首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于叶片SPAD值的滴灌春小麦氮肥分期施用推荐模型   总被引:2,自引:0,他引:2  
试验于2014—2015年进行,利用2014年田间试验建立基于叶片SPAD值的滴灌春小麦氮肥分期施用推荐模型,2015年进行推荐模型的验证实验。结果表明:在滴灌春小麦拔节期、孕穗期、抽穗期和灌浆期,随着氮肥施用量的增加,小麦叶片SPAD值均呈线性增加的趋势;各生育期叶片SPAD值与产量具有显著的相关性;全生育期最佳施氮量为261 kg·hm-2;滴灌春小麦拔节期、孕穗期、抽穗期和灌浆期叶片SPAD临界值分别为42.4、39.4、41.8、54.1;建立了基于叶片SPAD值的滴灌春小麦氮肥分期施用推荐模型,在保证产量的前提下,基于模型推荐施肥可以节约肥料7.86%,提高氮肥利用率9.64%。研究得出,小麦叶片SPAD值可以指导滴灌春小麦氮肥分期施用。  相似文献   

2.
叶绿素含量是评估棉花生长状况的重要参数,估算叶绿素含量对于棉花生长监测具有重要意义。以渭北旱塬区种植的棉花为试验材料,测量全生育期棉花叶片SPAD值与冠层反射率光谱,将原始高光谱反射率、一阶微分光谱反射率、不同波段组合的遥感光谱参数分别与SPAD值做相关性分析,用传统回归分析方法构建五种重要光谱参数的SPAD值预测模型,同时,采用PLSR方法建立全生育期SPAD值的估算模型。最后对模型进行检验,筛选出精度最高的模型。建模结果表明,基于多种光谱参数的全生育期PLSR预测模型精度最高、预测效果最好,估算模型的决定系数R~2为0.733,验证模型R~2为0.737。PLSR方法建立的多光谱参数的SPAD值估算模型预测效果显著,利用高光谱技术对棉花SPAD值进行监测,可为全生育期棉花长势遥感监测提供依据。  相似文献   

3.
基于随机森林回归的油菜叶片SPAD值遥感估算   总被引:1,自引:0,他引:1  
以西北地区典型经济作物油菜为研究对象,利用SVC-1024i型便携式光谱仪和SPAD-502型叶绿素仪测定了油菜不同生育期的叶片光谱反射率和SPAD值。通过分析油菜原始光谱及10种光谱指数与SPAD值的相关关系,基于光谱指数构建了不同生育期油菜叶片SPAD值随机森林回归(RF)估算模型,并利用独立样本对所建模型进行验证,同时结合传统的一元线性回归模型和多元逐步回归模型与其进行比较。结果表明:油菜叶片SPAD值在全生育期内呈现出先上升后下降的趋势;各光谱指数在不同生育期及全生育期与SPAD值的相关性均达到0.01水平的显著相关;基于光谱指数构建的随机森林回归模型在油菜各个生育期及全生育期建模和预测结果明显优于同期的传统回归模型,建模R2达0.90以上,验证R2达0.81以上,RMSE在1.571~5.004,RE在2.66%~13.22%,是油菜叶片SPAD值的最优估算模型。  相似文献   

4.
文中基于高光谱与田间试验进行了甜菜不同生育时期(甜菜幼苗期、叶丛生长期、块根膨大期和糖分积累期)SPAD值估测研究。采用便携式ASD光谱仪和SPAD-502叶绿素仪分别实测了甜菜冠层反射光谱和SPAD值,分析不同生育时期冠层高光谱响应特征,并对12种光谱指数与不同生育时期的冠层SPAD值进行相关性分析,最后建立了SPAD值的最佳估测模型。研究结果表明:在可见光波段(450-680nm)与近红外波段(760-950nm),甜菜不同生育时期冠层反射光谱存在明显差异;不同生育时期所筛选的3种光谱指数与SPAD值均达到了极显著(p<0.01)或显著(p<0.05)相关水平;甜菜幼苗期、叶丛生长期、块根膨大期和糖分积累期分别以NDVI、SDr/SDy、CCI和SDb为单一自变量所建立的估测模型最佳,模型决定系数R~2分别达到了0.573、0.212、0.363和0.324。  相似文献   

5.
猕猴桃叶片SPAD值高光谱估算模型构建   总被引:1,自引:0,他引:1  
利用便携式野外光谱辐射仪和叶绿素仪在陕西杨凌蒋家寨村测定了猕猴桃不同生育期叶片光谱反射率及其对应的叶绿素相对含量(SPAD)值,通过分析其光谱反射率、一阶微分光谱和SPAD的相关关系,构建了不同生育期基于红边位置、红边幅值、红边偏度和红边峰度的SPAD估算的单因素回归模型和多元逐步回归模型。结果表明:(1)随着猕猴桃叶片叶绿素含量升高,红边位置"红移",红边幅值随着SPAD值的增大而递减,红边面积有所减小,红边曲线形状由右偏逐渐转变为左偏,峰度值逐渐降低;(2)红边偏度能够更好地反映叶片叶绿素含量;(3)在不同生育期,均以红边偏度建立的单因素模型效果最好,建模R2分别为0.821、0.874、0.842;(4)与单因素多项式回归模型相比,多元逐步回归模型在不同生育期均有更好的建模精度和预测精度,在不同生育期,其预测R2分别为0.848、0.926、和0.850,是估算猕猴桃叶片SPAD值的最佳模型。  相似文献   

6.
基于无人机高光谱影像玉米叶绿素含量估算   总被引:3,自引:0,他引:3  
以无人机为平台搭载高光谱相机获得玉米农田高光谱影像,从中提取光谱特征参数,构建玉米叶片叶绿素含量估算模型,并制作玉米叶片叶绿素含量分布图。结果表明,以红边面积(SDr)、红边一阶微分最大值(Dr)、差值植被指数(DVI)为自变量构建的回归模型建模精度较高,以此反演玉米叶片SPAD值分布图并对填图结果进行精度检验,得出SPAD-Dr模型填图预测效果最佳(R2=0.89,RMSE=1.28,RE=2.31),可以作为玉米叶片叶绿素含量无人机高光谱影像遥感反演估算的基本模型。  相似文献   

7.
研究了2014-10—2015-06生长季内6个不同熟性冬小麦品种全生育期内叶片形状系数的变化规律,将小麦生育期划分为出苗、返青、拔节、抽穗、开花、成熟等6个不同生长阶段,依次采样计算各个阶段的α均值,同时考虑α值在单个植株不同叶片之间的差异,以及不同冬小麦品种之间的差异。结果表明:α值总体在0.59到0.71之间,随冬小麦生育期的变化而变化,自苗期到开花期波动增大,开花后缓慢下降;在单个植株之内,α值变异性较大,开花期最为稳定,开花后变异性增加;不同熟性冬小麦品种之间,α值在拔节、抽穗和开花期表现出显著差异,而在出苗、返青和成熟期,差异不显著。因此,建议最好在不同的作物生长阶段采用不同的叶片性状系数,以提高叶面积模拟和预测精度。对全生育期3种熟性6个冬小麦品种的1 485个叶片的面积和长宽乘积进行线性回归分析,可知总体的冬小麦叶片形状系数值约为0.66。以叶面积模型LA=0.66×L×W来估算冬小麦叶片面积,其总体的相对均方根误差(RRMSE)约为4.40%,绝对相对误差(absolute relative error,ARE)约为13.05%,在5种不同叶面积估算模型中精度最高,因此推荐该模型用于估算田间小麦叶片面积。  相似文献   

8.
利用天水地区2007~2010年的冬小麦叶绿素含量(SPAD值)和土壤含水量实际观测资料,分析了土壤水分含量和SPAD值在冬小麦生育期内的动态变化过程,研究了冬小麦叶片SPAD值与不同深度土层土壤水分含量的关系,以及SPAD值与冬小麦生长量、产量构成要素和地段实产的关系。结果表明:(1)在冬小麦生育期内土壤含水量呈现减小趋势,叶片SPAD值则经历了一个先升高后降低的过程,浅层土壤含水量更易受降水的影响而升高;(2)土壤水分含量对冬小麦叶片SPAD值的影响主要集中开花期至乳熟期,土壤水分含量高的年份叶片SPAD值较高,反之则较低;(3)中浅层土壤水分含量与10d后冬小麦叶片SPAD值有显著的正相关性;(4)冬小麦叶片SPAD值与部分生长量和产量构成要素存在相关关系,但是与地段实际产量关系较弱。  相似文献   

9.
基于高光谱的渭北旱塬区棉花冠层叶面积指数估算   总被引:2,自引:0,他引:2  
以棉花冠层高光谱反射率与冠层叶片叶面积指数(LAI)为数据源,在分析LAI与原始高光谱反射率、一阶微分光谱反射率、光谱提取变量和植被指数相关性的基础上,采用一元线性与多元回归的方法构建了棉花LAI高光谱估算模型,并进行精度估算。结果显示,在可见光范围内随着生育期的推进及施氮量的增加冠层光谱反射率逐渐降低,在近红外范围内从苗期到花铃期随着施氮量增加反射率逐渐增加,花铃期到吐絮期反射率明显降低;各生育期冠层光谱的提取变量与LAI的相关性不强,全生育期各种光谱提取量及植被指数与LAI的相关性高于不同生育期;棉花冠层叶片LAI在反射光谱1 461 nm处相关系数达到最大值(r=-0.726);对于一阶微分光谱,LAI的敏感波段发生在742 nm处,r=0.744;以敏感波段742 nm一阶微分光谱反射率建立的逐步回归估算模型精度最高,RMSE=0.94,RE=26.27%,r=0.78。说明以全生育期为基础,采用一阶微分光谱敏感波段,并根据实际条件选择有效的估测模型,可以进行棉花LAI的预测。  相似文献   

10.
水分胁迫对冬小麦植被指数NDVI影响及其动态变化特征   总被引:10,自引:0,他引:10  
通过对冬小麦植被指数NDVI的变化规律和不同时期水分胁迫对植被指数的影响研究,结果表明,冬小麦的植被指数具有日变化规律,并且随着冬小麦的生长发育而变化,即小麦生长旺盛NDVI数值较大。不同时期干旱处理,小麦NDVI表现不一致,拔节期干旱处理后,小麦NDVI后期反应不明显,灌浆期干旱后,NDVI反应小,抽穗期干旱后,NDVI在5月下旬以后表现。但是土壤水分变化与NDVI的关系不明显,土壤水分对小麦NDVI的影响是通过对小麦植株体形态的改变来实现的。  相似文献   

11.
不同氮水平下冬小麦农学参数与光谱植被指数的相关性   总被引:4,自引:0,他引:4  
利用光谱仪通过大田试验测量不同氮素水平及不同生育期冬小麦冠层的光谱反射率,测算叶面积指数(LAI)、叶绿素含量(CHL)、叶绿素密度(CHL.D)、地上鲜生物量和地上干生物量等农学参数;在此基础上分析了不同氮素水平冬小麦生育期内的光谱植被指数的变化,并分析了农学参数与植被指数之间的相关性。结果表明:小麦叶面积指数、叶绿素密度与比值植被指数(RVI)和归一化差值植被指数(NDVI)在各生育期呈显著相关,小麦叶片的叶绿素含量与RVI、NDVI在抽穗期呈极显著相关,而地上鲜生物量、地上干生物量与RVI和NDVI从起身到孕穗期呈显著相关。  相似文献   

12.
干旱区玉米抽雄期叶绿素含量高光谱最佳模型选择   总被引:2,自引:0,他引:2  
采用相关性、线性和非线性分析法,探讨了玉米抽雄期叶片叶绿素含量与多种高光谱参数之间的关系,并建立了叶绿素含量的定量监测模型。结果表明:(1)原始光谱反射率与叶绿素含量在713 nm处具有最大相关系数r=0.86,光谱反射率一阶微分在760 nm处与叶绿素含量具有最大相关性r=0.84。同时,最大一阶微分分别对应的波长(λr,λb,λy)、绿峰反射率(Rg)和其对应的波长λg、红边内最大一阶微分总和(SDr)、比值植被指数(SDr/SDb,SDr/SDy,(Rg-Ro)/(Rg+Ro))以及归一化植被指数(SDr-SDb)/(SDr+SDb)等10种参数分别与叶绿素含量的相关性达到极显著相关。(2)采用相关性达到极其显著的12种光谱参数进行建模,其中原始光谱、绿色反射峰以及光谱反射率一阶微分、基于红边面积与蓝边面积的比值植被指数和归一化植被指数所建立的10个模型R2都不小于0.72,前两者所建立的指数模型优于线性模型,而后三者所建立的线性模型则优于指数模型。(3)所选取的五个方程中,在760 nm处的光谱反射率一阶微分值所构建的线性模型:y叶绿素=6912x760nm+44.878因其具有最大决定系数和最小的RMSE,并且其模型表达式相对简单,因此是玉米抽雄期叶绿素含量的最佳预测模型,从模型决定系数R2来看,它比其他模型至少提高了11.4%。  相似文献   

13.
以黄土高原甘肃庆阳西峰为半湿润雨养农区典型代表,分析研究油菜营养生长阶段苗期、蕾苔期和生殖生长阶段初期开花始期的冠层反射光谱特征与其覆盖度的相关性.结果表明,这几个时期油菜覆盖度与450、550、650、850、1650nm波段反射率存在明显的相关关系,尤其是蕾苔期,相关关系达到极显著水平.另外,研究了10个常用的植被指数同油菜覆盖度间的相关关系,这10个植被指数同油菜覆盖度存在着极显著的相关关系,相关性高于同单波段反射率间的关系.并且,利用各时期最优的2个植被指数建立了油菜覆盖度线性及非线性回归监测模型,方程的拟合度都较好.苗期,线形和非线性回归模型拟合程度差异不大,蕾苔期,以线性方程拟合精度较其它方程高;开花始期则以指数模型拟合精度高.  相似文献   

14.
叶绿素含量是表征植被生长状况的重要参考指标,利用高光谱技术快速,精确地监测棉花叶片叶绿素含量,以新疆125个苗期棉花叶片样本为研究对象,通过测定其叶绿素含量与光谱数据,采用多种光谱预处理和多植被指数相结合的方法,构建了WOA-RFR棉花叶片叶绿素含量定量反演模型,并与SVR和RFR模型结果进行对比分析。结果表明:(1)光谱变换方法中对数变换、分数阶微分和连续小波变换均能有效地提高植被指数与叶绿素含量的相关性。(2)基于分数阶微分0.9阶变换的Vogelmann3、RVI、DVI、SR[675-700]、Mndvi705、ND、VOG1、NVI、TVI和VOG2植被指数组合的WOA-RFR模型反演效果最佳,其建模集和验证集模型R2分别为0.920和0.955,RMSE分别为0.987和0.986,MRE分别为0.013和0.014,与RFR和SVR模型相比,预测精度有所提高,WOA算法优化模型效果明显。研究结果可为棉花叶片叶绿素含量定量反演提供决策依据。  相似文献   

15.
基于垂直植被指数的东北黑土区玉米LAI反演模型研究   总被引:2,自引:0,他引:2  
本文旨在探讨以不同波段组合垂直植被指数所建立的高光谱模型对玉米叶面积指数(Leaf Area Index,LAI)的反演精度。在不同水肥耦合作用条件下,实测玉米冠层的高光谱反射率与叶面积指数数据以及裸土的高光谱反射率数据,在高光谱红光波段(631~760 nm)与近红外波段(760~1050 nm)逐波段构建土壤线,并在此基础上构建垂直植被指数(Perpendicolar Vegetation Index,PVI),找出与LAI具有最佳相关性波段组合PVI,建立玉米LAI估算模型。结果显示,采样波段间隔越窄,反演精度越高,在采样波段间隔1.4 nm的PVI(R677,R918)反演2004年的玉米LAI模型中,最佳回归方程是指数函数,精度达91.1%,标准差为0.1997,RMSE=0.0399,通过了0.01极显著验证。采用高光谱数据构建的PVI植被指数对玉米LAI的估算可以取得较高的精度。  相似文献   

16.
基于无人机成像高光谱的棉叶螨为害等级估测模型构建   总被引:2,自引:1,他引:1  
为快速、实时、准确地了解新疆棉田棉叶螨(优势种为土耳其斯坦叶螨Tetranychus turkestani)的发生情况,利用高光谱图像中的7种植被指数,使用一般线性回归分析方法分别构建不同棉叶螨为害等级棉花冠层叶片叶绿素相对含量(用soil and plant analyzer development(SPAD)值表征)遥感估测模型和棉叶螨为害等级遥感估测模型,实现棉叶螨为害的实时监测。结果显示:不同棉叶螨为害等级对应的棉花冠层光谱反射率存在明显差异,棉叶螨为害等级与棉花冠层叶片SPAD值呈显著负相关关系。在7个不同棉叶螨为害等级对应的棉花冠层叶片SPAD遥感估测模型中,SPAD-红边归一化植被指数估测模型的估测决定系数为0.915,均方根误差为3.451,识别精确度显著高于其他模型。表明利用棉花冠层叶片SPAD遥感估测模型可快速无损地获取棉叶螨为害数据,构建的棉叶螨为害等级估测模型可用于植保人员快速准确获取棉叶螨为害情况。  相似文献   

17.
宁南山区冬小麦冠层高光谱特征及其对干旱的响应   总被引:2,自引:0,他引:2  
以中引6号冬小麦为观测对象,大田利用Unispec-SC型单通道便携式光谱仪观测不同灌水处理条件小麦冠层光谱特征,并结合相应遥感指数,筛选对干旱响应敏感的指数。结果表明,宁南山区冬小麦灌浆期与乳熟期的冠层光谱特征存在差异;虽然不同干旱胁迫下的冬小麦冠层光谱反射率曲线形式基本类似,但在大多数波段,反射率值的大小明显不同;在应用各种遥感指数监测宁南山区冬小麦干旱时,根据具体情况可优先在RVI和NDVI中选择,其次可以考虑选用EVI。  相似文献   

18.
分析2006年栾城试验站不同氮素水平下冬小麦的多时相的群体光谱测量数据和相应叶片叶绿素密度的测量数据,发现:冬小麦的群体光谱的导数光谱数据、红边光谱数据,归一化植被指数NDVI和比值植被指数RVI与叶绿素密度具有很好的相关关系,并且选取样本建立了相应的回归方程。以回归方程作为叶绿素高光谱估算模型,并利用检验样本对估算模型进行检验,结果表明,以745nm处一阶导数光谱值、733nm处二阶导数光谱值和红边振幅为变量的模型可以较好的估算叶绿素密度。  相似文献   

19.
关中西部灌区冬小麦遥感估产初探   总被引:1,自引:0,他引:1  
根据冬小麦生长特点与产量的关系,认为小麦扬花期至灌浆期为最佳监测时期,利用遥感影像(TM)进行了绿度指数(GDVI)计算与分析,建立了GDVI与小麦产量的关系,完成了小麦估产。通过与实际产量进行比较,其估产精度可达88.90%以上。  相似文献   

20.
测定拔节期水浇地与旱地春小麦冠层光谱、叶绿素含量、覆盖度、苗高和叶宽,采用回归分析方法建立春小麦叶绿素含量高光谱估测模型,并对模型精度进行检验。结果表明:阳坡和双面坡地春小麦拔节期叶绿素含量与原始光谱反射率在可见光和近红外波段均呈正相关,水浇地和阴坡地在723 nm以前相关系数为负,723 nm以后为正。各地类春小麦叶绿素含量与各高光谱变量的相关性均较好,均达到了极显著水平(P<0.01)。无论在可见光还是近红外波段,水浇地春小麦叶绿素含量均与倒数之对数 lg(1/R)的相关性最好,相关系数最大值可达0.98;阴坡地则与一阶微分的相关性最好,最大为0.94;而与阳坡和双面坡地相关性最好的高光谱指数为归一化植被指数。在各个波段,倒数之对数模型lg(1/R)、一阶微分模型(p′)和归一化植被指数模型(N)分别是估测水浇地、阴坡地、阳坡和双面坡地春小麦叶绿素含量的最佳模型。虽然各模型 R2均超过0.90,精确度均大于0.91,但阴坡地、阳坡和双面坡地的模型精确度和准确度略低于水浇地。以上模型的建立可为今后估测水浇地与旱地春小麦的健康状况提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号