首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty podophyllotoxin analogues were first tested for their insecticidal activity against the fifth-instar larvae of Brontispa longissima in vivo. Among them, compounds 6-9 and 19 showed more promising and pronounced insecticidal activity than toosendanin, a commercial insecticide derived from Melia azedarach. The different insecticidal activity ranges of compounds 1-20 indicated that variation of chemical structures in the podophyllotoxin skeleton markedly affected the activity profiles of this compound class, and some important SAR information has been revealed from it. The results obtained from SAR analysis show good correlation with the docking models as well as with QSAR studies, which allows for the rational design of more potent podophyllotoxin derivatives in the development of potential new insecticides.  相似文献   

2.
In order to find the biorational pesticides, we have synthesized two series of daphneolone analogues including 5-methylfuryl chalcones and 5-nitrofuryl chalcones by optimizing daphneolone analogues from Stellera chamaejasme L. with the good insecticidal properties of Qinghai-Tibet Plateau. All the synthesized compounds have been evaluated for anti-plant pathogenic fungi activities. The bioactivity assay showed that some of these daphneolone analogues were potentially active against plant pathogenic fungi, Rhizoctonia solani, Gibberella zeae, Bipolaris maydis, Sclerotia sclerotium and Botrytis cirerea, while the most potent 1-(2,4-dichlorophenyl)-3-(5-methylfuran-2-yl)propenone (compound 7) in this study showed good inhibitory activity against R. solani at 200 mg L−1 with ca. 100% inhibition.  相似文献   

3.
A series of novel 7-bromo substituted derivatives of quinolinecarboxylate (4a-i) have been synthesized with short synthetic route and high yields. The structures were confirmed by 1H NMR, IR and MS. Anticoccidial activities of these compounds were evaluated according to the ACI (the anticoccidial index) method. The results indicated that four of the tested compounds (4a, 4b, 4e and 4g) exhibited anticoccidial activities obviously against Eimeria tenella at a dose of 27 mg kg−1 in the chicken’ diet. In particular, the anticoccidial index of compound 4b (introduction 4-bromophenoxy at C-6 and bromine atom at C-7 of quinolinecarboxylate) was 170.0, which indicated that this compound has high anticoccidial activity.  相似文献   

4.
A series of 3-(2-(2-methoxyphenyl)-2-oxoethyl) quinazolinone derivatives were designed and synthesized as anticoccidial agents by modifying the quinazoline ring of febrifugine. All the compounds were biologically evaluated according to the ACI method, and four of them exhibited anticoccidial activity against Eimeria tenella in the chicken at a dose of 9 mg/kg. Compound 5e shows ACI value at 173.2 and is as potent as decoquinate. These data suggest that 5e possesses high anticoccidial activity and may serve as a lead compound for the development of anticoccidial drugs in the future.  相似文献   

5.
Novel acylpyridinium salt chemistry and directed lithiation methodology was developed to add for the first time substitutions directly to the phenylpyridine heterocyclic ring of nicotine. A variety of 3-(1-methylpyrrolidin-2-yl)-4-(alkyl, aromatic, heterocyclic and silanyl) and -N-alkyl pyridines were synthesized (compounds 1-9). In vial tests with the green peach aphid, Myzus persicae, compounds 1-4 were 1.1, 1.8, 2.3 and 1.9×, respectively, more active than nicotine and 64, 40, 31 and 38×, respectively, less active than acetamiprid. Against the western flower thrips, Frankliniella occidentalis, 1-4 were 1.4, 2.1, 2.0 and 1.6×, respectively, more active than nicotine and 9, 6, 6 and 8×, respectively, less active than acetamiprid. For the cotton aphid, Aphis gossypii, the activity of 1-9 was similar to nicotine. Compounds 7 and 9 when incorporated into artificial diet produced low mortality for larvae of the beet armyworm, Spodoptera exigua, but were not active against the corn earworm, Helicoverpa zea. When 1-4 and 6-9 were injected into larvae of the beet armyworm, a variety of symptoms similar to acetamiprid were observed which included tremors, uncoordinated movement, diuresis, paralysis and death. In addition, imidacloprid-binding to membranes from the house fly head, Musca domestica, was inhibited by compounds 1-9, when using a concentration range of 1-100 μM. These studies demonstrate that our new chemistry enhances the insecticidal activity of nicotine with an apparent mode of action as an acetylcholine agonist.  相似文献   

6.
A series of nicotinamide derivatives based on Boscalid were prepared and tested for their activities against seven plant pathogenic fungi and two insects. The preliminary bioassays indicated that almost all of the synthesized target compounds displayed the antifungal activities and some of them also had certain insecticidal activities. And, compound 12 showed the strongest activity of all against Rhizoctonia solani (EC50 = 0.010 mg L−1) and Sphaceloma ampelimum (EC50 = 0.040 mg L−1), even stronger than Boscalid, a new nicotinamide fungicide. Additionally, both compounds 1 and 2 showed strong activities against Plutella xylostella (90% and 80%, respectively, at 1000 mg L−1).  相似文献   

7.
6α,7β-Dihydroxyvouacapan-17β-oic acid (1) and methyl 6α,7β-dihydroxyvouacapan-17β-oate (8) were isolated from Pterodon polygalaeflorus Benth. 1 was modified to obtain 6α-hydroxyvouacapan-7-β,17β lactone (2). Then, 6-oxovouacapan-7β,17β lactone (3) was obtained from 2. The furanoditerpene ester derivatives: propyl 7β-hydroxy-6-oxovouacapan-17β-oate (4), butyl 7β-hydroxy-6-oxovouacapan-17β-oate (5), 2-methoxyethyl 7β-hydroxy-6-oxovouacapan-17β-oate (6) and 3-methylbut-2-enyl 7β-hydroxy-6-oxovouacapan-17β-oate (7) were synthesized from (3) and methyl 6α,7β-thiocarbonyldioxyvouacapan-17β-oate (9) was obtained from (8). In this work, the lactone ester derivatives 4-7 and 9 were tested on photosynthetic activities in an attempt to search for new compounds as potential herbicide agents that affect photosynthesis. All compounds inhibited ATP synthesis and electron flow from water to MV, therefore, they act as Hill reaction inhibitors, being 4- to 9-fold more potent than 2 and 3 as inhibitors of ATP synthesis. Their interaction site was located at PSII in a similar way to diuron. Furthermore, furanoditerpene esters 6 and 7 act as uncouplers, and were corroborated by enhancement of the light-activated Mg2+-ATPase, while 5 act as an energy transfer inhibitor. Finally 5-7 behave as herbicides, since they inhibit the biomass production of weeds assay.  相似文献   

8.
The present study was undertaken to identify noncompetitive γ-aminobutyric acid receptor (GABAR) antagonists that are effective in nematodes, as well as to examine the hypothesis that the noncompetitive antagonism of the GABAR underlies the nematocidal activity of quassinoids against free-living nematodes of the Diplogastridae family. First, 14 known GABAR antagonists were screened for the effectiveness of their nematocidal activity in Diplogastridae. As a result, 3-isopropyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane 1-sulfides (3-isopropyl-BPTs) were found to have high nematocidal activities, and 4-cyclohexyl-3-isopropyl-BPT (23) and 3-isopropyl-4-(2-propenyl)-BPT (27) were the two most potent analogues; these compounds are equipotent to samaderine B and more potent than the anthelmintic abamectin. 23-resistant nematodes, selected by challenge with 23, showed cross-resistance to samaderine B. 23 (10 μM) reduced [3H]23 binding to nematode membranes by 30.4%. Samaderine B (10 μM) resulted in a similar level of the inhibition, but had neither additive nor synergistic effects on the 23 inhibition of [3H]23 binding. These findings suggest that samaderine B shares a common binding site with the GABAR antagonist 23 in Diplogastridae. The results of comparative molecular field analysis, a method of three-dimensional quantitative structure-activity relationship analysis, supported this conclusion.  相似文献   

9.
Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10−4 nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm2 for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm2 against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm2 compared to DEET (MED of 0.091 μmol/cm2). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm2 which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent activity of para- trifluoromethylphenyl amides.  相似文献   

10.
The biological effects of two important medicinal plants, Artemisia annua L. and Achillea millefolium (L.) (viz, mortality, growth, and feeding indices as well as enzyme and non-enzymatic activities) were studied on small white Pieris rapae L a deleterious pest of cruciferous plants under controlled conditions (16:8 h L:D at 25 ± 1 °C and 65 ± 5% RH). The LC50 and LC25 values were 9.387% and 3.645% for A. annua L. and 4.19% and 1.69% for A. millefolium (L.), respectively. At the lowest concentration (0.625%), the deterrency was 29.826% and 44.185% for A. annua L. and A. millefolium (L.), respectively. Feeding indices were variously affected with changes in a number of parameters and an increase in larval and pupal duration. The activity level of alkaline phosphatase increased sharply while alanin and aspartate aminotransferases showed a sharp decrease. For non-enzymatic compounds, the amount of glucose and uric acid increased, but total protein and cholesterol decreased. These results indicate that these two medicinal plants might possess potential secondary metabolites that may be useful for controlling potential insect pests.  相似文献   

11.
γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [3H]4′-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [3H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [3H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [3H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [3H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [3H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [3H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides in insect GABARs.  相似文献   

12.
13.
The hemocyanin of Oncomelania hupensis (OhH) is essential for the survival of O. hupensis and may be an effective target for the development of new molluscicide. 4-(Chloroacetyl)catechol is a substrate analogue of OhH. In this study, we evaluated the toxicity of 4-(chloroacetyl)catechol to O. hupensis and Kunming mice. 4-(Chloroacetyl)catechol had strong molluscicidal activities and the molluscicidal activities was time and dose-dependent. With the increase of exposure time, the LC50 values of the 4-(chloroacetyl)catechol decreased from 6.5 mg/L (24 h) to 3.1 mg/L (72 h). The LC90 values decreased from 16.4 mg/L (24 h) to 4.9 mg/L (72 h). In the acute toxicity test of mice, no evident poisoning symptoms and no animal death were detected after 14 days’ continuous observation, which indicated that 4-(chloroacetyl)catechol was a low toxic substance for Kunming mice. These results indicated that 4-(chloroacetyl)catechol is potent molluscicides.  相似文献   

14.
Freshwater fish, Channa punctatus, commonly known as the snakehead fish, was exposed to two sublethal concentrations (0.96 and 1.86 mg/L) (selected on the basis of 1/20 and 1/10 of 96 h LC50 value) of monocrotophos for two exposure periods (15 and 60 days). Effects of monocrotophos on Na+, K+-ATPase in liver, kidney, muscle, intestine, brain, heart and gills were determined. Results indicate that Na+, K+-ATPase activity in tissues decreased as concentration of monocrotophos and exposure period increased. Monocrotophos induced significant inhibitory effects on the Na+, K+-ATPase activity of C. punctatus, ranging from gills (70%) > Kidney (63%) > brain (57%) > intestine (52%) > liver (50%) > muscle (47%) > heart (44%) inhibition at a sublethal concentration of 0.96 mg/L. Significant inhibition was detected in Na+, K+-ATPase activity, ranging from gills (90%) > heart (78%) > kidney (78%) > muscle (74%) > intestine (71%) > brain (67%) > liver (63%) at sublethal concentration of 1.86 mg/L. After subacute exposure (15 days) only gills and brain showed significant inhibition after higher concentration (1.86 mg/L). However, it is evident that exposure duration is more important than dose in the inhibition of the activity of enzyme. At lower concentration initial stimulation of the activity of Na+, K+-ATPase activity was also noticed. It is suggested that the inhibition of the ATPase by monocrotophos blocked the active transport system of the gill epithelial as well as chloride cells, glomerular and epithelial cells of the tubules and thus altered the osmoregulatory mechanism of the fish. In fact, the impairment of the activity of enzymes which carry out key physiological roles could cause alterations of the physiology of the whole organism.  相似文献   

15.
Sensitivity to tricyclazole of 129 single-conidial isolates of rice blast fungus, Magnaporthe grisea, was determined. EC50 values ranged from 0.06 to 1.12 mg/L with an average value of 0.46 ± 0.09 mg/L according to the detached leaf segment tests. No significant difference of sensitivity was observed between isolates from Guangdong and Jiangsu where decreased efficacy was reported, and from two other provinces where tricyclazole provided excellent disease control. In seedling tests, tricyclazole could control the most tolerant isolate GY-6 successfully with a efficacy of 81.5% at the concentration of 40 mg/L. Sensitivities of GY-6 and DY-2, the most sensitive isolate, to tricyclazole were both unstable in sub-cultured single-conidial offspring isolates, with respective mean EC50 values of 5.40 ± 0.97 and 4.50 ± 0.88 mg/L calculated from seedling tests. There was no amino acid difference between them in the coding sequences of 1,3,6,8-tetrahydroxynaphthalene reductase and 1,3,8-trihydroxynaphthalene reductase. These results suggested that the decreased control reported in Guangdong and Jiangsu could not be attributed to the occurrence of resistance. When continuously “inoculated-reisolated-reinoculated” under the selection of tricyclazole in vivo, sensitivity of DY-2 decreased 10-fold after 20 generations, although the sensitivity of GY-6 did not shift significantly.  相似文献   

16.
Brucea javanica (L.) Merr. is a medicine plant distributed widely throughout Asia where its bitter fruits have been used traditionally in medicine for treating various ailments and controlling some pests. In recent years, concerns over the potential impact of synthetic pesticides on human health and environment have now become more pressing to develop environmentally friendly pesticides. In this paper, brusatol, a quassinoid, was isolated from the fruit of B. javanica, and identified using X-ray crystallographic analysis. Results showed that brusatol has potent contact toxicity (LD50, 2.91 μg/larva, 72 h) and anfieedant activity (AFC50, 17.4 mg/L, 48 h) against the third-instar larvae of Spodoptera exigua. Brusatol demonstrated cytotoxic effects to the tested insect cell lines, IOZCAS-Spex-II and Sf21, in a time- and dose-dependent manner. After brusatol treatment, apoptotic cell death with the DNA fragmentation, activation of caspase-3 and release of cytochrome c was preliminarily observed in both IOZCAS-Spex-II and Sf21. These results indicated the existence of apoptotic death with the mitochondrial-dependent pathway induced by brusatol in Sf21 and IOZCAS-Spex-II cell lines. Our studies will provide important knowledge to understand mechanisms of action of brusatol and to develop brusatol and its derivatives as insecticides.  相似文献   

17.
Of the huge annual worldwide production (500,000 MT in 1997) of alkylphenol polyethoxylates (APEs) that are widely used as nonionic surfactants and anti-oxidants in variety of products, 60% ends up in water bodies. They undergo biodegradation to form octyl-, butyl-, and nonyl-phenols. This experiment evaluated effects of 4-tert-butyl phenol (4-TBP) in Cyprinus carpio, a projected candidate species in sewage fed fisheries. The 96th h LC50 of 4-TBP was found to be 6.9 mg/L. Fishes were treated with 1/10th (0.69 mg/L), 1/5th (1.38 mg/L), and 1/3rd (2.3 mg/L) dose of LC50. Whereas there was significant (P < 0.01) decrease in alkaline phosphatase [EC 3.1.3.1] and aspartate aminotransferase [EC 2.6.1.1] activity; alanine aminotranferase [EC 2.6.1.2] and acid phosphatase [3.1.3.2] (except decrease at 1/10th dose of LC50) activity, vitellogenin production in muscle and hepatic- and reno-somatic indices were increased compared to control. With all the dose levels tested, testicular-somatic index (testis size) was reduced (P < 0.01) and histo-architectural changes in testicular and liver tissue were found even in group given 1/3rd dose of LC50.  相似文献   

18.
The insecticidal activity of four forms of Hong Jing (HJ) allylisothiocyanate (AITC), AITC + cypermethrin (HJA, HJB, and HJC) with ratio of (1:1, 4:1, and 2:1), pure AITC (HJD), and two forms of Hong Du (HD) AITC, AITC + chlorpyrifos (HDA and HDB) with ratio of (2:1 and 2:1), respectively, were studied on the major cruciferous insect larvae Plutella xylostella (L.) and Pieris rapae (L.) by combining both spraying and dipping methods. The P. rapae was more susceptible than P. xylostella larvae. The LC50 values 72 h after treatment of AITC forms (HJB, HJA, HJC, HJD, HDB, and HDA) on the P. rapae were; 0.07, 0.08, 0.16, 0.83, 0.26, 1.08 gL−1, and 0.69, 0.26, 5.45, 0.93, 3.01, 5.98 gL−1 on the P. xylostella, respectively. The toxicity of some of the AITC forms was very close to or better than that of the commercial contact insecticides such as chlorpyrifos (LC50 = 0.03 and 0.04 gL−1 on P. rapae and P. xylostella, respectively), and cypermethrin (0.65 and 0.78 gL−1, respectively, against P. rapae and P. xylostella). The ultrastructural studies on the integument of the third larval instar of P. xylostella treated by sub-lethal concentration (LC20) of HJB, HJD, and HDB were carried out by using transmission electron microscope. The more pronounced alterations in the hypodermis and mitochondria cells. They exhibited changes in all treated samples. The hypodermis was almost completely destroyed, and the mitochondria exhibited morphological alterations, represented by enlargement, matrix rarefaction and vacuolization of the mitochondria matrix, quantity of cristae reduced, and density electron matrix lessened. These AITC forms have potential as contact insecticides, and the ultra structural observations confirm the insecticidal efficiency of different AITC forms on P. rapae and P. xylostella.  相似文献   

19.
In the present study cytogenetic effects of atrazine herbicide, were examined on the root meristem cells of Allium cepa and Vicia faba. Test concentrations were chosen by calculating EC50 values of formulated atrazine against both the test systems which determined to be 30 mg l−1 for A. cepa and 35 mg l−1 for V. faba, respectively. For cytogenetic effects root meristem cells of A. cepa were exposed to 15, 30 or 60 mg l−1 whereas V. faba to 17.5, 35 or 70 mg l−1 for 4 or 24 h. Roots exposed for 4 or 24 h, after sampling, were left in water for 24 h recovery and sampled at 24 h post-exposure. A set of onion bulbs or seedlings of V. faba exposed to DMSO (0.3%) was run parallel for negative control. Treatment of atrazine significantly and dose-dependently inhibited the mitotic index (MI) and induced micronucleus formation (MN) chromosome aberrations (CA) and mitotic aberrations (MA) in both the test systems at 4 or 24 h. Root meristem cells examined at 24 h post-exposure also revealed significant (p < 0.001) frequencies of MN, CA or MA despite considerable decline. Chromosome breaks and fragments were found to be major CA whereas C-metaphase, chromosome bridges and laggards were prevalent MA. Results of our study, indicate that atrazine may produce genotoxic effects in plants. Further, both the plant bioassays found to be sensitive indicators for the genotoxicity assessment as the outcome of majority of in vivo/in vitro mammalian tests are comparable.  相似文献   

20.
Nile Tilapia (Oreochromis niloticus) juveniles were exposed to different concentrations of Folidol 600® in static toxicity tests. The 24, 48, 72 and 96 h LC50 values of Folidol 600® to O. niloticus were 17.82, 8.91, 4.00 and 2.70 mg L−1, respectively. The values of hematological parameters increased, and inhibition of cholinesterases activity (AChE, BChE and PChE) in plasma of fish exposed to the higher concentrations of pesticide reached 94%. Furthermore, the exposure of Tilapia to Folidol 600® caused an increase of 4%, 20% and 38.4% in oxygen consumption at 0.1, 0.5 and 1.0 mg L−1, respectively. However, exposure to 2.5, 5.0 and 10 mg L−1 caused a decrease of 33.6%, 35.2% and 42.4% in oxygen consumption relative to the control. The ammonium excretion of fish exposed to 0.0, 0.1, 0.5, 1.0, 2.5, 5.0 and 10.0 mg Folidol 600®/L was 0.12, 0.18, 0.30, 0.33, 0.37, 0.36 and 0.33 μg/g/min, i.e., 50%, 150%, 175%, 208%, 200% and 175% increase, respectively, relative to the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号