首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Grey leaf spot, caused by Magnaporthe oryzae, causes severe damage on perennial ryegrass (Lolium perenne) turf. In this study, the effects of relative humidity (RH, 88 to 100% at 28°C) on infection, colonization and conidiation of M. oryzae on perennial ryegrass were investigated in controlled humidity chambers. Results showed that the RH threshold for successful M. oryzae infection was ≥92% at 28°C. The advancement of infection on the leaf tissue was further examined with a green fluorescent protein (GFP)‐tagged M. oryzae strain. No appressorium formation was found when the inoculum was incubated at RH ≤ 88%. Additionally, the GFP‐tagged staining provided a rapid method to quantitatively compare the fungal colonization from leaf tissue at different levels of RH. The fluorescence intensity data indicated that the fungal biomass was highest at 100% RH and there was no fluorescence intensity observed at 88% RH or below. Conidiation was only observed when RH was ≥96%, with the most abundant conidiation occurring 8 days after inoculation. Reduced conidiation was associated with decreasing RH, and no conidiation occurred at RH ≤ 92%. This study indicates that infection and conidiation of M. oryzae on perennial ryegrass required different thresholds: 92% and 96% RH for infection and conidiation, respectively. The quantitative data from this research will assist in prediction of grey leaf spot disease outbreaks and of secondary infection of perennial ryegrass.  相似文献   

2.
Abstract

Angular leaf spot of beans caused by Phaeoisariopsis griseola is a major problem on this crop in Eastern Africa. The sources of inoculum for this disease were investigated. The causal fungus was confirmed as seedborne in all the cultivars tested. The fungus caused seed discolouration but not all infected seeds were discoloured. Seed to seedling transmission was low. The fungus survived in infected crop debris for a maximum of nine and four to six months under indoor and outside conditions respectively. Under soil, the fungus survived for only two months. Infected offseason crops and volunteer plants were present at the time of planting the seasons’ crops and were an obvious source of the inoculum. It is concluded that the seed, crop debris, off‐season crops and volunteer plants are all possible sources of P. griseola infection under the local conditions.  相似文献   

3.
甘肃省红豆草病原真菌鉴定及病害发生动态调查   总被引:4,自引:1,他引:3  
为明确甘肃省红豆草的病害种类、发生动态和危害状况,采用病原物分离与培养、形态学及分子生物学鉴定和致病性测定确定红豆草病害种类,于2012—2013年在通渭、渭源、榆中和碌曲4县调查各病害的发病率以确定发生动态,观察病害田间发生特点并结合调查数据评价其重要性。结果表明,4县共发生真菌性病害12种,分别为大茎点霉叶斑病(病原为大茎点霉属真菌Macrophoma sp.)、壳针孢叶斑病(病原为歪头菜壳针孢Septoria orobina)、炭疽病(病原为白蜡树刺盘孢Colletotrichum spaethianum)、黑秆病(病原为红豆草壳二孢Ascochyta onobrychis、菠菜刺盘孢C.spinaciae和链格孢Alternaria alternata混合侵染)、壳二孢叶斑病、茎点霉叶斑病、尾孢叶斑病、柱格孢白斑病、匍柄霉叶斑病、链格孢黑斑病、锈病和白粉病,其中大茎点霉属真菌、白蜡树刺盘孢和菠菜刺盘孢在红豆草上首次发现;尾孢叶斑病和壳针孢叶斑病为甘肃新记录病害;大茎点霉叶斑病为世界新病害,仅于碌曲县发现。白粉病、锈病、链格孢黑斑病发生于红豆草生长后期,其它病害则始于6月;6—9月危害加重的为黑秆病和柱格孢白斑病,发病率最高达89.7%和96.0%;危害渐轻的为茎点霉叶斑病、壳二孢叶斑病和壳针孢叶斑病,发病率最高达88.7%、57.4%和45.1%。黑秆病和茎点霉叶斑病在甘肃省目前危害最重。  相似文献   

4.
Abstract

A survey conducted during 1979–81 in Bangladesh revealed 20 rice diseases, including two viral, two bacterial, 13 fungal, two nematode and one micronutrient deficiency problem. Of these diseases. 16 appeared as major during the period under report. The number of diseases were 17, 16 and 16 during the Boro. Aus and transplant Aman seasons, respectively, with 12 common in all three seasons. Thirteen diseases including bacterial blight, bacterial leaf streak, sheath blight, sheath rot, blast, brown spot, grain spot, stem rot and leaf scald were classified as major; and tungro, bakanae, cercospora leaf spot and zinc‐deficiency were classified as either major or minor, and were common to all regions. Diseases not common in all regions were stack burn, root knot, and ufra classified as major or minor, and false smut, seedling blight. Yellow dwarf and damping off which were always classified as minor. Diseases which were typical for Boro. Aus and transplant Aman seasons were seedling blight and damping off. Yellow dwarf, and false smut respectively. Aus the most humid and warmest season, and the coastal humid areas experienced more major diseases. Seasonal and regional differences in the disease incidence appeared related to agro‐climatic variations.  相似文献   

5.
Septoria leaf spot, caused by Septoria lycopersici, is considered one of the most important diseases of tomato in Brazil. Despite its importance, the disease agent is still poorly studied. Septoria isolates collected from different production regions of Brazil were characterized by molecular, morphological, and pathogenic methods. A set of 104 isolates was sequenced for the DNA Tub, Cal, and EF1-α loci. Ten isolates were selected, according to geographical region of origin and type of leaf lesion (typical or atypical), for morphological characterization and for evaluation of aggressiveness on tomato cultivar Santa Clara. To evaluate the pathogen host range, cultivated and wild Solanaceae plants were inoculated with four selected isolates. The results showed that all isolates grouped with the type isolate of S. lycopersici in maximum likelihood and Bayesian inference trees. The isolates were morphologically similar. All isolates selected for pathogenicity testing on tomato were able to induce typical symptoms of the disease, but differed in their aggressiveness. A total of eight species of Solanaceae were also identified as potential alternative hosts for S. lycopersici. This information will provide a more accurate assessment of the risks involved with the introduction of new crops, especially of the genus Solanum, in areas where the species is already present. In addition, it will provide the basis for the establishment of more efficient methods in the management of Septoria leaf spot of tomatoes in natural conditions and in the different production systems.  相似文献   

6.
Leaf blight, sheath blight, and web blight are major diseases caused by Rhizoctonia species on both Fabaceae and Poaceae plant hosts in the Brazilian Amazon agroecosystem. To determine the diversity of Rhizoctonia species associated with foliar diseases on fabaceous (cowpea and soybean) and poaceous (rice and signal grass [Urochloa brizantha]) hosts, a broad survey was conducted in Pará, Rondônia, Roraima, and Mato Grosso, in the Amazon, from 2012 to 2013. We extended our survey to Cerrado areas of Mato Grosso, and the lowlands of Paraíba Valley, in São Paulo, where these Rhizoctonia foliar diseases have not been reported so far. Our findings revealed that these diseases are caused by a diversity of Rhizoctonia solani AG-1 complex. We detected that R. solani AG-1 IA (sexual phase Thanatephorus cucumeris) was the predominant pathogen associated with signal grass leaf blight and collar rot diseases in the Amazon, especially in Rondônia and northern Mato Grosso. In addition, a subgroup of R. solani (AG-1 IF), not previously reported in Brazil, was associated with leaf blight on cowpea and soybean, in Roraima. Another subgroup (AG-1 ID) was also detected in Roraima. In Mato Grosso Cerrados we did not find any of the major Rhizoctonia foliar pathogens. Instead, R. oryzae (Waitea circinata) was the predominant species associated with a collar rot on U. brizantha. In the lowlands of São Paulo, R. oryzae-sativae (Ceratobasidium oryzae-sativae) was the predominant pathogen detected causing the rice sheath spot disease.  相似文献   

7.
The effect of soluble silicon (Si) on photosynthetic parameters and soluble sugar concentrations was determined in leaves of rice cv. Oochikara and mutant plants of Oochikara defective in active Si uptake [low silicon 1 (lsi1)]. Plants were grown in hydroponic culture amended with 0 (?Si) or 2 mm Si (+Si), under either low or high photon flux density (PFD) and with or without inoculation with Bipolaris oryzae, the causal agent of brown spot of rice. Leaf Si concentration increased by 141 and 435% in +Si cv. Oochikara and by 119 and 251% in +Si lsi1 mutant plants under high and low PFD, respectively, compared with ?Si plants. Plant biomass accumulation was improved by Si regardless of PFD, especially plants for cv. Oochikara. Brown spot severity was highest in ?Si plants for cv. Oochikara and lsi1 mutant plants under low PFD. In the presence of Si, disease severity in plants grown under both low and high PFD was reduced, except for lsi1 mutant plants under high PFD. Plant inoculation reduced the photosynthetic parameters measured regardless of plant material or Si supply. A decrease of net carbon assimilation rate (A) of inoculated plants under low PFD compared with non‐inoculated plants was associated with damage in the photosynthetic apparatus, except for +Si cv. Oochikara in which stomatal restriction [low water vapour conductance (gs)] contributed to A reduction. Under high PFD, damage to the photosynthetic apparatus of inoculated plants was the main reason for the reduction in A for +Si and ?Si lsi1 mutant plants. In addition, for ?Si cv. Oochikara, a reduction in gs contributed to reduced A. However, for +Si cv. Oochikara, gs was the limiting factor for A. Inoculated plants of +Si cv. Oochikara had higher A values than +Si lsi1 mutant plants, regardless of environmental conditions. Soluble sugars were not detected in leaf tissues of plants under low PFD. For high PFD, Si improved the hexose concentration in non‐inoculated plants at 144 h after inoculation (hai) for lsi1 mutant plants and from 96 hai onwards for cv. Oochikara compared with ?Si plants. However, plant inoculation reduced hexose concentration compared with non‐inoculated plants, mainly in +Si plants, regardless of plant material. Sucrose concentration increased in leaves of cv. Oochikara in the presence of Si whether inoculated or not. For +Si lsi1 mutant plants, sucrose concentration increased only at 48 hai compared with ?Si plants, whether inoculated or not. The results of this study show that a minimum Si concentration is needed in leaf tissues of rice plants to avoid the negative impact of B. oryzae infection on photosynthesis and sugar concentration. High leaf Si concentration resulted in an increased soluble sugar concentration and together, but in independent ways, soluble sugar and Si reduced brown spot severity of rice.  相似文献   

8.
Abstract

Ramie, the vegetable fibre, is obtained from the stem of Boehmeria nivea (L.) Gaud, and is used in many textile products. It is grown in tropical, sub-tropical and temperate regions and the main countries where it is grown are China, Brazil and the Philippines. However, it is only a minor crop in terms of world trade. The diseases of ramie are discussed in relation to their occurrence, symptoms and control measures. The major and most widespread diseases are white fungus caused by Rosellinia necatrix, leaf spot caused by Cercosporo spp. and Phyllosticta spp., seedling rot caused by Rhizoctonia solani, cane rot caused by Macrophomina phaseolina and eye rot caused by Myrothecium roridum. A number of diseases of minor importance are also reviewed.  相似文献   

9.
In this study, the hypothesis was tested that removal of substrate for sporulation ofBotrytis spp. may lead to a retardation of an epidemic if the majority of the inoculum is produced inside the treated crop. Suppression of sporulation ofBotrytis spp. could be an attractive option for biological control ofBotrytis leaf spot in onions. In a field experiment, necrotic leaf tissue was removed to simulate the effect of a biocontrol agent. By this means, the amount of substrate on whichBotrytis spp. sporulates was reduced. In the experiment, the spore load above the onion plots was significantly reduced and the epidemic of onion leaf spot was retarded. At the end of the growing season, the number of leaf lesions in the green leaf area was lower in plots with substrate removal than in control plots (0.6 and 1.1 cm–2, respectively). The results demonstrated that an epidemic of onion leaf spot largely depends on the rate of inoculum production inside a crop. Thus, suppression of sporulation on necrotic leaf tissue is a valid control strategy that could be applied by using sporulation suppressing antagonists.  相似文献   

10.
Three field experiments were carried out with the bean cultivar Carioca Comum to investigate the relationships among visual and virtual severity of angular leaf spot (caused by Phaeoisariopsis griseola), area under visual and virtual disease progress curves (AUDPC), healthy leaf area index on any given day (HLAI), healthy leaf area duration (HAD), healthy leaf area absorption (HAA), effective leaf area duration (ELAD), effective leaf area absorption (ELAA) and yield of Phaseolus vulgaris. To obtain a wide range of disease severities, the plots were sprayed with fungicide at different stages of plant growth (before, during and after flowering). Visual and virtual severity and AUDPC showed no significant correlation with yield. However, HAD, HAA, ELAD and ELAA were significantly correlated with yield. Variables that considered the effective leaf area (ELAD and ELAA) provided similar or better coefficients of determination (R2) than those that considered the remaining green leaf area only (HAD and HAA). Single-point models with HLAI, effective leaf area index (ELAI), intercepted radiation by healthy leaf area (HRI) and intercepted radiation by effective leaf area (EHRI) to estimate yield at various times during the crop season were developed. The slope of the relationship between yield and HLAI, ELAI, HRI and EHRI proved to be stable, regardless of planting date and bean growth stage (from R6 to R8).  相似文献   

11.
BACKGROUND: Leaf‐cutting ants are considered to be one of the most important pest species of the New World. Until now, control strategies against these leaf‐cutting ants have mainly been synthetic chemicals. The aim of the present study was to test the action of several plant extracts quoted as an example by TRAMIL participative surveys for their insecticidal properties on adult major workers of Acromyrmex octospinosus. Three tests were used to that end: contact toxicity, repellent test and ingestion bioassay. Six traditional plant uses recommended by interviewed people in surveys were tested: (1) maceration of Mammea americana fresh crushed seeds; (2) decoction of Nerium oleander fresh leaves; (3) Nerium oleander dried leaf water juice; (4) decoction of Nicotiana tabacum dried leaves; (5) Trichillia pallida dried leaf water juice; (6) decoction of Rollinia mucosa dried seeds. RESULTS: Two plant extracts with contact toxicity (Mammea americana and Nicotiana tabacum), six plant extracts with repellent activity and four plant extracts with ingestion toxicity (Mammea americana, Nicotiana tabacum and both extracts of Nerium oleander) were found. CONCLUSION: The data presented in this study showed that plant extracts cited by TRAMIL ethnopharmacological surveys have the potential to control the leaf‐cutting ant, Acromyrmex octospinosus. In particular, the Mammea americana extract, with its natural low repellent effect and its high toxicity by ingestion, and Nerium oleander extracts, with their natural delay action, are possibly the best extracts for the control of these ants. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
A. HONGO 《Weed Research》1989,29(1):7-12
The survival and growth of seedlings of Rumex obtusifolius L. and Rumex crispus L. were investigated from 1982 to 1984. A sward was established by the sowing of seeds of Dactylis glomerata and Trifolium repens and managed under two cutting frequencies. Five hundred seeds of each Rumex species were sown m?2. The total number of emergent seedlings of each Rumex species over two seasons was 230–360 m?2. About 85% of them emerged within 3 months of sowing. Both Rumex species showed the same pattern of survivorship. Survival was clearly enhanced by frequent cutting during the second season. About 20% of the emerged plants survived through to the third season. Plants that emerged during the first season only flowered during the second season. The flowering percentage of total surviving plants was significantly higher in R. obtusifolius than in R. crispus. Rumex obtusifolius was higher in dry matter of aerial parts defoliated during the second season and more individual plants survived through to the third season than for R. crispus. Moreover, dry matter production of grass and clover was depressed by 25–30% in mixtures with R. obtusifolius. compared with production in mixtures with R. crispus.  相似文献   

13.
The effect ofPyricularia oryzae, the causal organism of leaf blast in rice, on photosynthetic rate of a rice crop was determined with mobile equipment in the field. Canopy CO2 exchanges rate (CER) was significantly reduced in plots inoculated withP. oryzae. The experimentally obtained data were used to evaluate the performance of a model for the effects of leaf blast on canopy photosynthesis. The model comprised photosynthesis and respiration routines of a mechanistic crop growth model, extended with submodels for effects of leaf blast on both processes. Canopy photosynthesis and the effect of leaf blast on CER were accurately simulated with the model.Analysis showed that the reduction in canopy photosynthesis was mainly due to an adverse effect of lesions on leaf photosynthetic rate and to shading by dead leaf are resulting from disease induced senescence. A sensitivity analysis demonstrated the importance of the vertical distribution of the disease in the canopy. This implies that disease monitoring for crop loss assessment should consider vertical disease distribution.  相似文献   

14.
Trichoderma spp. are common soil fungi used as biocontrol agents due to their capacity to produce antibiotics, induce systemic resistance in plants and parasitize phytopathogenic fungi of major agricultural importance. The present study investigated whether colonization of Arabidopsis thaliana seedlings by Trichoderma atroviride affected plant growth and development. Here it is shown that T. atroviride promotes growth in Arabidopsis. Moreover, T. atroviride produced indole compounds in liquid cultures. These results suggest that indoleacetic acid-related indoles (IAA-related indoles) produced by T. atroviride may have a stimulatory effect on plant growth. In addition, whether colonization of Arabidopsis roots by T. atroviride can induce systemic protection against foliar pathogens was tested. Arabidopsis roots inoculation with T. atroviride provided systemic protection to the leaves inoculated with bacterial and fungal pathogens. To investigate the possible pathway involved in the systemic resistance induced by T. atroviride, the expression profile of salicylic acid, jasmonic acid/ethylene, oxidative burst and camalexin related genes was assessed in Arabidopsis. T. atroviride induced an overlapped expression of defence-related genes of SA and JA/ET pathways, and of the gene involved in the synthesis of the antimicrobial phytoalexin, camalexin, both locally and systemically. This is the first report where colonization of Arabidopsis roots by T. atroviride induces the expression of SA and JA/ET pathways simultaneously to confer resistance against hemibiotrophic and necrotrophic phytopathogens. The beneficial effects induced by the inoculation of Arabidopsis roots with T. atroviride and the induction of the plant defence system suggest a molecular dialogue between these organisms.  相似文献   

15.
In May 1998 and 1999, two types of leaf spot (black type and brown type) caused by Phoma spp. were found on Farfugium japonicum in Tokyo and in Gunma Prefecture, Japan. The fungus isolated from black-type lesions caused only black-type lesions, and the fungus from brown-type lesions caused only brown-type lesions. We propose to name these diseases black leaf spot of F. japonicum (kokuhan-byo in Japanese) for the disease with black lesions and circular leaf spot of F. japonicum (rinmon-byo in Japanese) for the disease with brown lesions. This is the first report on leaf diseases of F. japonicum caused by Phoma spp.  相似文献   

16.
 The root endophytic fungus Heteroconium chaetospira isolate OGR-3 was tested for its ability to induce systemic resistance in Chinese cabbage against bacterial leaf spot caused by Pseudomonas syringae pv. maculicola and Alternaria leaf spot caused by Alternaria brassicae of the foliar diseases. Chinese cabbage seedlings planted in soil infested with an isolate of H. chaetospira were incubated in a growth chamber for 32 days. The first to fourth true leaves of the seedlings were challenge-inoculated with P. syringae pv. maculicola or A. brassicae. Chinese cabbage planted in soil infested with H. chaetospira showed significant decreases in the number of lesions of bacterial leaf spot or Alternaria leaf spot when compared to the control plants not treated with H. chaetospira. The results indicated that colonization of roots by H. chaetospira could induce systemic resistance in Chinese cabbage and reduce the incidence of bacterial leaf spot and Alternaria leaf spot. Received: April 24, 2002 / Accepted: August 9, 2002  相似文献   

17.
The causal agent of leaf spot disease of oil palm (Elaeis guineensis) seedling nurseries in Thailand was identified as Curvularia oryzae. The fungus was isolated from leaves with disease symptoms, characterized by morphological properties, and pathogenicity tested. The identity of the phytopathogenic fungus was confirmed through polymerase chain reaction analysis using internal transcribed spacer (ITS) primers, which amplified about a 1 kb product. Sequencing this DNA product confirmed this pathogen was C. oryzae. Furthermore, the pathogenicity test showed that C. oryzae could infect oil palm seedlings.  相似文献   

18.
Data from surveys of winter oilseed rape crops in England and Wales in growing seasons with harvests in 1987–99 were used to construct statistical models to predict, in autumn (October), the incidence of light leaf spot caused by Pyrenopeziza brassicae on winter oilseed rape crops the following spring (March/April), at both regional and individual crop scales. Regions (groups of counties) with similar seasonal patterns of incidence (percentage of plants affected) of light leaf spot were defined by using principal coordinates analysis on the survey data. At the regional scale, explanatory variables for the statistical models were regional weather (mean summer temperature and mean monthly winter rainfall) and survey data for regional light leaf spot incidence (percentage of plants with affected pods) in July of the previous season. At the crop scale, further explanatory variables were crop cultivar (light leaf spot resistance rating), sowing date (number of weeks before/after 1 September), autumn fungicide use and light leaf spot incidence in autumn. Risk of severe light leaf spot (> 25% plants affected) in a crop in spring was also predicted, and uncertainty in predictions was assessed. The models were validated using data from spring surveys of winter oilseed rape crops in England and Wales from 2000 to 2003, and reasons for uncertainty in predictions for individual crops are discussed.  相似文献   

19.
The effects of essential oils (EO), cold water (CWE), hot water (HWE) and ethanol (ETHE) extracts of Callistemon citrinus L. and Cymbopogon citratus (DC) Stapf on the radial growth of Alternaria padwickii (Ganguly) M.B. Ellis and Bipolaris oryzae (Breda de Haan) Shoemaker, the control of brown spot disease, the tillering, the number of panicles and the yield increase in rice were evaluated under laboratory and field conditions. In vitro, the growth of both fungi was completely inhibited by the EO of C. citrinus and C. citratus at 4,520 μg/ml and 452 μg/ml, respectively. For solvent extracts, the ETHE of C. citrinus was the most active and inhibited 80–85 % of the fungal growth followed by the CWE of C. citratus with 77 % and 36 % diameter reduction against B. oryzae and A. padwickii, respectively at 10 000 μg/ml. Under laboratory conditions, seed treatment with the EO of C. citrinus reduced the incidence of B. oryzae in seeds by 85–100 % compared to the non-treated controls. Similarly, the seed treatment increased the germination of an irrigated rice cultivar by 10.6 %, whereas the percentage of germinated seeds of upland rice was not significantly affected. The highest germination (85–94 %) was found in the non-treated and treated samples with a low incidence (0–4 %) of B. oryzae. Under field conditions, the combined use of the essential oil of C. citrinus as a seed treatment and spraying the plants with 2 % ethanol followed by 2 % (w/v) aqueous extracts of C. citrinus or C. citratus increased the emergence, tillering, panicles/plant and the grain yield by 25–55 % of the irrigated rice. In addition, the brown spot severity was reduced by 36–42 %. For the upland rice, the treatments led to similar results with the grain yield increase of 54–137 % and 20–80 % reduction in the brown spot severity. From our results, we concluded that the EO and solvent extracts of C. citrinus and C. citratus have potential as control agents against brown spot and other seed-borne fungal diseases in rice under both conventional and organic farming.  相似文献   

20.
Brown leaf spot disease caused by Cylindrocladium was found on Howea belmoreana on Hachijojima Island, Tokyo, Japan, in December 2001. Typical symptoms were incited after artificial inoculation. A culture of white mycelia, isolated from leaf spot symptoms, produced reddish perithecia of a nectriaceous fungus. Based on morphological and molecular analyses, this fungus was identified as Calonectria ilicicola (anamorph: Cylindrocladium parasiticum). Pathogenicity of this fungus on five plants cultivated on Hachijojima Island was confirmed by artificial inoculation. This report is the first on Cylindrocladium brown leaf spot of H. belmoreana caused by C. ilicicola (anamorph: Cy. parasiticum).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号