的退化和恢复机制研究十分重要。通过对内蒙古草原区(主要是典型草原)具有不同群落特征的14个样点进行植被与土壤调查,分析植被群落数量特征与土壤理化指标之间的相关关系,探讨围封与放牧作用下植被、土壤响应差异。结果表明:群落地下生物量、群落盖度、单位面积物种数与土壤有机碳、全氮含量均呈显著正相关关系(p<0.05),与土壤容重呈显著负相关关系(p<0.05)。土壤全磷含量与群落地下生物量和群落盖度存在显著正相关关系(p<0.05),而与单位面积物种数相关不显著。由于地上现存生物量受随机放牧和围封的影响较大,与土壤各项指标之间相关不显著。在围封26年、7年、2年和自由放牧4个样地中,土壤各指标除表层容重变化显著外,土壤粒径组成和有机碳、全氮、全磷含量变化均不明显(P>0.05),但4个样地在群落盖度、高度、生物量、群落物种数量、丰富度指数、多样性指数等群落数量特征上均呈现显著差异(P<0.05)。基于上述研究结果讨论了植被与土壤之间的关系,并提出了人为驱动力作用下草原植被-土壤响应差异的概念模型。  相似文献   

6.
为研究内蒙古典型草原不同放牧强度植被反射光谱与植被参数和蝗虫密度的关系,使用地物波谱仪于2015年和2016年对5个放牧梯度,共20hm~2样地进行调查研究。结果表明,不同放牧强度植被地上总生物量与归一化植被指数(NDVI)关系为y=0.034 8+0.002 9x(R~2=0.645 5,P=0.000 2),蝗虫密度与NDVI线性关系为y=0.067+0.013x(R~2=0.415,P=0.006)。对其进行冗余分析(RDA)发现,植被地上总生物量、植物高度、糙隐子草生物量是蝗虫数量和NDVI变化的主要影响因子,其中植被地上总生物量是显著性影响因子(P=0.001)。在不同放牧强度下蝗虫密度与草地NDVI显著相关(P0.05),随NDVI增大而增多。本文研究结果为进一步开展放牧区蝗灾遥感监测和科学合理地利用草地资源奠定了基础。  相似文献   

7.
Atmospheric nitrogen (N) deposition has been poorly documented in northern China, an intensive agricultural and industrial region with large emissions of NHx and NOy. To quantify N deposition, total airborne N deposition was determined at three agricultural sites using a manual integrated total nitrogen input (ITNI) system during growth of winter wheat (Triticum aestivum L.) and Italian ryegrass (Lolium multiflorum Lam.) from September 2005 to May 2006. Total estimated N deposition averaged 54.9 and 43.2 kg N/hm2 across the three sites when wheat was grown to flowering and maturing, respectively. The average value was 50.2 kg N/hm2 when ryegrass was the indicator plant. Both indicator species gave similar total airborne N input results. The intermediate level of N supplied resulted in the highest N deposition, and the ratio of N acquired from deposition to total N content of the whole system decreased with increasing N supply to the roots. The contribution of atmospheric N to the total N content of the wheat and ryegrass sand culture systems ranged from 10% to 24%.  相似文献   

8.
Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposition and,ultimately, affect ecosystem C storage and nutrient status. Temperate grassland ecosystems in China are usually N-deficient and particularly sensitive to the changes in exogenous N additions. In this paper, we conducted a 1,200-day in situ experiment in a typical semi-arid temperate steppe in Inner Mongolia to investigate the litter decomposition as well as the dynamics of litter C and N concentrations under three N addition levels(low N with 50 kg N/(hm2?a)(LN), medium N with 100 kg N/(hm2?a)(MN), and high N with 200 kg N/(hm2?a)(HN)) and three N addition forms(ammonium-N-based with 100 kg N/(hm2?a) as ammonium sulfate(AS), nitrate-N-based with 100 kg N/(hm2?a) as sodium nitrate(SN), and mixed-N-based with 100 kg N/(hm2?a) as calcium ammonium nitrate(CAN)) compared to control with no N addition(CK). The results indicated that the litter mass remaining in all N treatments exhibited a similar decomposition pattern: fast decomposition within the initial 120 days, followed by a relatively slow decomposition in the remaining observation period(120–1,200 days). The decomposition pattern in each treatment was fitted well in two split-phase models, namely, a single exponential decay model in phase I(〈398 days) and a linear decay function in phase II(≥398 days). The three N addition levels exerted insignificant effects on litter decomposition in the early stages(〈398 days, phase I; P〉0.05). However, MN and HN treatments inhibited litter mass loss after 398 and 746 days, respectively(P〈0.05). AS and SN treatments exerted similar effects on litter mass remaining during the entire decomposition period(P〉0.05). The effects of these two N addition forms differed greatly from those of CAN aft  相似文献   

9.
短花针茅荒漠草原土壤种子库对不同放牧强度的响应   总被引:1,自引:0,他引:1  
在内蒙古短花针茅荒漠草原,采用野外随机定点取样与室内萌发相结合的方法,对不同放牧强度下围封草地土壤种子库的密度、垂直结构、多样性、丰富度、均匀度、以及种子库与地上植被的相似性进行了研究。结果表明,在各试验区土壤种子库主要分布在0~20cm土层,占种子库总密度的87%~96%;随着放牧强度的增加,土壤种子库总密度减少,同时地上植被与土壤种子库的相似物种数减少,种子库组成的相异性增加;轻度放牧对土壤种子库中一二年生草本所占比例影响较小,而中度和重度放牧使土壤种子库中一二年生草本所占比例增加;土壤种子库的物种丰富度、多样性、均匀度均随放牧强度的增加而减小。  相似文献   

10.
以内蒙古克什克腾旗西部的典型草原为研究对象,根据对草原利用强度的不同,将其划分三个不同区域,研究了各区域土壤中微生物数量、微生物生物量和土壤呼吸强度的季节动态以及利用强度对他们的影响.结果表明:微生物数量、微生物生物量以及土壤的呼吸作用强度均有较明显的季节性变化,且峰值都出现在8月份.三者之间具有极显著的正相关关系;轻...  相似文献   

11.
Drought-prone grasslands provide a critical resource for the millions of people who are dependent on livestock for food security.However,this ecosystem is potentially vulnerable to climate change(e.g.,precipitation)and human activity(e.g.,grazing).Despite this,the influences of precipitation and grazing on ecological functions of drought-prone grasslands in the Tianshan Mountains remain relatively unexplored.Therefore,we conducted a systematic field investigation and a clipping experiment(simulating different intensities of grazing)in a drought-prone grassland on the northern slopes of the Tianshan Mountains in China to examine the influences of precipitation and grazing on aboveground biomass(AGB),soil volumetric water content(SVWC),and precipitation use efficiency(PUE)during the period of 2014–2017.We obtained the meteorological and SVWC data using an HL20 Bowen ratio system and a PR2 soil profile hydrometer,respectively.We found that AGB was clearly affected by both the amount and seasonal pattern of precipitation,and that PUE may be relatively low in years with either low or excessive precipitation.The PUE values were generally higher in the rapid growing season(April–July)than in the entire growing season(April–October).Overall,moderate grazing can promote plant growth under water stress conditions.The SVWC value was higher in the clipped plots than in the unclipped plots in the rapid growing season(April–July),but it was lower in the clipped plots than in the unclipped plots in the slow growing season(August–October).Our findings can enhance the understanding of the ecological effects of precipitation and grazing in drought-prone grasslands and provide data that will support the effective local grassland management.  相似文献   

12.
通过田间定位试验研究秸秆覆盖条件下施氮量对小麦氮素吸收利用及土壤硝态氮残留的影响.试验包括覆盖(不覆盖和秸秆覆盖4500 kg/hm2)和施氮量(0,75,150,225和300 kg N/hm2)两个因素,共10个处理,重复3次.3年结果表明:秸秆覆盖对冬小麦吸氮量没有显著影响,但在偏旱年份,秸秆覆盖有利于提高氮肥利用效率.与不覆盖类似,秸秆覆盖冬小麦吸氮量在3年间呈持续增加趋势.不论秸秆覆盖还是不覆盖,施氮量小于等于150 kg/hm2时,对土壤硝态氮残留量均没有显著影响;施氮量高于150 kg/hm2时,土壤残留硝态氮量则显著增加,0~200 cm剖面出现明显的累积峰,秸秆覆盖土壤残留硝态氮累积峰较不覆盖处理深40 cm左右.  相似文献   

13.
WU Yan 《干旱区科学》2019,11(6):904-915
Excessive fertilization combined with unreasonable irrigation in farmland of the Hetao Irrigation Area (HIR), China, has resulted in a large amount of nitrogen (N) losses and agricultural non-point source pollution. Application of soil amendments has become one of the important strategies for reducing N losses of farmland. However, there is still no systematic study on the effects of various soil amendments on N losses in the HIR. In this study, three types of soil amendments (biochar, bentonite and polyacrylamide) were applied in a maize-wheat rotation system in the HIR during 2015-2017. Yields of maize and wheat, soil NH3 volatilization, N2O emission and NO3- leaching were determined and soil N balance was estimated. The results showed that applications of biochar, bentonite and polyacrylamide significantly increased yields of maize by 9.2%, 14.3% and 13.3%, respectively, and wheat by 9.2%, 16.6% and 12.3%, respectively, compared with the control (fertilization alone). Applications of biochar, bentonite and polyacrylamide significantly reduced soil N leaching by 23.1%, 35.5% and 27.1%, soil NH3-N volatilization by 34.8%, 52.7% and 37.8%, and soil N surplus by 23.9%, 37.4% and 30.6%, respectively. Applications of bentonite and polyacrylamide significantly reduced N2O-N emissions from soil by 37.3% and 35.8%, respectively, compared with the control. Compared with application of biochar, applications of bentonite and polyacrylamide increased yields of maize and wheat by 5.1% and 3.5%, respectively. Our results suggest that soil amendments (bentonite and polyacrylamide) can play important roles in reducing N losses and increasing yield for the maize-wheat rotation system in the HIR, China.  相似文献   

14.
为探明不同水氮组合对复播大豆干物质积累、氮素吸收及产量的影响,于2013年7—10月在新疆伊宁县进行了不同滴灌量与施氮量的裂区田间试验。滴灌量为主因子,分设3 000 m3·hm-2(W1)、3 600 m3·hm-2(W2)、4 200 m3·hm-2(W3)、4 800 m3·hm-2(W4)四个灌水梯度;施氮量为副因子,设0 kg·hm-2(N0)、150 kg·hm-2(N1)、300 kg·hm-2(N2)三个水平。结果表明:同一施氮量条件下,随着滴灌量的增加各施氮处理干物质积累平均速率、干物质积累持续时间及氮素吸收量基本表现为"先增后降"的趋势,且均在W3处理(4 200 m3·hm-2)达到最大;在低水量(W1)条件下增加氮肥的投入,有利于增加复播大豆干物质积累,提高复播大豆氮素吸收量,进而提高复播大豆产量,但降低了氮素籽粒生产效率;水分充足时适量增施氮肥能促进大豆干物质的积累,增加植株氮素的吸收量,增加氮素籽粒生产效率,而过量追施氮肥,阻碍根系吸收氮素进入植株体内,降低氮素的利用效率,且W3N1组合条件下,干物质积累量、植株氮素吸收量、产量均达到最大,产量达到3 741.23 kg·hm-2,分别比低水低肥处理(W1N0)、高水高肥处理(W4N2)增加了54.30%、17.02%。  相似文献   

15.
宁夏盐池沙地不同密度人工柠条林土壤水分时空变化分析   总被引:3,自引:0,他引:3  
对宁夏盐池退化沙地不同密度的人工柠条林地的土壤水分时空特征进行分析。结果表明:1)林下土壤体积含水量随着深度的增加呈先增大后降低的趋势,在垂直剖面上可分为土壤水分速变层(0-20cm)、活跃层(20-80cm)、相对稳定层(80-100cm);2)土壤水分季节动态变化可划分为:积累期(4-5月);消耗期(6-9月);稳定期(10月至次年4月)3个时期;3)土壤体积含水量随人工林密度增加呈下降趋势,2490丛/hm2和1665丛/hm2可作为该区人工柠条林调控密度的参考依据。  相似文献   

16.
以宁夏盐池县的荒漠草原区为试验地,以现场试验为手段,研究放牧强度(1.50只/hm2、0.75只/hm2、0.50只/hm2、0只/hm2)对荒漠草原植物群落结构及草地生产力的影响。结果表明:随着放牧强度的增加,植物群落优质牧草的重要值明显下降,毒草及家畜厌食植物的重要值明显上升;植物群落总盖度呈下降趋势,植物群落多样性呈现先增加后降低的趋势;草地生产力呈下降趋势,当放牧强度达到1.50只/hm2时,家畜的采食量超过了50%,草产量比封育地下降了54.9%。最后,根据草场资源可持续发展利用原则提出了宁夏荒漠草原合理的放牧强度以0.75只/hm2为宜。  相似文献   

17.
以科尔沁沙地小叶锦鸡儿群落为研究对象,对比分析了放牧干扰和不同封育年限下土壤种子库特征。结果表明:①放牧和封育样地土壤种子库均以一年生植物为主,物种丰富度没有明显差异;②放牧样地土壤种子库密度为(3 475±519)粒/m2,封育6年和封育12年样地土壤种子库密度分别为(20 241±1 714)粒/m2和(28 777±3 946)粒/m2,显著高于放牧样地;③Shannon-W iener多样性指数、S impson多样性指数和P ielou均匀度指数在放牧样地分别为1.36,0.68和0.56,并随着封育年限的增加而降低;④放牧和封育样地土壤种子库主要分布于0~2 cm的土壤表层,封育样地各层的种子库密度均显著高于放牧样地;⑤放牧和封育样地土壤种子库均为聚集分布,但放牧样地种子库的空间异质性高于封育样地。  相似文献   

18.
放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响   总被引:2,自引:0,他引:2  
以内蒙古阿拉善盟荒漠草地为研究对象,分析了不同放牧强度对土壤理化性质、团聚体组成、养分含量及其稳定性的影响。结果表明:与轻度放牧相比,重度放牧使0~5 cm、5~10 cm和10~20 cm土层土壤有机C和全N含量显著降低,土壤容重显著增加;各土层中土壤团聚体以0.053~0.25 mm粒径为主,放牧强度的增加造成土壤团聚体平均重量直径(MWD)和几何平均直径(GMD)值降低,分形维数(D)值升高,土壤团聚体结构遭受破坏,稳定性降低,导致土壤团聚体由大粒径团聚体(0.25~2 mm)向小粒径团聚体(0.053~0.25 mm、<0.053 mm)转变;重度放牧使土壤团聚体的C/N值升高,造成有效养分难以释放,植物所需养分亏缺。说明重度放牧是造成阿拉善盟荒漠草地退化的重要因素。  相似文献   

19.
2009年8月至2010年3月在乌鲁木齐市及城郊,通过大气颗粒物采样器、气体被动采样器对大气氮素干沉降进行连续性监测。结果表明:除NH3浓度值ISFR(土肥所)高于XIEG(生地所)外,其他活性氮成分的浓度XIEG均大于ISFR。NO2-N,NH3-N(气态),PNO 3--N,PNH 4+-N(气溶胶态)和PM10(...  相似文献   

20.
Land use change significantly influences soil properties.There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties.We compared soil carbon(C) and nitrogen(N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia.Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland.The results showed that soil C and N storage,soil texture,and soil nutrient contents varied with land use types and cropland ages(P<0.01).In the 0-30 cm soil layer,the soil organic carbon(SOC) density was significantly lower in the croplands(3.28 kg C/m2 for C50 soil) than in the grasslands(6.32 kg C/m2).After 5,10,15,20,35,and 50 years of crop planting(years since the onset of cultivation),the SOC losses were 17%,12%,19%,47%,46%,and 48%,respectively,compared with the grasslands.The soil total nitrogen(TN) density of the grasslands was 65 g N/m2,and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting.Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age(P<0.0001,R2=0.8528;P<0.0001,R2=0.9637).The dissolved organic carbon(DOC) content,soil available potassium(AK) content,clay content,and pH value were decreased;and the soil bulk density and sand content were increased since the conversion of grassland into cropland during the 50-year period.Our results show soil nutrients were higher in grassland than in cropland.The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties.The reclamation time of cultivated soil(cropland age) had significant effects on soil properties in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号