首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
磺草酮在土壤中的淋溶特性研究   总被引:4,自引:4,他引:0  
基于所建立的土壤中磺草酮残留的超高效液相色谱-串联质谱分析方法,通过土壤薄层层析试验研究了磺草酮在中国3种典型土壤中的淋溶特性。结果表明:添加水平为1和10 mg/kg时,磺草酮在土壤中的添加回收率为80%~104%,相对标准偏差为1.2%~8.1%,最低检测浓度为0.1 mg/kg。磺草酮在河北潮土、湖南红土和吉林黑土中的比移值(Rf)分别为0.563、0.101和0.422,其在潮土和黑土中的移动性为中等,在红土中为不易移动;磺草酮在土壤中的淋溶特性与土壤理化性质密切相关,主要影响因素是土壤p H值及黏粒组分含量。  相似文献   

2.
土壤中苯肽胺酸的测定及淋溶特性研究   总被引:1,自引:1,他引:0  
建立了反相条件下超高效液相色谱-串联质谱(UPLC-MS/MS)检测土壤中苯肽胺酸残留量的分析方法,并结合土壤薄层层析试验研究了苯肽胺酸在3种典型土壤(黑土、水稻土和红土)中的淋溶特性。结果表明:添加水平为0.1、1和10 mg/kg时,苯肽胺酸在土壤中的添加回收率为77.3%~99.4%,相对标准偏差(RSD)为1.3%~11.4%;其在3种土壤中的检出限(LOD)均低于1.0μg/kg。苯肽胺酸在吉林黑土中的比移值(Rf)为0.83,其移动性为可移动;在江苏水稻土中的Rf值为0.61,在湖南红土中的Rf值为0.62,移动性均为中等。  相似文献   

3.
特丁硫磷在环境中的迁移性研究   总被引:2,自引:1,他引:1  
采用室内模拟试验方法,研究了有机磷类农药特丁硫磷在不同环境介质中的挥发性以及在3种不同类型土壤中的吸附性、移动性及其影响因素。结果表明:特丁硫磷具有较强的挥发性,其在空气、土壤表面和水中的挥发率分别为87.1%、38.6%和2.51%;在江西红壤、太湖水稻土与东北黑土中的吸附性较好地符合Freundlich方程,3种土壤中的吸附系数Kd值分别为6.56、11.34和15.80;薄层层析试验显示,当溶剂展开至12.0 cm时,特丁硫磷在江西红壤、太湖水稻土与东北黑土中最远可分别移至6~8、4~6和6~8 cm处,土柱试验结果显示,江西红壤、太湖水稻土与东北黑土淋出液中特丁硫磷质量分数分别为5.77%、1.13%和1.22%,表明特丁硫磷具有一定的移动性。影响特丁硫磷在土壤中吸附性和移动性的主要因素为土壤有机质含量,其次为土壤质地。特丁硫磷具有高挥发性及一定的移动性,其对人畜的安全以及地下水的危害应引起高度重视。  相似文献   

4.
为合理评估除草剂异唑草酮的环境风险,在实验室模拟条件下,研究了异唑草酮在土壤 (红壤土)表面光解以及在不同质地土壤 (潮土、水稻土和红壤土) 中的降解和淋溶特性。结果表明:异唑草酮在土壤表面的光解遵循一级反应动力学方程ct = 4.23e–0.008t (r = 0.937),半衰期为82.5 h;其在潮土、水稻土和红壤土中的降解均符合一级动力学方程,好氧条件下,异唑草酮在3种土壤中的降解半衰期分别为10.5、43.3和139 h,厌氧条件下的降解半衰期分别为19.4、18.4和158 h;其在潮土、水稻土和红壤土中的淋溶系数 (Rf) 分别为0.417 0、0.083 3和0.083 3。研究表明:异唑草酮在土壤表面光解速率较慢,而在土壤中好氧及厌氧条件下降解速率均较快,残留期短;其在土壤中淋溶性较弱,不易对周围环境及地下水造成污染风险。  相似文献   

5.
为合理评估除草剂异(口恶)唑草酮的环境风险,在实验室模拟条件下,研究了异(口恶)唑草酮在土壤(红壤土)表面光解以及在不同质地土壤(潮土、水稻土和红壤土)中的降解和淋溶特性。结果表明:异(口恶)唑草酮在土壤表面的光解遵循一级反应动力学方程c_t=4.23e~(–0.008t) (r=0.937),半衰期为82.5 h;其在潮土、水稻土和红壤土中的降解均符合一级动力学方程,好氧条件下,异(口恶)唑草酮在3种土壤中的降解半衰期分别为10.5、43.3和139 h,厌氧条件下的降解半衰期分别为19.4、18.4和158 h;其在潮土、水稻土和红壤土中的淋溶系数(R_f)分别为0.417 0、0.083 3和0.083 3。研究表明:异(口恶)唑草酮在土壤表面光解速率较慢,而在土壤中好氧及厌氧条件下降解速率均较快,残留期短;其在土壤中淋溶性较弱,不易对周围环境及地下水造成污染风险。  相似文献   

6.
七种农药在3种不同类型土壤中的吸附及淋溶特性   总被引:5,自引:3,他引:2  
采用振荡平衡法和土柱淋溶法研究了2,4-滴酸、丁噻隆、毒草胺、炔草酸、氟环唑、甲基磺草酮和烯啶虫胺7种农药在江西红壤、太湖水稻土及东北黑土3种不同理化性质土壤中的吸附及淋溶特性,探讨了农药性质及土壤理化性质对供试农药在土壤中吸附、淋溶行为的影响。结果表明:农药的水溶性越大,其在土壤中的吸附性越弱,淋溶性越强;农药在土壤中的吸附性与土壤pH值、有机质含量以及阳离子交换量之间有较好的相关性。土壤pH值、有机质含量以及农药性质是影响农药在土壤中淋溶及迁移的主要因素。  相似文献   

7.
灭线磷在3种土壤中移动性的研究   总被引:1,自引:0,他引:1  
土壤薄层层析法试验结果表明:灭线磷在3种土壤中的Rf值大小为:广东红土>山东砂壤土>东北黑土;移动速率m为山东砂壤土>东北黑土>广东红土。灭线磷在东北黑土中为不移动农药,在广东红土和山东砂壤土中为不易移动农药。土壤柱法结果与土壤薄层层析法结果相似,在渗透水中有很少量的灭线磷存在。  相似文献   

8.
采用土柱淋溶法和气相色谱法研究了3种拟除虫菊酯类农药三氟氯氰菊酯、联苯菊酯和高效氯氰菊酯在热带地区主要土壤类型砂土和壤土中的淋溶特性。结果表明:3种拟除虫菊酯类农药在砂土和壤土中主要残留于第1段土壤 (0~5 cm) 中,且驻留量随土壤深度增大而减少。三氟氯氰菊酯、高效氯氰菊酯和联苯菊酯在砂土中的Ri值分别为52.86%、94.73%和83.19%,在壤土中的Ri值分别为54.70%、77.28%和55.33%,均大于50%。根据农药在土壤中的淋溶性等级划分标准,3种药剂均属于难淋溶农药,不易对地下水造成污染。本研究结果可为热带地区土壤和地下水中农药污染修复提供参考。  相似文献   

9.
建立测定马铃薯,马铃薯植株及土壤中噁唑菌酮残留量的高效液相色谱串联质谱法(HPLC-MS/MS),研究了噁唑菌酮在马铃薯和土壤中的消解动态。结果表明噁唑菌酮在马铃薯、马铃薯植株和土壤中的平均回收率分别为91.3%~95.3%,83.7%~101.7%和83.3%~95.0%,相对标准偏差(RSD)分别为5.2%~12.4%,4.0%~6.3%和2.6%~10.5%。噁唑菌酮在马铃薯植株中的消解半衰期为6.4~11.9d;在土壤中的消解半衰期为7.1~8.7d,属于易降解农药。该方法简单可靠,符合农药残留分析要求,可用于马铃薯和土壤中噁唑菌酮的残留检测。  相似文献   

10.
化学农药环境安全评价试验准则(续)   总被引:8,自引:3,他引:8  
3.1.6 土壤淋溶作用试验在农业上使用的农药,都要提供淋溶特性资料。淋溶作用与吸附作用密切相关,可利用吸附常数估计农药在土壤中的移动性。淋溶试验可用土壤柱淋溶法或土壤薄层层析法测定。用土壤柱淋溶法测定时,对易降解的农药,最好同时测定降解作用。试验时可模拟农药使用地区的气温与降雨条件,并提供土  相似文献   

11.
农药在土壤中的吸附和淋溶特性是评价其环境行为的重要指标。采用批量平衡法和土柱淋溶法,研究了双氟磺草胺在小麦种植区3种代表性土壤中的吸附和淋溶特性。结果表明:双氟磺草胺在安徽黏土、山东砂质壤土和河南砂质黏壤土中的吸附规律均可以较好地用Freundlich方程描述,其吸附系数(Kf)在0.39~0.62之间;土壤有机碳归一化吸附系数(Koc)在66.91~81.35之间,表明双氟磺草胺在3种土壤中均属于难吸附型;吸附自由能(ΔG)在-10.90~-10.42kJ/mol之间,均属于物理吸附。双氟磺草胺在3种土壤中的淋出率在71.7%~74.1%之间,说明其在3种土壤中的淋溶性均较强。双氟磺草胺初始添加量和腐殖酸对淋出率具有一定影响。综合试验结果,认为双氟磺草胺在3种土壤中的吸附和淋溶可能受土壤有机质含量、黏粒含量、阳离子交换量和土壤pH值等多个因素的综合影响,其对地下水的污染风险较大,因此应引起高度重视。  相似文献   

12.
陈敏  刘茜  杨晓凤 《农药学学报》2021,23(4):771-780
建立了固相萃取结合气相色谱-串联质谱 (GC-MS/MS) 测定干辣椒中敌草腈、氟唑菌酰胺、氟吡菌胺、苯菌酮等50种农药残留量的方法。样品加水浸泡后用乙腈提取,加入氯化钠盐析并离心,取上清液经复合氨基柱净化,用乙酸乙酯定容至1.0 mL后,采用气相色谱-串联质谱法在多反应监测 (MRM) 模式下检测,基质匹配标准曲线外标法定量。结果表明:50种农药中,有46种农药在0.005~0.5 mg/L质量浓度范围内线性关系良好,R2 ≥ 0.99;定量限 (LOQ) 范围为0.01~0.1 mg/kg;在0.01、0.1和1.0 mg/kg 3个添加水平下46种农药在干辣椒中的平均回收率在72%~120%之间,相对标准偏差 (RSD) 在0.7%~17%之间。该方法简单、快速、高效,且灵敏度、准确度、精密度均可满足日常检测需求,适用于干辣椒样品中多农药残留的同时检测。  相似文献   

13.
The soil sorption coefficient Kd and the soil organic carbon sorption coefficient KOC of pesticides are basic parameters used by environmental scientists and regulatory agencies worldwide in describing the environmental fate and behavior of pesticides. They are a measure of the strength of sorption of pesticides to soils and other geosorbent surfaces at the water/solid interface, and are thus directly related to both environmental mobility and persistence. KOC is regarded as a 'universal' parameter related to the hydrophobicity of the pesticide molecule, which applies to a given pesticide in all soils. This assumption is known to be inexact, but it is used in this way in modeling and estimating risk for pesticide leaching and runoff. In this report we examine the theory, uses, measurement or estimation, limitations and reliability of these parameters and provide some 'rules of thumb' for the use of these parameters in describing the behavior and fate of pesticides in the environment, especially in analysis by modeling.  相似文献   

14.
BACKGROUND: Physically based tier‐II models may serve as possible alternatives to expensive field and laboratory leaching experiments required for pesticide approval and registration. The objective of this study was to predict pesticide fate and transport at five different sites in Hawaii using data from an earlier field leaching experiment and a one‐dimensional tier‐II model. As the predicted concentration profiles of pesticides did not provide close agreement with data, inverse modeling was used to obtain adequate reactive transport parameters. The estimated transport parameters of pesticides were also utilized in a tier‐I model, which is currently used by the state authorities to evaluate the relative leaching potential. RESULTS: Water flow in soil profiles was simulated by the tier‐II model with acceptable accuracy at all experimental sites. The observed concentration profiles and center of mass depths predicted by the tier‐II simulations based on optimized transport parameters provided better agreements than did the non‐optimized parameters. With optimized parameters, the tier‐I model also delivered results consistent with observed pesticide center of mass depths. CONCLUSION: Tier‐II numerical modeling helped to identify relevant transport processes in field leaching of pesticides. The process‐based modeling of water flow and pesticide transport, coupled with the inverse procedure, can contribute significantly to the evaluation of chemical leaching in Hawaii soils. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
单嘧磺酯在土壤中的淋溶特性研究   总被引:1,自引:0,他引:1  
建立了单嘧磺酯在土壤中的分析方法,并采用土壤薄层法研究了单嘧磺酯在我国具有代表性的3种土壤中的淋溶特性。结果表明,单嘧磺酯土壤中分析方法的回收率为77.7~105%,相对标准偏差为2.51~9.06%,最低检出浓度为0.218mg/kg。单嘧磺酯的土壤淋溶研究结果表明,单嘧磺酯在河南、内蒙古和云南土壤中的Rf值分别为0.75、0.75和0.59;在采集自河南和内蒙古的土壤中的移动性能为可移动;在采集自云南的土壤中的移动性能为中等移动。单嘧磺酯的土壤淋溶特性与土壤的理化性质密切相关。土壤pH越小、土壤粘粒含量越高,单嘧磺酯的土壤淋溶性越弱。  相似文献   

16.
微塑料可以吸附环境中的有机污染物,可能会影响农药在土壤中的降解、吸附和迁移等环境行为,其影响与微塑料和农药的类型有关。为明确微塑料对异菌脲在土壤中环境行为的影响,通过室内模拟试验,研究了聚酰胺 (PA) 和聚甲基丙烯酸甲酯 (PMMA) 微塑料对异菌脲在土壤中吸附、迁移、淋溶和降解的影响。研究结果表明:含2% (质量分数,下同) PMMA土壤和含2% PA土壤的土壤吸附常数 (Kf) 分别是对照土壤的2.9倍和1.2倍;在pH 4 ~ 7范围内,土壤对异菌脲的吸附容量随pH值的增加而增加;异菌脲在对照土壤、含2% PA土壤、含2% PMMA土壤中的比移值 (Rf) 分别为0.12、0.097和0.091,在第一段土柱中的含量分别为85.4%、100%和100%;异菌脲在对照土壤、含2% PA土壤和含2% PMMA土壤中的降解半衰期分别为19.8、26.7和40.8 d。研究表明,微塑料通过提高土壤对农药异菌脲的吸附能力,抑制了异菌脲在土壤中的迁移和淋溶,延长了其在土壤中的降解半衰期,因而可能会加剧其对表层土壤环境的威胁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号