首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Pseudomonas syringae pv. actinidiae (Psa) is responsible for bacterial canker of kiwifruit. Biovar 3 of Psa (Psa3) has been causing widespread damage to yellow‐ and green‐fleshed kiwifruit (Actinidia spp.) cultivars in all the major kiwifruit‐producing countries in the world. In some areas, including New Zealand, P. syringae pv. actinidifoliorum (Pfm), another bacterial pathogen of kiwifruit, was initially classified as a low virulence biovar of Psa. Ability to rapidly distinguish between these pathovars is vital to the management of bacterial canker. Whole genome sequencing (WGS) data were used to develop PCR assays to specifically detect Psa3 and Pfm from field‐collected material without the need to culture bacteria. Genomic data from 36 strains of Psa, Pfm or related isolates enabled identification of areas of genomic variation suitable for primer design. The developed assays were tested on 147 non‐target bacterial species including strains likely to be found in kiwifruit orchards. A number of assays did not proceed because although they were able to discriminate between the different Psa biovars and Pfm, they also produced amplicons from other unrelated bacteria. This could have resulted in false positives from environmental samples, and demonstrates the care that is required when applying assays devised for pure cultures to field‐collected samples. The strategy described here for developing assays for distinguishing strains of closely related pathogens could be applied to other diseases with characteristics similar to Psa.  相似文献   

2.
Bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), is a disease that is spreading rapidly in several kiwifruit‐producing countries, causing significant economic losses. In 2011, it was detected for the first time in Spain, in the south of Galicia (northwest Spain). Kiwifruit orchards were therefore inspected and sampled in 2011 and 2012 to determine the pathogen distribution, and the isolates obtained were characterized by morphology, fatty acids profile, biochemical tests and molecular techniques. Isolates were obtained from Actinidia deliciosa ‘Hayward’ (from leaves, canes, flower buds, fruits and roots), from A. deliciosa ‘Summer’, from Actinidia chinensis ‘Jin Tao’ (from canes and leaves) and from A. chinensis pollinator ‘Belén’ (from canes). Results of the analysis of the cfl gene (phytotoxin production‐related), the tox–argK gene cluster and phylogenetic analysis of the cts gene demonstrated that all Psa isolates from northwest Spain correspond to the Psa3 population, which includes strains of haplotype 2. This is the first record of Psa3 and haplotype 2 in Spain.  相似文献   

3.
A virulent strain of Pseudomonas syringae pv. actinidiae biovar 3 (Psa), which causes bacterial canker in kiwifruit, was first recorded in New Zealand in November 2010. This strain has severely affected Actinidia chinensis var. chinensis ‘Hort16A’ kiwifruit productivity but its effect on green Actinidia chinensis var. deliciosa ‘Hayward’ kiwifruit productivity has been variable. An observational study design was used to develop explanatory models to quantify the impacts of Psa infection on productivity (tray equivalents per hectare) of Hayward kiwifruit harvested in 2012, using data captured by industry from 2599 orchards. A total of 934 orchards were Psa positive at the end of the study period. Multivariable linear regression was used to model 2012 productivity in the presence of Psa, while controlling for regional differences, elevation, 2011 productivity, harvest dates and application of agrichemicals. The model showed productivity was initially higher in the presence of Psa, and was not reduced until after 1 year of infection. The relationship between protective spray use and productivity was also quantified. It is likely that improved disease management has offset the impact of the disease and future research should consider a reassessment of the effects of disease after longer term exposure to Psa in New Zealand. The use of an observational cohort study to assess disease impacts using multivariable analysis could have wider application in the field of plant epidemiology.  相似文献   

4.
为探明不同覆盖模式对关中平原地区猕猴桃生长发育及果实产量、品质的影响,设置树下地布行间生草覆盖(F1G1)、树下地布行间裸地覆盖(F1G0)、树下裸地行间生草覆盖(F0G1)、裸地(CK)4种覆盖模式,其中F1G1为二元覆盖,F1G0和F0G1为单一覆盖,裸地为无覆盖,对比分析了各处理对不同生育时期土壤水分、猕猴桃生长生理和果实产量、品质等参数的影响。结果表明,二元覆盖有效改善了土壤水分环境,在猕猴桃萌芽展叶期和开花坐果期其20~100 cm土层树下和行间土壤含水率差值比率(SMDR)最低,土壤水分竞争最小;在果实膨大期和果实成熟期其树下、行间0~100 cm土层的土壤含水率较CK均有增长。不同覆盖模式对猕猴桃树不同生育时期的营养生长和光合生理参数影响不同,其中单一覆盖F0G1对新梢...  相似文献   

5.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

6.
为深入了解不同土地利用方式下土壤养分水平的差异及施肥和管理中存在的问题,选取陕西省周至县农耕区为研究区域,采用地统计分析和GIS相结合的方法,研究了猕猴桃园和小麦—玉米轮作田两种不同土地利用类型下土壤养分含量、养分相关性、空间变异特征及其分布格局。结果表明:猕猴桃园有机质、碱解氮、有效磷和速效钾4种养分含量分别为:(19.55±3.13)g·kg~(~(-1)),(80.58±14.69)mg·kg~(~(-1)),(23.37±6.09)mg·kg~(~(-1)),(102.79±12.74)mg·kg~(~(-1)),pH值为7.32±0.49;小麦—玉米农田有机质、碱解氮、有效磷和速效钾4种养分含量分别为:(19.43±2.63)g·kg~(~(-1)),(78.80±11.39)mg·kg~(~(-1)),(24.83±6.06)mg·kg~(~(-1)),(95.03±11.75)mg·kg~(~(-1)),pH值为7.41±0.58。猕猴桃园土壤有机质、碱解氮和速效钾含量均高于小麦—玉米农田,仅有效磷含量比小麦—玉米农田偏低。研究区主要养分要素的变异系数都处于10%~100%,属于中等空间变异性。在猕猴桃园中,有机质、碱解氮、有效磷、速效钾两两之间均呈极显著或显著正相关;在小麦—玉米农田,pH值与有机质表现出显著负相关。研究区土壤有效磷含量较为丰富,碱解氮含量处于中等偏高水平,有机质含量处于中等偏低水平,而速效钾含量总体缺乏。整体上猕猴桃园比小麦—玉米农田养分水平高,这主要与不同的田间管理和施肥状况有关。因此,今后应采取维持氮肥、控制磷肥、增加钾肥的措施,并十分重视有机肥的使用。此外,针对不同土地利用类型和土壤肥力状况进行分区培肥管理,普及科学施肥,提高肥料利用效率也是提升土壤肥力水平的重要措施。  相似文献   

7.
Huanglongbing (HLB) is a systemic disease of citrus caused by phloem‐limited bacteria ‘Candidatus Liberibacter’ spp. with ‘Ca. Liberibacter asiaticus’ (Las) the most widespread. Phloem‐limited bacteria such as liberibacters and phytoplasmas are emerging as major pathogens of woody and herbaceous plants. Little is known about their systemic movement within a plant and the disease process in these tissues. Las movement after initial infection was monitored in leaves and roots of greenhouse trees. Root density, storage starch content, and vascular system anatomy in relation to Las presence in field and greenhouse trees, both with and without symptoms, showed the importance of root infection in disease development. Las preferentially colonized roots before leaves, where it multiplied and quickly invaded leaves when new foliar flush became a sink tissue for phloem flow. This led to the discovery that roots were damaged by root infection prior to development of visible foliar symptoms and was not associated with carbohydrate starvation caused by phloem‐plugging as previously hypothesized. The role of root infection in systemic insect‐vectored bacterial pathogens has been underestimated. These findings demonstrate the significance of early root infection to tree health and suggest a model for phloem‐limited bacterial movement from the initial insect feeding site to the roots where it replicates, damages the host root system, and then spreads to the rest of the canopy during subsequent leaf flushes. This model provides a framework for testing movement of phloem‐limited bacteria to gain greater understanding of how these pathogens cause disease and spread.  相似文献   

8.
Y. J. Koh 《Plant pathology》2018,67(5):1208-1219
Bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), is a severe threat to kiwifruit production in Korea. An existing infection risk model from New Zealand was adopted to respond to this epidemic. Disease incidence (proportion of diseased leaves on each vine) and weather (hourly temperature, rainfall and relative humidity) data required to develop the model were collected and analysed in the study. Disease incidence data were used to modify and validate the existing model. Because the Psa risk model was originally developed in a region where the characteristic climatic conditions are completely different from those in Korea, the temperature and rainfall functions of the existing model were modified. Analyses using statistical correlation and prediction–realization tables revealed that the modified model is valid with high agreement (a correlation coefficient of 0.85 and an accuracy of 85.7%, respectively) between the observed disease incidence and simulated disease risk from the model. The model was also found to be more highly sensitive to the presence or absence of rainfall than any other weather variable inputs. Uncertainty in simulated disease risk was measured based on the level of uncertainty in temperature input from weather forecasts. Overall, these results indicate that the modified Psa risk model can be used to provide practical and applicable information for timely disease control to the kiwifruit growers in Korea.  相似文献   

9.
In this study, the biocontrol ability of seven grapevine-associated bacteria, previously reported as efficient against Botrytis cinerea under in vitro conditions, was evaluated in two vineyard orchards with the susceptible cv. Chardonnay during four consecutive years (2002–2005). It was shown that the severity of disease on grapevine leaves and berries was reduced to different levels, depending on the bacterial strain and inoculation method. Drenching the plant soil with these bacteria revealed a systemic resistance to B. cinerea, even without renewal of treatment. Accordingly, this resistance was associated with a stimulation of some plant defense responses such as chitinase and β-1,3-glucanase activities in both leaves and berries. In leaves, chitinase activity increased before veraison (end-July) while β-1,3-glucanase reached its maximum activity at ripening (September). Reverse patterns were observed in berries, with β-1,3-glucanase peaking at full veraison (end-August) and chitinase at a later development stage. Highest activities were observed with Acinetobacter lwoffii PTA-113 and Pseudomonas fluorescens PTA-CT2 in leaves, and with A. lwoffii PTA-113 and Pantoea agglomerans PTA-AF1 in berries. These results have demonstrated an induced protection of grapevine against B. cinerea by selected bacteria under field conditions, and suggest that induced resistance could be related to a stimulation of plant defense reactions in a successive manner.  相似文献   

10.
Anthracnose is an important disease affecting mature olive fruits, causing significant yield losses, and poor fruit and oil quality. In Portugal, high anthracnose incidence was recorded during 2003–2007 with 41% of 908 orchards surveyed displaying disease symptoms. In another 14% of the orchards, the pathogen was recorded in symptomless plants. Disease severity was on average 36%, frequently reaching 100%. In Portugal, anthracnose is endemic to neglected orchards of susceptible cultivars, but under favourable conditions it can also severely affect less susceptible cultivars. Pathogens were genetically heterogeneous, with Colletotrichum acutatum genetic group A2 as the most frequent (80%), followed by group A4 (12%) and group A5 along with C. gloeosporioides (3–4%), while groups A3 and A6 of C. acutatum were sporadic. Important geographic variations were observed in the frequencies of these populations, accompanied by year‐to‐year populational shifts. Epidemiology and histopathology studies showed the presence of the pathogens on vegetative organs year‐round, particularly on olive leaves and branches, and on weeds. These represent inoculum reservoirs where secondary conidiation occurs, and conidia are then dispersed by spring rains reaching flowers and young fruits or by autumn rains reaching pre‐mature fruits. Unripe fruits were colonized without showing symptoms up to penetration of the cuticle, but further colonization and symptom production was completed only as fruits matured. These findings challenge current control practices, particularly the timing of fungicide treatment, and contribute to improved disease management.  相似文献   

11.
BACKGROUND: The potential of systemic neonicotinoid insecticides to control potato leafhopper, Empoasca fabae (Harris), a damaging pest of wine grapes in the eastern United States, was investigated. Soil or foliar applications were made to potted or field‐grown vines, and the response of leafhoppers was determined in clip cages over the following month on young or mature leaves. RESULTS: Foliar application of imidacloprid caused immediate and long‐lasting reductions in E. fabae survival on both leaf ages, whereas the activity of soil‐applied imidacloprid was delayed. Clothianidin, imidacloprid and thiamethoxam all provided long‐lasting reduction in leafhopper survival on young and mature foliage when applied through either delivery route. However, the percentage of moribund nymphs was significantly greater on foliar‐treated vines and increased over time in mature and immature leaves compared with soil‐treated vines. Residue analysis of foliar‐applied imidacloprid showed an 89% decline in mature leaves from day 1 to day 27, and a 98% decline in immature leaves over the same time period. Comparison of soil‐applied clothianidin, imidacloprid and thiamethoxam in field‐grown vines showed significant reduction in E. fabae only on mature leaves of vines treated with thiamethoxam. CONCLUSIONS: Neonicotinoids can control E. fabae in small vines, even in rapidly expanding foliage where this pest causes greatest injury. Soil application provides superior long‐term vine protection because declining residues on foliar‐treated vines lead to suboptimal activity within 2–3 weeks. Vineyard managers of susceptible cultivars may take advantage of this approach to E. fabae management by using foliar applications of the three neonicotinoids tested here, or by using soil‐applied thiamethoxam. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Frost occurs in all major areas of cultivation, presenting a threat for the production of kiwifruit crops worldwide. A series of experiments were performed on 1‐year‐old, potted plants or excised twigs of Actinidia chinensis and A. deliciosa to verify whether strict relationships exist between bacterial canker outbreaks from Pseudomonas syringae pv. actinidiae (Psa) attacks and the occurrence of autumn and winter frost events. The association between the occurrence of autumn frost and the sudden outbreak of bacterial canker in A. chinensis in central Italy has been confirmed. Both autumn and winter frosts promote Psa multiplication in the inoculated twigs of both species. The day after the frost, reddish exudates oozing from the inoculation sites were consistently observed in both species, and Psa was re‐isolated in some cases. During the thawing of both A. deliciosa and A. chinensis twigs, the 2‐cm upward and downward migration of Psa from the inoculation site was observed within 3 min, and the leaves were consistently colonized with the pathogen. A consistent brown discoloration, accompanied with a sour‐sap odour, was observed throughout the length of the excised twigs of both Actinidia species after Psa inoculation and winter frost. Psa inoculation induced a remarkably higher necrosis in excised twigs that were not frozen compared with P. s. pv. syringae inoculation. Antifreeze protection using irrigation sprinklers did not influence the short‐term period of Psa and P. s. pv. syringae multiplication in both A. deliciosa and A. chinensis twigs. Thus, the damage from frost, freeze thawing and the accumulation of Psa in Actinidia twigs promotes the migration of the pathogen within and between the orchards. Taken together, the results obtained in this study confirmed that A. deliciosa is more frost tolerant than A. chinensis, autumn frosts are more dangerous to these crops than winter frosts, and in the absence of Psa, young kiwifruit plants remain sensitive to frost.  相似文献   

13.
Summary In a bgarden at Baarn, The Netherlands,Atropa belladonna plants, grown from seed, showed symptoms similar to those described bySmith (1946, 1957) for Belladonna mosaic. After inoculation of solanaceous test plants with sap from diseased plants, the following species showed symptoms:Atropa belladonna L.,Capsicum annuum L.,Hyoscyamus niger L.,Nicandra physaloides Gaertn.,Nicotiana glutinosa L.,Nicotiana tabacum L. var. Samsun,Petunia hybrida andPhysalis floridana Rydb. The symptoms suggest that the virus may be identical with that described bySmith. A high virus concentration was found inHyoscyamus niger. Nicandra physaloides, Petunia hybrida, Physalis floridana, in the roots and the pericarp of diseasedAtropa plants, and also inSolanum nigrum L. andDatura stramonium L. The latter two species showed hardly any symptoms. A. low virus concentration was found inCapsicum annuum, though this plant showed severe symptoms.The dilution end point of the virus was between 10–3 and 10–4; virusinactivation occurred between 70° and 80°C.In electron micrographs the rod-shaped virus particles appeared similar to those of rattle virus.Virus could be detected in the roots of tobacco plants after the leaves had been inoculated with sap of diseasedAtropa-plants (Table 1). The reverse did not occur. Following immersion of the roots of tobacco plants in virus-containing sap these plants were potted in steamed soil. Subsequently the roots proved to be infected but the stems and leaves contained no virus. However,Atropa plants treated in the same way, did show leaf symptoms.It appeared, that the roots of young, healthy tobacco plants could become infected with virus, when grown in naturally infested soil for only tow days (Table 2). Fungus cultures isolated from diseased roots did not show any infectivity. Nematodes are probably the vectors of this virus (Sol, Van Heuvel & Seinhorst, 1960).Met medewerking van Merr.J. M. Dekhuyzen-Maasland, Dr. S. Gayed (Karthoum), Mej.C. van Heuven, C. de Vooys en Mej.R. van Wessem.  相似文献   

14.
Ascospores of Mycosphaerella pomi, the pathogen of Brooks fruit spot of apple, were produced in pseudothecia on previously infected and overwintered apple leaves from late April through early August in Aomori Prefecture, Japan. In June 2003, the ascospores were germinating and producing Cylindrosporium-type conidia on apple fruit and leaf surfaces in an orchard. After ascospores were sprayed on apple leaves, Cylindrosporium-type conidia developed on the leaf surfaces. Such Cylindrosporium-type conidia caused typical symptoms of Brooks fruit spot on apple trees after inoculations. These results suggested that the Cylindrosporium-type conidia also serve as an infection source, in addition to the ascospores, for Brooks fruit spot in apple orchards.  相似文献   

15.
In August 2010, bacterial soft rot was found on root chicory (Cichorium intybus var. sativum) in Hokkaido, Japan. Severely infected plants in fields were discolored, had wilted foliage, and black necrosis of petioles near the crown. Wilted leaves subsequently collapsed and died, forming a dry, brown or black rosette. The root and crown became partially or wholly soft-rotted. Slimy masses on infected areas of roots, turned dark brown or black. Gram-negative, rod-shaped, peritrichously flagellated, facultatively anaerobic bacteria were exclusively isolated from rotted roots, and typical symptoms were reproduced after inoculation with the strains. The bacteria were identified as Dickeya dianthicola, Pectobacterium carotovorum subsp. carotovorum, and Pectobacterium carotovorum subsp. odoriferum based on further bacteriological characterization and the sequence analysis of the malate dehydrogenase gene and 16S rRNA gene. These bacteria should be included with the previously reported Dickeya (=Erwinia) chrysanthemi in Saitama Prefecture, Japan, as causal pathogens of bacterial wilt of chicory.  相似文献   

16.
A two-year study was conducted to determine the effect of six sanitation treatments on leaf litter density (LLD), relative ascospore production of Venturia inaequalis and scab incidence on spur-leaf clusters, leaves and harvested fruits, on two cultivars with low and high scab susceptibilities, in Hungarian integrated and organic apple orchards. The following sanitation treatments were used: sprays of lime sulphur in autumn, collecting fallen leaves in autumn, straw mulch cover in late winter, sprays of lime sulphur followed by mulch cover, collecting fallen leaves followed by mulch cover, collecting fallen leaves followed by covering the orchard floor with plastic foil, and non-sanitized control. LLD decreased continuously in all treatment plots by 0–23% by mid-May in both orchards and years; however, LLD reduction was 1.4–4.2 times higher in the organic orchard compared to the integrated one. All treatments, except for the lime sulphur treatment, resulted in significant (P < 0.05) reduction of LLD and ascospore production in both the integrated and organic apple orchards compared to non-sanitized plots. The most efficient treatment was leaf collection combined with plastic foil cover, followed by leaf collection combined with mulch cover, leaf collection alone, mulch cover alone, and lime sulphur spray combined with mulch cover, with a reduction in the ascospore production of >95, 72–92, 56–79, 24–38, and 27–46%, respectively, in the mean of both orchards and years. However, only treatments of leaf collection applied alone, or in combination with mulch or with plastic foil cover reduced significantly (P < 0.05) leaf and/or fruit scab incidence by 18–57% compared to non-sanitized plots. These three leaf collection treatments are recommended in both integrated and organic orchards and the possibilities of successfully incorporating these methods into orchard management practices are interpreted.  相似文献   

17.
Mulberry twigs were inserted into the soil as bait to detect Rosellinia necatrix at an early stage of tree infection in the orchard. R. necatrix was frequently trapped on twigs near the trunk base at soil depths of 6–20 cm within 10–20 days in May–July, suggesting that the incubation period was dependent on soil temperature. Subsequently, we inserted twig in the soil around healthy-looking trees in naturally infested orchards. R. necatrix was trapped from 80.0% of Japanese pear and 75.0% of apple trees that later proved to be infected. This bait twig method facilitated quicker diagnosis of white root rot on Japanese pear and apple at early stages of infection and can be used to detect recurrence of the fungus after fungicide treatment.  相似文献   

18.
Soybean is one of the most economically important crops in the world. Its production is affected by several fungal diseases, such as those caused by Fusarium spp., causing significant losses in yield and seed quality. Management interventions are limited, costly, and associated with environmental problems. Host resistance provides a more convenient and cost-effective approach. Host-induced gene silencing (HIGS) has been demonstrated to be an alternative strategy to engineer fungus resistance in plants. We have generated transgenic soybean lines with an intron-hairpin construction in order to express siRNA corresponding to the CYP51B gene from Fusarium oxysporum. Results showed the presence of siRNA corresponding to the F. oxysporum CYP51B gene in both leaves and roots of the transgenic lines. Plants (T3 generation) were challenged against F. oxysporum and F. graminearum. Disease severity was evaluated and revealed resistance to F. oxysporum with one line, named 3.22, presenting no symptoms. In addition, transgenic lines presented better plant development (height and root growth) when compared to the nontransgenic line. Moreover, transgenic lines revealed better development when inoculated with F. oxysporum.  相似文献   

19.
Olive leprosy, caused by the fungus Phlyctema vagabunda, is a classic fruit rot disease widespread in the Mediterranean basin. From 2009 to 2013, new disease symptoms consisting of small circular necrotic leaf lesions, coin branch canker and shoot dieback were observed in Spanish and Portuguese olive orchards showing intense defoliation. Phlyctema‐like anamorphs were consistently isolated from leaves and shoots with symptoms. Representative isolates from affected leaves, shoots and fruits were characterized based on morphology of colonies and conidia, optimum growth temperature and comparison of DNA sequence data from four regions: ITS, tub2, MIT and rpb2. In addition, pathogenicity tests were performed on apple and olive fruits, and on branches and leaves of olive trees. Maximum mycelial growth rate ranged between 0.54 and 0.73 mm per day. Conidia produced on inoculated apple fruits showed slight differences in morphology among the representative fungal isolates evaluated. Phylogenetic analysis clustered all of the Phlyctema‐like isolates in the same clade, identifying them as Phlyctema vagabunda. On fruits, influence of wounding, ripening and cultivar resistance was studied, with cv. Blanqueta being the most susceptible cultivar. On branches, a mycelial‐plug inoculation method reproduced olive leprosy symptoms and caused shoot dieback. On leaves, Koch's postulates were fulfilled and the pathogen caused characteristic necrotic spots and plant defoliation. This is the first time that the pathogenicity of P. vagabunda in olive leaves has been demonstrated.  相似文献   

20.
Plant extracts have been used against nematodes mainly in the third-world countries. The possibility of using leaves of olive trees for reducing populations of nematodes (Meloidogyne spp.) in the soil was investigated in the present work. The root-knot incidence in tomato roots was reduced as well as the presence of nematodes in the soil. The methanol extract of the leaves inhibited hatching of the eggs almost completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号