首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用云与地球辐射能量系统CERES(clouds and the earth’s radiant energy system)资料,对2003-2016年东亚不同区域单层低云物理属性及地面短波辐射强迫的季节时空分布特征进行研究。结果表明:①在空间分布上,辐射强迫与单层低云量在春秋两季有着较好的相似性,而与冰/液态水柱含量在春、夏、秋三个季节有着较好的一致性。②在时间变化上,北方地区夏季的单层低云对短波辐射的削弱作用是最强的;南方地区和西北地区最强的削弱作用发生在春季;东部海域则发生在冬季。在空间分布上,春、秋、冬季最强的低云削弱效应在南方地区。夏季,东亚低云对短波辐射的削弱作用各区域都较弱,大部分区域的负辐射强迫的绝对值小于200 W·m^-2。  相似文献   

2.
利用云与地球辐射能量系统CERES(Clouds and the Earth's Radiant Energy System)资料,对20032016年东亚不同区域单层低云物理属性及地面短波辐射强迫的季节时空分布特征进行研究。结果表明: 在空间分布上,辐射强迫与单层低云量在春秋两季有着较好的相似性,而与冰/液态水柱含量在春、夏、秋三个季节有着较好的一致性。 在时间变化上,北方地区夏季的单层低云对短波辐射的削弱作用是最强的;南方地区和西北地区最强的削弱作用发生在春季;东部海域则发生在冬季。在空间分布上,春、秋、冬季最强的低云削弱效应在南方地区。夏季,东亚低云对短波辐射的削弱作用各区域都较弱,大部分区域的负辐射强迫的绝对值小于200 Wm-2 。  相似文献   

3.
利用WCRP CMIP5提供的20个全球气候模式的模拟结果,采用多模式集合分析方法,分析了我国黄土高原地区1861-2005年地表辐射的变化特征。结果表明:黄土高原地区地表短波辐射和净辐射呈减小趋势,长波辐射呈增大趋势。向下短波和向上短波辐射下降幅度分别约为6.73W·m-2·100a-1和1.69W·m-2·100a-1,向下长波和向上长波辐射增加幅度分别约为5.3W·m-2·100a-1和2.53W·m-2·100a-1,地表净辐射下降幅度大约为2.26W·m-2·100a-1。地表净辐射变化主要以向下短波辐射的影响为主。全球变暖,温度升高,引起了天空总云量增加、降水增加、蒸发增强、表层土壤湿度降低、LAI增大、积雪覆盖面积缩小等变化,这些变化共同作用引起地表辐射变化,最终反馈给气候系统,导致气候进一步变化。  相似文献   

4.
采用2003—2015年美国宇航局(NASA)发布的AIRS/Aqua L2 Standard Physical Retrieval(AIRS+AMSU)V006(AIRX2RET)云数据集,选取新疆地区,特别是云水量较丰富的3大山区为研究区域,研究其云中液态水的时空分布特征。结果表明:从空间分布看,北疆的云水量高于南疆,山区比沙漠盆地丰富,山区迎风面更为丰富,高达500×10~(-6)kg·m~(-2),呈西多东少的趋势。受大气环流的影响,整个研究区域、天山和阿尔泰山的云水量在春季分布较丰富,均高于350×10~(-6)kg·m~(-2),昆仑山在夏季分布较丰富;整个研究区域秋季的云水量分布均较少,在20×10~(-6)kg·m~(-2)以下。近13 a研究区域云水量的年均值为42.47×10~(-6)~455.32×10~(-6)kg·m~(-2),整个研究区域云水量总体平稳,3大山区则呈下降趋势;在2009—2010年研究区域的云水量总体呈上升趋势,天山变化较明显。3大山区云水量的年变化呈"单峰形",阿尔泰山、天山和昆仑山云水量最高时段分别出现在2—4月、3—5月和4—8月,峰值分别为822.30×10~(-6)kg·m~(-2)、869.75×10~(-6)kg·m~(-2)和742.82×10~(-6)kg·m~(-2)。  相似文献   

5.
利用中国科学院黄河源区气候与环境综合观测研究站2011年12月至2012年3月的观测资料,对比分析了黄河源区玛曲3次积雪过程地表辐射和能量平衡特征,结果表明:受雪面较大反照率的影响,降雪后净辐射减小显著,3次降雪前、后净辐射分别为154、200、210 W·m~(-2)和93、129、130 W·m~(-2)。3次降雪后及融雪后,地—气能量交换受天气条件和土壤冻融状态的影响较大:第1次降雪后较低的气温和地表温度并没有影响冻结土壤原本就较弱的蒸发能力,潜热通量在降雪前、后及融雪后量值较小且相差不大;第2次降雪后的2月18日,较大的风速(≥4 m·s~(-1))和较强的太阳辐射加快了积雪的升华,潜热通量量值较大,日均值高达118 W·m~(-2),风速与潜热通量同步变化,且峰值同时出现(分别为15 m·s~(-1)和300 W·m~(-2)),积雪升华消耗能量使地表温度降低并低于气温,出现负感热通量,日均值为-8 W·m~(-2),峰值达-40 W·m~(-2),融雪后感、潜热通量很快达到降雪前的水平;第3次降雪后的2月29日至3月3日,浅层土壤温度由-1℃逐渐上升并维持在冻土可融化温度-0.18℃左右,冻土壤融化吸收热量,潜热通量与降雪前相比增加不明显,3月4日是积雪融化的最后一天,较湿的土壤和融雪水蒸发释放潜热,潜热通量较3月3日显著增大;积雪融化后,潜热通量受浅层土壤蒸发能力增强的影响较降雪前明显增大。  相似文献   

6.
石羊河流域中部太阳辐射变化的特征分析   总被引:1,自引:0,他引:1  
利用2007-2010年石羊河流域中部观测的太阳辐射资料,结合下垫面和天气变化状况,应用数理统计,综合分析太阳辐射相关因子变化。结果表明:近年来年平均总辐射、反射辐射、地表长波辐射、大气逆辐射和净辐射总量分别为6 030.9 MJ•m-2、1 596.1 MJ•m-2、11 764.7 MJ•m-2、8 892.8 MJ•m-2和1 563 MJ•m-2。年内相关辐射变化均呈单峰形,夏季(6-8月)处于高位,冬季(12月和1-2月)相对较低。地表反射率随着下垫面植被的增加逐步减小,冬季最大值为0.329,秋季(9-11月)最小值为0.241。晴好天气下除大气逆辐射近似波动的一条直线外,其余呈单峰形,一般地表长波辐射的峰值在中午前后滞后于总辐射的峰值1~2 h;阴雨雪天气,短波和长波辐射的日变化比较复杂,呈现多个峰值和谷值。春季和夏季阵性降雨后,云间大气透明度好,出现总辐射瞬时值异常增大,超过太阳常数的现象,最大超过159 W•m-2,云对辐射具有附加效应。云量影响辐射量的变化,大气逆辐射在同一季节,典型晴天值要小于多云和阴雨(雪天)天气,净辐射在日出日落前后均出现正负值之间的跳变,但云可以减少跳变的幅度。  相似文献   

7.
采用2017年辐射数据,研究新疆11个地面观测站点的太阳总辐射时空分布特征,发现总辐射辐照度日变化呈单峰分布,日照时数夏季最高,约17 h,春秋季次之,分别为14 h、15 h,冬季最小,仅为12 h;季节平均最大值出现在和田站的春季,为589.61 W·m~(-2),最小约为102.29 W·m~(-2),出现在乌鲁木齐站的冬季。卫星反演辐射空间分布特征显示:春季南疆辐照度明显高于北疆,夏季平均辐照度分布与全年最为相似,冬季次之,秋季南北疆差异不大,季节差异在阿克苏最小。从卫星和地面辐射数据的拟合分析可见,方差分析中南疆F值均较高,最高达6 215.53,即晴空条件下,CERES/SSF(Clouds and the Earth’s Radiant Energy System/Single Satellite Footprine)卫星资料在南疆的反演效果优于北疆及吐—哈盆地。  相似文献   

8.
利用新疆塔里木河下游河岸林带观测的太阳辐射数据,结合下垫面和天气变化状况,分析该区太阳辐射变化特征,同时评价FAO56辐射估算方法模拟该区域太阳辐射的效果。结果表明:净辐射和辐射四分量的年均日变化,除大气逆辐射在300 W·m-2左右波动外,均呈现出典型的单峰趋势。其中,总辐射平均极大值为629.96 W·m-2,净辐射平均极大值为520.76 W·m-2,净辐射日积分值在一年内呈现单峰对称型趋势,年平均值为7.81 MJ·m-2·d-1,地表长波辐射的峰值在中午前后滞后于总辐射峰值约2 h。较之晴天而言,阴天和风沙天气太阳辐射波动较大,总辐射和净辐射均明显降低。地表反照率的变化与下垫面植被覆盖度密切相关,生长季节为0.18左右,非生长季节为0.20左右,年均值为0.19。FAO56方法模拟日尺度辐射结果表明:总辐射、净短波辐射和净辐射模拟效率分别为0.94、0.87、0.80,而有效辐射模拟效率仅为0.19;各辐射通量均方根误差均在1.67~1.98,平均偏差值均较小。有效辐射量在总辐射中所占比例较小,虽模拟效率较低,但其对净辐射的贡献较小,使得净辐射模拟误差在合理的范围内,故认为FAO56辐射模拟方法经验系数可用于计算该地区日尺度净辐射值。  相似文献   

9.
《干旱区研究》2021,38(5):1207-1215
羌塘高原湿地能量交换过程及其作用结果对气候有着重要影响。本研究选择羌塘高原申扎地区典型高寒湿地的辐射平衡观测数据为基础,分析了2018-07—2020-07逐日、逐月、逐时、不同季节典型天气辐射各分量及逐日反照率变化特征。日尺度上,辐射各分量均表现出明显的季节规律,呈"U"型变化。6月向下短波辐射全年最大为301.1 W·m-2,平均温度最高,向上长波辐射也达到最大,为371.5 W·m-2,1月则相反。季节尺度上,短波辐射各季节平均值春季夏季秋季冬季,长波辐射和净辐射则夏季最高,冬季最小。不同天气下,各季节晴天辐射通量较平滑,多云和降水天气变化不规则。地表反照率2018—2020年观测均值为0.23,夏、秋季小,冬、春季大,降雪天气甚至达到了0.63。研究结果可对揭示羌塘高原典型高寒湿地辐射收支的动态变化规律、阐明羌塘高原热力作用对其自身及周边地区的影响提供数据支撑。  相似文献   

10.
不同灌水量下幼龄枣树茎流变化规律   总被引:2,自引:0,他引:2  
探讨了不同灌水量(W1,32 L;W2,48 L;W3,64 L以及W4,80 L)对4年生幼龄枣树茎流速率变化规律的影响以及茎流速率与环境因子之间的关系,通过美国Dynamax公司生产的Flow~(-3)2包裹式茎流计进行茎流速率的测定,并在样地内安装HOBO小气候仪同步获取太阳辐射、温度、空气湿度以及风速等气象数据。结果表明:不同灌水量下,枣树茎流速率日变化趋势均为单峰形曲线,除W4外,枣树茎流速率平均值随着灌水量的增加而逐渐增大,W1、W2和W3处理的茎流速率的平均峰值分别为516.63、819.04 g·h~(-1)和974.86 g·h~(-1);枣树茎流日累积量变化过程曲线均呈现较为明显的"S"形,除W4外,随着灌水量的增加,枣树茎流日累积量增加,W1、W2、W3和W4茎流日累积量分别为4.98、7.02、9.10 L和8.63 L;不同灌水量下茎流速率与太阳辐射、温度以及风速呈正相关,且茎流速率与太阳辐射和温度相关性达到显著水平,其中与太阳辐射的相关性最高,W1、W2、W3和W4处理下相关系数分别为:0.939、0.944、0.959和0.939;而与空气湿度呈现出较明显的负相关,相关系数分别为-0.579、-0.815、-0.822和-0.730。  相似文献   

11.
以盆栽太行红豆杉为材料,于2019和2020年通过将滴灌滴头正下方20 cm深处的土壤基质势分别设定为-10(W1)、-20(W2)、-30(W3)、-40(W4)、-50 kPa(W5)5个下限,分析不同土壤基质势对红豆杉生理特性及次生代谢物含量的影响。结果表明:(1)W2处理显著提升了红豆杉的光合能力,2019年和2020年W2叶片净光合速率分别比W5提升了98.18%和106.62%。另外,W2显著提升了红豆杉叶片的表观量子效率(AQE)和暗呼吸速率(Rd),2019年和2020年W2叶片AQE分别比W5增长了80.76%和26.32%,Rd分别增长了34.39%和42.12%。同时红豆杉叶片光饱和点(L_(sp))和最大净光合速率(Pn_(max))在2 a内均在W2达到最大值,2019年W2叶片L_(sp)和Pn_(max)分别为961.59μmol·m~(-2)·s~(-1)和3.656μmol·m~(-2)·s~(-1),2020年分别为865.25μmol·m~(-2)·s~(-1)和3.850μmol·m~(-2)·s~(-1)。且W2叶片叶绿素a和总叶绿素含量最高,分别为2.59 mg·g~(-1)和3.42 mg·g~(-1),因此W2有利于提升红豆杉的光合能力。(2)试验前期,各处理红豆杉叶片MDA含量无显著差异,可溶性蛋白含量在W3处理下达到最大值,分别比W1和W5处理增长了10.36%和14.56%。在试验后期,W4和W5处理的叶片MDA含量显著高于其他处理,且在W5处理下达到最大值,分别比W1、W2、W3和W4增长了30.34%、40.88%、34.32%、5.37%,可溶性蛋白含量在W2处理下达到最大值,分别比W1、W3、W4和W5提升了14.35%、11.39%、28.53%、47.31%。红豆杉对于短期水分亏缺有一定的抗性,长期水分亏缺时,红豆杉叶片细胞膜脂过氧化加剧。(3)土壤基质势显著调控了红豆杉叶片黄酮和多糖含量,2019年和2020年红豆杉叶片黄酮含量均于W3处理达到最大值,多糖含量在W2达到最大值。因此,将滴灌滴头正下方20 cm深处的土壤基质势下限设定为-20 kPa有利于提升红豆杉的光合能力、生理活性和叶片多糖含量,设定为-30 kPa有利于提升红豆杉叶片的黄酮含量。  相似文献   

12.
微咸水膜下滴灌对土壤水盐分布及加工番茄产量的影响   总被引:2,自引:0,他引:2  
为探明微咸水膜下滴灌对土壤水盐分布及加工番茄生长和产量的影响,通过大田小区试验,设置灌水矿化度和灌水定额两个因素,其中3个灌溉水矿化度水平分别为S1:1 g·L~(-1)、S2:3 g·L~(-1)和S3:5 g·L~(-1),3个灌水定额分别为W1:305 m~3·hm~(-2)、W2:458 m~3·hm~(-2)和W3:611 m~3·hm~(-2),来进一步寻求适宜本地区加工番茄生长的微咸水膜下滴灌灌溉制度。结果表明:覆膜微咸水滴灌条件下土壤含水量垂直方向的变化趋势表现为0~20 cm土层随深度增加含水量逐渐降低、20~100 cm土层随深度增加含水量逐渐增大、60~100 cm范围内土层剖面含水量最大的分布规律;土壤含盐量随着灌水矿化度的增大而增加,且随着灌水量的增加土壤盐分逐渐向水平距滴灌带35 cm处聚集。灌水矿化度超过3 g·L~(-1)时加工番茄株高、茎粗均受到一定程度的抑制作用,但对产量影响不大。本文通过试验得出:灌水定额为611 m~3·hm~(-2)、矿化度为1 g·L~(-1)处理为本地区最佳微咸水膜下滴灌处理,加工番茄生长健壮且产量最高,达到127 613.2 kg·hm~(-2);同时认为,在我国淡水资源比较缺乏的新疆地区可以考虑采用灌水定额458 m~3·hm~(-2)和灌水矿化度3~5 g·L~(-1)的微咸水对盐分中等敏感的加工番茄进行灌溉。  相似文献   

13.
利用内蒙古微气象观测试验(IM-Mm OE)资料,分析干旱区荒漠下垫面近地层能量传输特征,探究观测仪器的一致性问题及其对地表能量平衡的影响。结果表明:干旱区荒漠下垫面的能量传输以感热和地表土壤热通量为主。大多数辐射仪器的观测相关系数大于0.98,地表土壤热通量和感热通量的观测相关系数大于0.97,潜热通量观测相关性最差,为0.92,其中地表土壤热通量、感热通量和潜热通量的均方差分别为14.3 W·m~(-2)、8.9 W·m~(-2)和8.0 W·m~(-2),各仪器之间观测数据比较一致,观测误差较小。非一致性引起的观测数据偏差直接影响能量闭合率,试验中湍流通量(感热通量和潜热通量之和)的观测偏差造成地表能量闭合率1%~3%的不确定性,有效能量(净辐射与地表土壤热通量之差,仅考虑地表土壤热通量的观测偏差)造成5%的不确定性,湍流通量和有效能量两者数据的总偏差造成地表能量闭合率6%~8%的不确定性。  相似文献   

14.
基于气温及降水数据,运用Thornthwaite Memorial模型,分析了气候变化背景下中国未来(2021-2099年)RCP4.5和RCP8.5气候情景相对于基准期(1986-2005年)气候生产潜力的时空分布及动态变化特征。结果表明:基准期、未来RCP4.5及RCP8.5情景下中国气候生产潜力(CPP)年均值分别为754.14、878.48、920.34g/(m~2·a)。未来CPP呈显著增加趋势,但并未发生突变。其中,RCP4.5情景下年均增加124.34g/(m~2·a),只21世纪前半叶显著增加;RCP8.5情景下年均增加166.20g/(m~2·a),21世纪前半、后半叶均显著增加,且后半叶增幅更大。未来RCP4.5、RCP8.5情景下中国CPP呈年代际递增趋势,20年代最低,分别为841.90、849.94g/(m~2·a),90年代最高,分别为894.43、1001.44g/(m~2·a);随着年代增加距平百分率由负到正,增幅逐渐变大。在空间上CPP总体呈现出从西北向东南逐渐递增的带状分布。未来CPP在大部分区域都增加,增幅在北部大于南部,大部分地区增幅在300g/(m~2·a)以下,只有西北部分地区增幅超过600g/(m~2·a),最高达14倍。在西、南部少数地区,未来CPP将下降,最大降幅为293g/(m~2·a)(93%)。该研究对于未来合理利用气候资源、科学应对气候变化、实施可持续发展战略具有一定的指导意义。  相似文献   

15.
采用2003-2015年美国宇航局(NASA)发布的AIRS/Aqua L2 Standard Physical Retrieval(AIRS+AMSU)V006(AIRX2RET)云数据集,选取新疆地区,特别是云水量较丰富的3大山区为研究区域,研究其云中液态水的时空分布特征。结果表明:从空间分布看,北疆的云水量高于南疆,山区比沙漠盆地丰富,山区迎风面更为丰富,高达500×10^-6kg·m^-2,呈西多东少的趋势。受大气环流的影响,整个研究区域、天山和阿尔泰山的云水量在春季分布较丰富,均高于350×10^-6kg·m^-2,昆仑山在夏季分布较丰富;整个研究区域秋季的云水量分布均较少,在20×10^-6kg·m^-2以下。近13 a研究区域云水量的年均值为42.47×10^-6-455.32×10^-6kg·m^-2,整个研究区域云水量总体平稳,3大山区则呈下降趋势;在2009-2010年研究区域的云水量总体呈上升趋势,天山变化较明显。3大山区云水量的年变化呈"单峰形",阿尔泰山、天山和昆仑山云水量最高时段分别出现在2-4月、3-5月和4-8月,峰值分别为822.30×10^-6kg·m^-2、869.75×10^-6kg·m^-2和742.82×10^-6kg·m^-2。  相似文献   

16.
利用SEBS(Surface Energy Balance System)模型,对塔克拉玛干沙漠及周边地区的地表能量通量进行模拟估算。通过修正适合于塔克拉玛干沙漠地表的参数化方案,结合该地区的MODIS遥感数据,将同期同化气象资料输入模型中,模拟出该地区的地表净辐射、地表土壤热通量、感热通量和潜热通量的空间分布。与塔克拉玛干沙漠大气环境观测试验站的实测数据对比,得出:1)SEBS模型在塔克拉玛干沙漠地区具有适用性;2)模型反演的沙漠腹地净辐射约为350W/m~2,感热通量在200W/m~2左右,潜热通量在±20W/m~2之间,其结果均与塔中站实测资料吻合较好。因此利用参数修正后的SEBS模型估计塔克拉玛干沙漠地区能量平衡各分量具有一定精度,可满足区域地表能量通量的计算要求。  相似文献   

17.
为探讨轻度盐渍化地区不同水氮配比对滴灌棉花根系生长的影响,本文基于轻度盐胁迫下水氮耦合试验,确定轻度盐渍化农田棉花种植的合理水氮组合。采用当地主栽棉花品种"农丰133",开展轻度盐胁迫(4~5 g·kg~(-1))及滴灌条件下水氮二因素三水平桶栽试验,研究3个施氮水平:300、600 kg·hm~(-2)和900 kg·hm~(-2)尿素(分别标记为N1、N2和N3),3个灌水水平:2 750、3 750 m~3·hm~(-2)和4 750 m~3·hm~(-2)(分别标记为W1、W2和W3)对滴灌棉花根系生长的影响。结果表明:轻度盐胁迫下,灌水和施氮产生的交互作用对棉花根表面积和根平均直径有显著影响,根表面积和根平均直径均随灌溉定额或施氮量的增加而减小。灌水量和施氮量对棉花0~20 cm土层根体积调控作用不明显。轻度盐化土滴灌棉花根表面积、根平均直径及根体积垂直方向主要分布在0~30 cm土层,且随土层深度的增加逐渐降低;水平方向主要分布在滴头下方。灌溉定额3 750 m~3·hm~(-2),尿素施用量600 kg·hm~(-2)有利于轻度盐化土滴灌棉花根系生长,在各处理间棉花产量最高,为5 854.5 kg·hm~(-2)。  相似文献   

18.
以黄土塬区冬小麦田为研究对象,基于涡度相关数据分析麦田能量平衡的日变化、季节变化和能量分配特征及其主控因子。结果表明,长武塬区麦田全年获得的净辐射(Rn)为2.56×103MJ·m-2·a-1,涡度相关系统的能量闭合度达到0.72。冬小麦生育期内,越冬期和灌浆期麦田主要能量支配项为感热通量(H),最大值出现在6月,为7.09 MJ·m~(-2)·d~(-1);其他生育期和休闲期,主要能量支配项为潜热通量(LE),最大值出现在5月,为10.71 MJ·m~(-2)·d~(-1)。波文比(β)在生育期平均值为0.57,休闲期为0.46。土壤热通量(G)年总量为-15.26 MJ·m-2·a-1,日总量最大值出现在6月,为1.85 MJ·m~(-2)·d~(-1),10月至次年1月为负值,表现土壤释放热量。  相似文献   

19.
利用敦煌双墩子戈壁试验站2008年12月至2009年12月的塔站观测资料,分析该地区净辐射的概率分布、日变化、年变化和典型天气下的变化特征,结果表明:① 净辐射在-100~0 W/m2之间存在一个明显的峰值分布区间,其年平均净辐射为43.88 W/m2;② 净辐射有明显的日变化规律,最大值出现在正午,最小值出现在日落后,净辐射日变化的季节差异明显;③ 在晴天、阴天和沙尘天气条件下,净辐射变化特征差别较大,变化规律、极值大小和到达极值时间均不相同,不同天气下的净辐射有其各自特殊性。  相似文献   

20.
根据2001—2010年环保部发布的阿克苏市城市空气质量监测数据,分析了各污染物浓度的变化特征,并采用Daniel趋势检验的Spearman秩相关系数法,对该市空气质量变化趋势进行了定量分析,确定空气中的主要污染物,探讨了环境空气质量变化趋势。结果表明:2001—2010年各月平均PM10浓度表现为3月最大(0.818 mg·m~(-3))、9月最低(0.282 mg·m~(-3)),PM_(10)浓度在10 a内表现出春季高(0.760 mg·m~(-3))、秋季低(0.305 mg·m~(-3))的特征;2001—2010年各月平均SO_2浓度表现为1月(0.028 mg·m~(-3))最大、6月(0.012 mg·m~(-3))最低,SO_2浓度在10 a内表现出冬季高(0.027 mg·m~(-3))、夏季低(0.012 mg·m~(-3))的特征;2001—2010年各月平均NO_2浓度表现为12月(0.032 mg·m~(-3))最大,7月(0.019 mg·m~(-3))最低,NO_2浓度在10 a内表现出冬季高(0.030 mg·m~(-3))、夏季低(0.020 mg·m~(-3))的特征,且供暖期高于非供暖期;阿克苏市空气污染以可吸入颗粒物为首要污染物,空气质量状况以良居多。从年际变化来看,SO_2、NO_2呈显著上升趋势,而PM10总体呈显著下降趋势,阿克苏市空气质量总体上逐年趋好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号