首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actions of pyrethroid insecticides were tested on isolated giant axons of the cockroach Periplaneta americana, using oil-gap, single-fibre recording techniques. Current-clamp and voltage-clamp experiments were used to determine the actions of pyrethroids on axonal membrane potentials and ionic currents. Treatment with deltamethrin at micromolar concentrations caused gradual depolarisation of the axon accompanied by a reduction in amplitude of the action potential. This depolarisation was enhanced by an increase in stimulation frequency. Other synthetic pyrethroids: 3,4,5,6-tetrahydrophthalimidomethyl (1RS)-cis-3-[(RS)-2,2-dimethylcyclopropyl]-2,2-dimethylcyclopropanecarboxylate, biopermethrin and its (1S)-enantiomer, (1R)-tetramethrin, S-bioallethrin, bioresmethrin and its (1S)-enantiomer, cismethrin, and 5-benzyl-3-furylmethyl (E)-(1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate (RU-15525, ‘Kadethrin’) were investigated. The (1S)-enantiomers were inactive, but all the other pyrethroids tested, apart from deltamethrin, induced prolonged negative (depolarising) after-potentials. All the treatments with the active pyrethroids resulted in the appearance of a voltage and time-dependent ‘maintained’ sodium conductance. The duration of this ‘slow’ conductance varied considerably depending on the pyrethroid under test. Clearly, the effectiveness of pyrethroids on whole insects is not determined only by the degree to which they directly modify the properties of sodium channels. Nevertheless, voltage-clamp experiments on isolated axons readily permit direct comparison of the actions of different pyrethroids on the sodium channels of insect neurones.  相似文献   

2.
The synthesis of a series of mono- and disubstituted biphenyl-3-ylmethyl esters of 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid is described. The bioactivity of these compounds against Spodoptera eridania, Epilachna varivestis, Oncopeltus fasciatus, Acrythosiphon pisum and Tetranychus urticae is presented and discussed. Substitution of fluorine, chlorine and methyl groups in the 2-position of the biphenyl ring generally led to an increase in activity over the unsubstituted parent biphenyl ester. In addition, pyrethroid esters derived from these 2-substituted biphenyl-3-ylmethanols appeared to have a broader spectrum of activity than ‘classical’ pyrethroids. For example, the (1RS)-cis-3-(2,2-dichlorovinyl)-2, 2-dimethylcyclopro-panecarboxylic acid ester of 2-methylbiphenyl-3-ylmethanol was acaricidal, while maintaining a level of activity against other insects that was equal to or greater than cis-permethiin. Biological data on other esters of this novel alcohol are also presented.  相似文献   

3.
Abstract

The leafminer Scrobipalpula absoluta Meyr. is a serious pest of tomatoes in the Los Valles region of the eastern foothills of the Bolivian Andes. An initial insecticide screening trial showed that the local population of S. absoluta had developed a high resistance to organophosphorous insecticides. Soil‐applied carbamates and Bacillus thuringiensis Berliner were also ineffective. Further trials were carried out to establish the optimum rates and timing of applications of two synthetic pyrethroids, fenvalerate and permethrin. The results showed that organophosphate‐resistant S. absoluta can be satisfactorily controlled under commercial growing conditions with tow doses of pyrethroid insecticides. Permethrin had greater toxicity and persistence than fenvalerate, and could be applied at longer intervals. It is recommended that permethrin, either as Ambush 50 e.c. at 100 ml/ha or as Pounce 30 e.c. at 170 ml/ha, be applied weekly or at 10–14‐day intervals at the beginning of the season or when infestations and damage are light.  相似文献   

4.
In May 2001 a sample of Culex pipiens pipiens variety molestus Forskål from Marin County, California, collected as larvae and reared to adults, was found to show reduced resmethrin and permethrin knock‐down responses in bottle bioassays relative to a standard susceptible Cx pipiens quinquefasciatus Say colony (CQ1). Larval susceptibility tests, using CQ1 as standard susceptible, indicated that the Marin mosquitoes had LC50 resistance ratios of 18.3 for permethrin, 12 for deltamethrin and 3.3 for pyrethrum. A colony of Marin was established and rapidly developed higher levels of resistance in a few generations after exposure to permethrin as larvae. These selected larvae were shown to cross‐resist to lambda‐cyhalothrin as well as to DDT. However, adult knock‐down time in the presence of permethrin, resmethrin and pyrethrum was not increased after increase in tolerance to pyrethroids as larvae. Partial and almost complete reversion to susceptibility as larvae was achieved with S, S, S‐tributylphosphorotrithioate and piperonyl butoxide (PBO), respectively, suggesting the presence of carboxylesterase and P450 monooxygenase mediated resistance. Insensitive target site resistance (kdr) was also detected in some Marin mosquitoes by use of an existing PCR‐based diagnostic assay designed for Cx p pipiens L mosquitoes. Carboxylesterase mediated resistance was supported by use of newly synthesized novel pyrethroid‐selective substrates in activity assays. Bottle bioassays gave underestimates of the levels of tolerance to pyrethroids of Marin mosquitoes when compared with mortality rates in field trials using registered pyrethroid adulticides with and without PBO. This study represents the first report of resistance to pyrethroids in a feral population of a mosquito species in the USA. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Insecticide resistance is a likely cause of field control failures of Tuta absoluta, but the subject has been little studied. Therefore, resistance to ten insecticides was surveyed in seven representative field populations of this species. The likelihood of control failures was assessed, as well as weather influence and the spatial dependence of insecticide resistance. RESULTS: No resistance or only low resistance levels were observed for pyrethroids (bifenthrin and permethrin), abamectin, spinosad, Bacillus thuringiensis and the mixture deltamethrin + triazophos (<12.5‐fold). In contrast, indoxacarb exhibited moderate levels of resistance (up to 27.5‐fold), and chitin synthesis inhibitors exhibited moderate to high levels of resistance (up to 222.3‐fold). Evidence of control failures was obtained for bifenthrin, permethrin, diflubenzuron, teflubenzuron, triflumuron and B. thuringiensis. Weather conditions favour resistance to some insecticides, and spatial dependence was observed only for bifenthrin and permethrin. CONCLUSION: Insecticide resistance in field populations of the tomato pinworm prevails for the insecticides nowadays most frequently used against them—the chitin synthesis inhibitors (diflubenzuron, triflumuron and teflubenzuron). Local selection favoured by weather conditions and dispersal seem important for pyrethroid resistance evolution among Brazilian populations of T. absoluta and should be considered in designing pest management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
The knockdown and contact killing actions of various pyrethroids were compared using Blattella germanica and Periplaneta americana. A wide range of knockdown activity was found; 5-benzyl-3-furylmethyl (1R)-cis-3-(dihydro-2-oxo-3-thienylidenemethyl)-2,2-dimethylcyclopropanecarboxylate (RU 15525) acted fastest, more rapidly than pyrethrins, against B. germanica as well as having a low LD50 value. Topical application and direct spray tests showed that (S)-α-cyano-3-phenoxybenzyl (1R)-cir-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate (NRDC 161) was more active as a killing agent, by an order of magnitude, than cismethrin, the next most active compound, and also had considerable knockdown activity. Piperonyl butoxide generally had little synergist effect. Female P. americana were over three times more tolerant than males to a range of insecticides applied topically. Residual knockdown action in the WHO resistance test was observed to provide baseline data. There was little overlap in speed of action between pyrethroids and other insecticides among the compounds tested.  相似文献   

7.
BACKGROUND: The efficacies of organophosphate pesticides, single‐compound versus multicompound pyrethroid formulations and relatively novel unclassified insecticides/acaricides were compared to find the lowest dosage and highest efficacy for the control of Dermatophagoides farina (Hughes), D. pteronyssinus (Trouessart) and Tyrophagus putrescentiae (Schrank). Formulated active ingredients (AIs) were diluted in water and applied onto filter paper in experimental chambers with ten unsexed adult mites in six replicates. Mite mortality was checked after 24 h. The security index (SI) was calculated for all of the AIs by dividing the recommended rate by the LD90 determined for each species. RESULTS: The tested organophosphates had high LD90 and low SI values. The single‐compound pyrethroids were ineffective (deltamethrin and beta‐cyfluthrin) or had high LD90 and low SI values (cyphenothrin, permethrin, pyrethrum and bifenthrin). The multicompound miticides had low LD90 and high SI values which increased from deltamethrin/S‐bioallethrin to permethrin/S‐bioallethrin/piperonyl butoxide to permethrin/pyriproxyfen/benzyl benzoate. Abamectin, pyridaben, propargite and flufenoxuron were highly active against Dermatophagoides spp. Neem (Acarosan duo) was highly active against all mite species tested. CONCLUSION: The available formulations of multicompound pyrethroids (permethrin/S‐bioallethrin/piperonyl butoxide, permethrin/pyriproxyfen/benzyl benzoate), benzyl benzoate, neem and some field acaricides are effective in suppression of synanthropic mites in laboratory assays. Their LD90 are lower than those of traditionally used organophosphates or single‐compound pyrethroid formulations. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Failures in pollen beetle control using pyrethroids since 2005 indicated pyrethroid resistance in Germany. Therefore, resistance monitoring using bioassays was established in Germany for oilseed rape pest insects. RESULTS: The spread and intensity of pyrethroid resistance of Meligethes aeneus increased from 2005 onwards, with no sensitive samples left in any region of Germany in 2011. Sensitivity also declined for the newly introduced actives bifenthrin, etofenprox (both class‐I pyrethroids) and tau‐fluvalinate; all three claimed to be less affected by resistance, although there was no clear cross‐resistance to lambda‐cyhalothrin (class‐II pyrethroid). In the German region with the longest tradition and high intensity of oilseed rape production, pyrethroid resistance of Psylliodes chrysocephala and Ceutorhynchus obstrictus, with resistance factors of up to 81 and 140 respectively, was detected. CONCLUSION: The intensive use of only one mode of action for many years is risky, because even pest insects with a low intrinsic resistance risk may develop resistance. Therefore, resistance strategies need to include several control options for pest insects needing regular treatments. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
Structure-activity relationships (SARs) for 10 pyrethroids against susceptible, kdr and super-kdr strains of houseflies (Musca domestica L.) were investigated by Principal Components Analysis. In the three strains with kdrLatina' all only slightly to moderately (2.6 to 26-fold) resistant to pyrethroids, no correlation between the structure and Levels of resistance could be discerned. In flies with super-kdr, SARs were influenced by the nature of the alcoholic portion of the ester. Resistance was strongest to esters of a-cyano-3-phenoxybenzyl alcohol (74 to 430-fold) and to permethrin (48 to 55-fold). It was weak (6.2 to 11-fold) to cyclopentenone derivatives, being barely stronger than for flies with kdr (2-6 to 6.3-fold). Two variants of super-kdr (3D and A2) were distinguished on the basis of their differential response to esters of 5-benzyl-3-furylmethanol. It is presumed that kdrLatina, super-kdrA2 and super-kdr3D form an allelic series in which kdrLatina represents ground level insensitivity, and the two super-kdrs the progressive extension of strong resistance to more types of ester. The strong differences in resistance to different pyrethroid esters by super-kdr flies provides scope for improving management of resistance to pyrethroid insecticides and for modifying the SAR of pyrethroids to favour weak resistance.  相似文献   

10.
A study has been made of the effects of bioallethrin, RU-15525 [5-benzyl-3-furylmethyl (1R)-cis-2,2-dimethyl-3-(tetrahydro-2-oxo-3-thienylidenemethyl)-cyclopropanecarboxylate, ‘Kadethrin’], and deltamethrin on the electrical activity, measured in vivo, of a cuticular mechanoreceptor of Periplaneta americana. The modifications induced by these pyrethroids on the membrane excitability can be classified into two groups: Type I effects (bioallethrin) are characterised by a substantial increase in the number of action potentials triggered at the initiation site by a given mechanical stimulation, by an electrical activity persisting after mechanical stimulus has been stopped (repetitive activity), and possibly, by an inhibition of excitability of the cell membrane. Type II effects (RU-15525 and deltamethrin), are characterised by an inhibition of the excitability of the initiation site. In the case of RU-15525, there was a transient spontaneous electrical activity. Both types of effects have been linked to an action on the sodium channel, particularly at the initiation site. The preparation studied, which possessed no synapses, was shown to be more sensitive to deltamethrin (which is also the most insecticidal of the three pyrethroids) than to either allethrin or RU-15525. These results suggest that it is unnecessary to envisage a main target (sodium channel) that is different for the two types of pyrethroid.  相似文献   

11.
昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展   总被引:1,自引:1,他引:0  
随着拟除虫菊酯类杀虫剂在卫生和农业害虫防治中的广泛应用,昆虫对此类杀虫剂产生抗性的报道越来越多。目前已明确昆虫对拟除虫菊酯类杀虫剂的抗性机制包括表皮穿透率下降、靶标抗性以及代谢抗性,其中代谢抗性机制较为普遍,而且其与昆虫对多种杀虫剂的交互抗性关系密切。目前,随着基因组、转录组以及蛋白质组学等新技术的发展及应用,昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究也取得了很多新进展。昆虫体内细胞色素P450酶(P450s)、羧酸酯酶(CarE)及谷胱甘肽S-转移酶(GSTs)等重要解毒酶系的改变均与昆虫对拟除虫菊酯类杀虫剂的代谢抗性有关,其中这3类解毒酶的活性及相关基因表达量的变化是昆虫对此类杀虫剂产生代谢抗性的主要原因。明确昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制,对合理使用此类杀虫剂及延缓抗药性的产生均具有重要意义。本文在总结拟除虫菊酯类杀虫剂代谢路径及相关生物酶研究概况的基础上,综述了近年来有关昆虫对此类杀虫剂代谢抗性机制研究的主要进展。  相似文献   

12.
Starting from derivatives of cyclobutanone the synthesis is described of α-cyano-3-phenoxybenzyl esters of 2,2-dimethylcyclopropanecarboxylic acid, substituted in the 3-position of the cyclopropane ring by an alkoxy, alkylthio, phenoxy or phenylthio group. The insecticidal activities of these synthetic pyrethroids towards adult Musca domestica, and larvae of Aedes aegypti, Spodoptera littoralis and Heliothis virescens are reported and compared with known pyrethroids.  相似文献   

13.
The role of monooxygenases in detoxification of the pyrethroids cypermethrin and deltamethrin was examined. Four strains of sea lice (Lepeophtheirus salmonis Krøyer) with normal or moderately reduced sensitivity towards the pyrethroids were tested in bioassays by exposure to the pyrethroid alone and in combination with an oxygenase inhibitor, piperonyl butoxide (PBO). The normal (baseline) sensitivity was considered as the sensitivity range for the two most sensitive strains. Pre‐treatment with PBO elevated the sensitivity (P < 0.01) compared with groups exposed to the pyrethroid only. A positive, but not statistically significant, correlation between the activity of haem peroxidases and the pyrethroid concentration immobilizing 50% of the parasites was demonstrated (ρ = 0.500 for deltamethrin and ρ = 0.310 for cypermethrin). The results indicate that cytochrome P450 monooxygenases are involved in detoxification of pyrethroids in sea lice. 14C‐Deltamethrin was absorbed in a lesser amount in a group of sea lice exposed to a mixture of the compound and PBO than in a group exposed to 14C‐deltamethrin alone. A significant difference could be demonstrated both immediately after exposure (P < 0.01) and 24 h after exposure (P < 0.05). No significant differences were found between groups pre‐treated with PBO and groups exposed to 14C‐deltamethrin only. 14C‐Deltamethrin was taken up mainly through the cuticle, especially the cuticle on the extremities of the ventral surface, and subsequently distributed throughout the body of the parasite. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
BACKGROUND: The cabbage whitefly, Aleyrodes proletella L., is emerging as a significant pest of field brassica crops in certain regions of the United Kingdom. In order to investigate the contribution of pesticide resistance to this phenomenon, A. proletella populations were sampled from five different areas in England in 2008 and 2009. Adult residual leaf‐dip bioassays were carried out using pyrethroid and neonicotinoid insecticides. RESULTS: Significant resistance to pyrethroids was found in multiple samples collected from two areas. No evidence of cross‐resistance to neonicotinoids was found in a subset of the pyrethroid‐resistant populations. While the patterns of resistance to different pyrethroids were broadly correlated, the magnitude of resistance factors differed substantially. Survival of strains at a putative diagnostic concentration of lambda‐cyhalothrin was found to provide a guide to their LC50. Significant differences in LC50 were found when different brassica crops were used in the bioassay, although the resistance patterns between strains were maintained. CONCLUSION: Reduced susceptibility to multiple pyrethroid insecticides exists in populations of A. proletella in the United Kingdom, corresponding to recent major outbreaks. The mechanism(s) of resistance are yet to be determined, but molecular structural differences in pyrethroids probably influence the magnitude of cross‐resistance within this group of insecticides. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Helicoverpa zea (Boddie) pyrethroid resistance monitoring programs typically utilize cypermethrin in the adult vial test. Here we investigated if differences in insect growth stage and pyrethroid structure affect resistance ratios and discuss implications for pyrethroid resistance management. RESULTS: Vial bioassays with cypermethrin, esfenvalerate and bifenthrin were conducted on H. zea third instars and male moths from a susceptible laboratory colony and the F1 generation of a pyrethroid‐resistant field population. In the susceptible population, both growth stages were most sensitive to bifenthrin and adults were more sensitive to esfenvalerate than cypermethrin. LC50 resistance ratios for the larvae and adults of the resistant population were approximately two times higher for bifenthrin than cypermethrin or esfenvalerate. CONCLUSION: For the resistant population, vial assays using either growth stage gave similar resistance ratios for each of the three pyrethroids, respectively, proving the adult vial test accurately reflects larval resistance. However, as resistance ratios varied considerably depending on the pyrethroid used, resistance ratio values obtained with one pyrethroid may not be predictive of resistance ratios for other pyrethroids. Our results suggest that carefully chosen pyrethroid structures diagnostic for specific mechanisms of resistance could improve regional monitoring programs. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
A German cockroach (Blatella germanica (L)) strain, Apyr‐R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr‐R (97‐ and 480‐fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,‐tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr‐R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43‐ and 48‐fold increases in toxicity of permethrin in ACY and Apyr‐R, respectively. Similarly, injection increased the toxicity of deltamethrin 27‐fold in ACY and 28‐fold in Apyr‐R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr‐R. Apyr‐R showed cross‐resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase‐mediated detoxication is not the mechanism responsible for cross‐resistance. Apyr‐R showed no cross‐resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi‐resistance mechanisms in Apyr‐R did not confer significant cross‐resistance to this compound. Thus, we propose that fipronil could be a valuable tool in integrated resistance management of German cockroaches. © 2001 Society of Chemical Industry  相似文献   

17.
BACKGROUND: The spotted bollworm Earias vittella (Fab.) is a serious pest of cotton and okra in Pakistan. Owing to persistent use of insecticides, this pest has developed resistance, especially to pyrethroids. The present studies aimed at determining the extent of resistance to pyrethroid, organophosphorus and new chemical insecticides in Pakistani populations of E. vittella. RESULTS: Field populations of E. vittella were monitored at Multan, Pakistan, from 1999 to 2007 for their resistance against six pyrethroid, four organophosphorus and six new chemical insecticides using a leaf‐dip bioassay. Of the pyrethroids, resistance was generally low to zeta‐cypermethrin and moderate to high or very high to cypermethrin, deltamethrin, esfenvalerate, bifenthrin and lambda‐cyhalothrin. Resistance to organophosphates chlorpyrifos, profenofos, triazophos and phoxim was recorded at very low to low levels. Among new chemicals, E. vittella had no or a very low resistance to spinosad, emamectin benzoate and methoxyfenozide, a very low to low resistance to abamectin, a very low to moderate resistance to indoxacarb and a moderate resistance to chlorfenapyr. CONCLUSION: The results indicate a lack of cross‐resistance between pyrethroid and organophosphorus insecticides in E. vittella. Rotation of insecticides showing no, very low or low resistance, but belonging to different insecticide classes with unrelated modes of action, may prevent or mitigate insecticide resistance in E. vittella. Copyright © 2009 Society of Chemical Industry  相似文献   

18.

BACKGROUND

Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage‐sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia.

RESULTS

We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid‐resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21‐ to 107‐fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000‐fold resistance to DDT, 37.5‐fold cross‐resistance to indoxacarb and 13.4‐fold cross‐resistance to DCJW.

CONCLUSION

Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

19.
BACKGROUND: Pyrethroids and organophosphates are the most frequently used insecticides for Colorado potato beetle, Leptinotarsa decemlineata (Say), control in the Czech Republic. Based on molecular methods, organophosphate and pyrethroid resistance alleles have been detected in samples from three sites. The accuracy of restriction fragment length polymorphism (RFLP) and bidirectional polymerase chain reaction amplification of specific alleles (Bi‐PASA) for detection of resistance alleles is compared. RESULTS: Leptinotarsa decemlineata from three sites showed higher frequencies of resistance alleles to organophosphates than to pyrethroids. The rates of occurrence of individuals homozygous resistant (RR) to pyrethroids ranged from 20.0 to 22.9%, while the rates of occurrence of individuals RR to organophosphates ranged from 52.9 to 66.7%. The incidences of individuals with resistance alleles to both organophosphates and pyrethroids ranged from 8.6 to 13.6%. No relationship was found between incidence of the pyrethroid resistance allele and site, while incidence of the organophosphate resistance allele differed significantly according to site. CONCLUSION: Both RFLP and Bi‐PASA were suitable for detecting resistance alleles to pyrethroids, and in most cases also for detecting resistance alleles to organophosphates. In contrast to Bi‐PASA, RFLP was also suitable for samples with lower DNA quality when testing for the resistance allele to pyrethroids. On the other hand, RFLP was not as accurate as Bi‐PASA in detection of the organophosphate resistance allele. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
The tomato borer Tuta absoluta (Lepidoptera: Gelechiidae) has been a recognized pest in South America since the 1960s, quickly spreading to the major tomato‐producing countries in the region. A series of studies regarding this pest's biology, ecology and management were conducted to contain tomato losses within acceptable levels. Although cultural control methods were attempted against T. absoluta, as were the development of resistant tomato varieties and the use of pheromones and natural enemies, insecticides are still the main control method used. The sex pheromone of T. absoluta was identified, confirmed and synthesized in the late 1990s and it is currently used for detection and monitoring of this species, but improved sampling plans are still necessary for its use in decision‐making regarding insecticide use. Insecticide use has shifted from earlier reliance on organophosphates, pyrethroids, cartap and abamectin to insect growth regulators and, more recently, to novel insecticides. Unfortunately, the overreliance on insecticide use led to problems with insecticide resistance in the region, which is a current matter of concern not only in South America, but also elsewhere since introduced strains may carry insecticide‐resistance genes at high frequency even without local selection in the site of introduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号