首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为筛选防治农业新发害虫双委夜蛾Athetis dissimilis(Hampson)的有效药剂,采用浸叶法测定了其不同龄期幼虫对8类18种常用杀虫剂的敏感性,并观察了幼虫对不同药剂的中毒症状。结果表明:3~6龄双委夜蛾幼虫对辛硫磷、联苯菊酯、高效氯氟氰菊酯、溴氰菊酯、甲氨基阿维菌素苯甲酸盐、氯虫苯甲酰胺和溴氰虫酰胺的敏感性较高,LC50值为0.138 1~27.40 mg/L;3龄及4龄幼虫对毒死蜱、高效氯氰菊酯、氟啶脲、茚虫威和虫螨腈敏感性较高,LC50值小于22.63 mg/L,而5龄和6龄幼虫对上述药剂的敏感性均有所降低,LC50值大于38.13 mg/L;各龄期幼虫对甲基嘧啶磷、灭幼脲及新烟碱类杀虫剂的敏感性均较低,LC50值大于40.83 mg/L。双委夜蛾幼虫对不同类别杀虫剂的中毒症状存在差异,其中,经有机磷类、新烟碱类、吡咯类及齅二嗪类杀虫剂处理后,幼虫表现为体表干燥、体壁皱缩;而经拟除虫菊酯类杀虫剂处理后幼虫表现为体壁柔软、充满体液。就生物活性测定结果而言,推荐溴氰虫酰胺、氯虫苯甲酰胺、辛硫磷、联苯菊酯、高效氯氟氰菊酯、溴氰菊酯及甲氨基阿维菌素苯甲酸盐等药剂可用于双委夜蛾的应急防治。  相似文献   

2.
Han J  Kim SI  Choi BR  Lee SG  Ahn YJ 《Pest management science》2011,67(12):1583-1588
BACKGROUND: This study was aimed at assessing the fumigant toxicity of 14 essential oil constituents from lemon eucalyptus, Eucalyptus citriodora Hook, and another ten known compounds to females of acaricide‐susceptible, chlorfenapyr‐resistant, fenpropathrin‐resistant, pyridaben‐resistant and abamectin‐resistant strains of Tetranychus urticae Koch. RESULTS: Menthol (LC50, 12.9 µg cm?3) was the most toxic compound, followed by citronellyl acetate (16.8 µg cm?3), against the susceptible females. High toxicity was also produced by β‐citronellol, citral, geranyl acetate and eugenol (LC50, 21.7–24.6 µg cm?3). The fumigant toxicity of these compounds was almost identical against females from either of the susceptible and resistant strains, indicating that the compounds and acaricides do not share a common mode of action or elicit cross‐resistance. CONCLUSION: Global efforts to reduce the level of highly toxic synthetic acaricides in the agricultural environment justify further studies on materials derived from lemon eucalyptus oil, particularly menthol and citronellyl acetate, as potential acaricides for the control of acaricide‐resistant T. urticae as fumigants with contact action. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Mosquitoes are the most important vectors of human pathogens. Wide‐scale use of pesticides has led to the development of resistance to most common insecticide groups. The need to develop novel products that have a low impact on human health and the environment is well established. The toxicity of selected semiochemicals with molecular structures indicative of insecticidal activity was determined against adult Aedes aegypti (L.) and Anopheles quadrimaculatus (Say). The two most active insecticides against Ae. aegypti were also evaluated against Ae. albopictus (Skuse). RESULTS: Fifteen semiochemicals classified as terpenoid alcohols, ketones or carboxylic esters showed toxicity to both mosquito species. Geranyl acetone (LC50 = 38.51 µg cm?2) followed by citronellol (LC50 = 48.55 µg cm?2) were the most toxic compounds to Ae. aegypti, while geraniol and lavonax, with LC50 values of 31.88 and 43.40 µg cm?2, showed the highest toxicity to An. quadrimaculatus. Both geranyl acetone and citronellol were highly toxic to Ae. albopioctus. No semiochemical showed fumigation activity against either species. All semiochemicals persisted for less than 24 h when tested on filter paper. CONCLUSION: Quantification of LC50 values of several semiochemicals against Ae. Aegypti, An. quadrimaculatus and Ae. albopioctus showed that semiochemicals not only modify insect behaviors but also hold potential as potent insecticides for mosquito control programs. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The contact + fumigant toxicity of 92 plant essential oils and control efficacy of 18 experimental spray formulations containing nine selected essential oils (0.5 and 0.1% sprays) and six commercial insecticides to females from B‐ and Q‐biotypes of Bemisia tabaci were evaluated using vapour‐phase mortality and spray bioassays. RESULTS: Garlic and oregano (LC50, 0.15 mL cm?3) were the most toxic oils against B‐ and Q‐biotype females. Strong fumigant toxicity to both biotype females was also obtained from catnip, cinnamon bark, clove bud, clove leaf, davana, savory and vetiver Haiti oils (LC50, 0.17–0.48 mL cm?3). The 0.5% sprays of these oils (except for thyme red oil) resulted in 90–100% mortality against both biotype females. Only garlic applied as 0.1% spray provided 100% mortality. Spinosad 100 g L?1 suspension concentrate (SC) treatment resulted in 92 and 95% mortality against both biotype females, whereas acetamiprid 80 g L?1 wettable powder (WP), imidacloprid 80 g L?1 SC, thiamethoxam 100 g L?1 water‐dispersible granule (WDG) and pyridaben 200 g L?1 WP treatments resulted in 89–100% mortality against B‐biotype females only. CONCLUSION: In the light of global efforts to reduce the level of highly toxic synthetic insecticides in the agricultural environment, the essential oils described, particularly garlic, cinnamon bark and vetiver Haiti, merit further study as potential insecticides for the control of B. tabaci populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
Nine insecticides, namely, imidacloprid, thiamethoxam, chlorantraniliprole, clothianidin, pymetrozine, ethofenprox, BPMC, endosulfan, acephate, and the product Virtako® (Syngenta; chlorantraniliprole 20%?+?thiamethoxam 20%) were tested to determine their toxicity to the parasitoid Trichogramma chilonis using an insecticide-coated vial (scintillation) residue bioassay. All the insecticides tested showed different degrees of toxicity to the parasitoid. Thiamethoxam showed the highest toxicity to T. chilonis with an LC50 of 0.0014 mg a.i. l ?1, followed by imidacloprid (0.0027 mg a.i. l ?1). The LC50 values of acephate and endosulfan were 4.4703 and 1.8501 mg a.i. l ?1, exhibiting low toxicity when compared with other insecticides tested. Thiamethoxam was found to be 3,195, 1,395 and 1,322 times more toxic than acephate, chlorantraniliprole and endosulfan, respectively, as revealed by the LC50 values to T. chilonis. Based on risk quotient, which is the ratio between the field-recommended doses and the LC50 of the beneficial, only chlorantraniliprole was found to be harmless to T. chilonis. The insecticides thiamethoxam, imidacloprid, Virtako®, ethofenprox and BPMC were found to be dangerous to the parasitoid. Since T. chilonis is an important egg parasitoid of leaf folders, reported to reduce the pest population considerably and often released augmentatively in rice IPM programs, the above noted dangerous chemicals should be avoided in the rice ecosystem.  相似文献   

6.
BACKGROUND: Information on the insecticide susceptibility of striped stem borer, Chilo suppressalis (Walker), is essential for an effective pest management programme. An early detection of resistance development can prompt the modification of current control methods and increase the lifespan of insecticides through the rotation of chemicals with different modes of action. In this study, the susceptibility of this pest in Taiwan to four classes of insecticides has been examined. RESULTS: Over 1000‐fold resistance to carbofuran was detected in C. suppressalis collected from Chiayi and Changhua prefectures, with estimated LC50 values of > 3 mg cm?2. In addition, 61‐fold resistance to cartap was found in the Chiayi population. On the other hand, all tested populations of rice stem borer were still relatively susceptible to chlorpyrifos, fipronil and permethrin, with LC50 values ranging from 30 to 553 ng cm?2. Chilo suppressalis populations collected from the central parts of Taiwan have a higher degree of resistance to the tested insecticides than those from northern areas. CONCLUSION: The occurrence of high resistance to carbofuran in the Chiayi and Changhua areas suggests that this compound should be replaced with chemicals having a different mode of action, such as chlorpyrifos, fipronil and permethrin, to which low cross‐resistance has been detected. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
We investigated the sub-lethal influences of spinosad, chlorpyriphos, endosulfan, acephate and cypermethrin on the oviposition responses of Helicoverpa armigera (Hübner) to cotton plants, under cage and laboratory conditions. The rank order of toxicity (LC50 values as a per cent) of test insecticides against third instar larvae using the leaf disc method was: spinosad > chlorpyriphos > endosulfan > acephate > cypermethrin. On whole plants, females laid more eggs on acephate LC50-, acephate LC30- and cypermethrin LC50-treated cotton plants than on the control. The chlorpyriphos-treated plants were least preferred for oviposition. When excised cotton leaves from different treatments were used in a multiple-choice test, cypermethrin LC50- and endosulfan LC30-treated leaves received more eggs than the control. The repeated application of sub-lethal concentrations of different insecticides reduced plant height in the case of acephate LC30 and cypermethrin LC50, while plant spread and upper canopy leaf area were reduced in both treatments of acephate and cypermethrin. Reduced plant spread, upper canopy leaf area followed by plant height were found associated with oviposition preference by H. armigera females.  相似文献   

8.
甜菜夜蛾敏感品系的获得及其对12种杀虫剂的敏感基线   总被引:2,自引:2,他引:0  
以高效氯氰菊酯为筛选药剂,通过室内单对汰选获得了甜菜夜蛾敏感品系,并采用浸叶法和点滴法测定该敏感品系对甲氨基阿维菌素苯甲酸盐、氯虫苯甲酰胺等12种常用药剂的敏感基线。浸叶法测得该品系对供试药剂的敏感性由高到低依次为:甲氨基阿维菌素苯甲酸盐(LC50为0.0340 mg/L)、茚虫威、氟啶脲、甲氧虫酰肼、氯虫苯甲酰胺、氟虫双酰胺、高效氯氰菊酯、虫酰肼、多杀菌素、毒死蜱、虫螨腈、灭多威(124.0482mg/L)。点滴法测得12种杀虫剂LD50由小到大依次为:高效氯氰菊酯、茚虫威、甲氧虫酰肼、甲氨基阿维菌素苯甲酸盐、虫酰肼、毒死蜱、多杀菌素、氯虫苯甲酰胺、虫螨腈、氟虫双酰胺、灭多威、氟啶脲。结果表明,该敏感基线可用于甜菜夜蛾的抗药性监测。  相似文献   

9.
Brinjal shoot and fruit borer Leucinodes orbonalis Guen. is a major pest of brinjal in India. The field collected larvae of L.orbonalis were tested for their susceptibility to three diamide insecticides by fruit dip bioassay technique. Cyantraniliprole and chlorantraniliprole were 5.23 and 2.80 times more toxic to L. orbonalis as compared to flubendiamide. Large variation in the susceptibility of L. orbonalis to cyantraniliprole, chlorantraniliprole, flubendiamide was observed and the LC50 values were 0.084, 0.157 and 0.439 mg a.i. L?1, respectively. In span of two years there was a significant increase in the LC50 values of cyantraniliprole (0.062 to 0.085 mg a.i. L?1), chlorantraniliprole (0.097 to 0.157 mg a.i. L?1), flubendiamide (0.284 to 0.439 mg a.i. L?1) to population of L. orbonalis, which showed 1.35, 1.62 and 1.55 fold resistance, respectively indicating faster development of resistance to diamide insecticides.  相似文献   

10.
四种低毒杀虫剂对小菜蛾生长发育及繁殖的亚致死效应   总被引:5,自引:2,他引:3  
为系统评价4种低毒杀虫剂对小菜蛾Plutella xylostella(L.)的综合控制作用,采用叶片浸渍法处理小菜蛾3龄幼虫,测定了虫酰肼、氟啶脲、茚虫威和虫螨腈的亚致死浓度(LC25)对小菜蛾生长发育和繁殖力的影响。结果表明,4 种药剂亚致死浓度处理使小菜蛾3~4龄幼虫发育历期延长0.43~1.93 d,平均单头雌、雄蛹重分别减轻0.83~1.31 mg和0.19~1.09 mg ,幼虫的化蛹率及羽化率则分别降低11.2%~34.3%和21.7%~33.6%,以氟啶脲和茚虫威处理的影响较为显著。药剂处理后成虫平均产卵量减少30.15~60.21粒/雌,卵孵化率降低8.85%~19.65%,以虫酰肼效果较为明显;虫酰肼、氟啶脲、茚虫威均显著降低小菜蛾的交配成功率。  相似文献   

11.
BACKGROUND: The housefly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.) are cosmopolitan pests of both farm and home environments. Houseflies have been shown to be resistant to a variety of insecticides, and new chemistries are slow to emerge on the market. Toxicities of selected semiochemicals with molecular structures indicative of insecticidal activity were determined against adults from an insecticide‐susceptible laboratory strain of houseflies. The three most active semiochemicals were also evaluated against recently colonized housefly and stable fly strains. RESULTS: Nineteen semiochemicals classified as aliphatic alcohols, terpenoids, ketones and carboxylic esters showed toxicity to houseflies and stable flies. Rosalva (LC50 = 25.98 µg cm?2) followed by geranyl acetone and citronellol (LC50 = 49.97 and 50.02 µg cm?2) were identified as the most toxic compounds to houseflies. Permethrin was up to 144‐fold more toxic than rosalva on the susceptible strain. However, it was only 35‐fold more toxic to the insecticide‐tolerant field strain. The compounds generated high toxicity to stable flies, with LC50 values ranging from 16.30 to 40.41 µg cm?2. CONCLUSION: Quantification of LC50 values of rosalva, citronellol and geranyl acetone against susceptible housefly and field‐collected housefly and stable fly strains showed that semiochemicals could serve as potent insecticides for fly control programs. Copyright © 2010 Society of Chemical Industry  相似文献   

12.

BACKGROUND

Bemisia tabaci is a globally significant agricultural pest including in Australia, where it exhibits resistance to numerous insecticides. With a recent label change, buprofezin (group 16), is now used for whitefly management in Australia. This study investigated resistance to pyriproxyfen (group 7C), spirotetramat (group 23) and buprofezin using bioassays and available molecular markers.

RESULTS

Bioassay and selection testing of B. tabaci populations detected resistance to pyriproxyfen with resistance ratios ranging from 4.1 to 56. Resistance to spirotetramat was detected using bioassay, selection testing and sequencing techniques. In populations collected from cotton, the A2083V mutation was detected in three populations of 85 tested, at frequencies ≤4.1%, whereas in limited surveillance of populations from an intensive horticultural region the frequency was ≥75.8%. The baseline susceptibility of B. tabaci to buprofezin was determined from populations tested from 2019 to 2020, in which LC50 values ranged from 0.61 to 10.75 mg L−1. From the bioassay data, a discriminating dose of 200 mg L−1 was developed. Recent surveillance of 16 populations detected no evidence of resistance with 100% mortality recorded at doses ≤32 mg L−1. A cross-resistance study found no conclusive evidence of resistance to buprofezin in populations with high resistance to pyriproxyfen or spirotetramat.

CONCLUSIONS

In Australian cotton, B. tabaci pest management is challenged by ongoing resistance to pyriproxyfen, while resistance to spirotetramat is an emerging issue. The addition of buprofezin provides a new mode-of-action for whitefly pest management, which will strengthen the existing insecticide resistance management strategy. © 2023 Commonwealth of Australia. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

13.
The toxicities, to a laboratory susceptible strain and to a resistant strain of Oryzaephilus surinamensis (L.), of water-dispersible powder formulations of pirimiphos-methyl, fenitrothion or chlorpyrifos-methyl under constant conditions of 25°C and 70% r. h. were compared to the toxicities when the insects were exposed to a diurnal cycle of 12.5–20–12.5°C and 70–50–70% r. h. to simulate grain store conditions in the UK during spring and autumn. All the insecticides were more effective at 25°C and 70% r. h. The LD50 values for the susceptible strain were low, being 4.4 and 1.4 mg m?2 at 12.5-20°C and 25°C, respectively, for chlorpyrifos-methyl, 18.3 and 4.1 mg m?2, respectively, for pirimiphos-methyl, and 4.0 and < 1.O mg m?2, respectively, for fenitrothion. The LD50 values obtained from the two sets of environmental conditions for a resistant strain (484) differed by factors of 1.8 for chlorpyrifos-methyl, 4.8 for pirimiphos-methyl, and 7.3 for fenitrothion. Toxicity studies were also made with chlorpyrifos-methyl under various constant conditions of temperature and humidity from 5–30°C (5°C intervals) and 30, 50, 70 and 90% r. h., and also at O°C and 60% r. h. Chlorpyrifos-methyl was very effective and there was little or no cross resistance to chlorpyrifos-methyl in the resistant strain. From 15 to 30°C, mortality was high, and differences in mortality at the LD50 level for the various humidities were slight, but there was a decrease in mortality with decreasing humidity at any one temperature, in particular, at 5°C, 50 and 70% r. h., and 10°C and 50% r. h. Chlorpyrifosmethyl was more toxic to both strains at the highest humidity (90%) throughout the whole temperature range. The LD50 values for each strain decreased at each temperature as the water vapour concentration was increased. At O°C and 60% r. h., all the insects from both strains died but the cause of death was not clear.  相似文献   

14.
氟啶虫胺腈等11种杀虫剂对瓜蚜的毒力及协同增效作用   总被引:2,自引:0,他引:2  
为探寻防治瓜蚜的高效协同增效药剂组合,采用叶片带虫浸渍法测定了氟啶虫胺腈等11种杀虫剂对瓜蚜的毒力。结果表明:处理后24 h,氟啶虫胺腈对瓜蚜的毒力最高,吡蚜酮最低,LC50值分别为10.15和369.63 mg/L;48 h时依然是氟啶虫胺腈毒力最高,而高效氯氟氰菊酯最低,LC50值分别为2.35和117.57 mg/L。在此基础上进行协同增效药剂筛选,结果表明:按质量比计,氟啶虫酰胺与吡蚜酮1 : 1、氟吡呋喃酮与吡蚜酮1 : 5、氟啶虫胺腈与吡蚜酮1 : 3、氟吡呋喃酮与高效氯氟氰菊酯1 : 5、氟啶虫胺腈与高效氯氟氰菊酯1 : 5几种组合的增效作用显著,共毒系数分别达1 271、820、561、1 277和478。研究结果可为田间瓜蚜的高效化学防治提供科学依据。  相似文献   

15.
六种杀虫剂对小地老虎的毒力及对土壤生物安全性评价   总被引:6,自引:3,他引:3  
为筛选出高效安全的土壤处理杀虫剂,室内采用浸叶法比较了3种新杀虫剂与3种已登记的杀虫剂对小地老虎的毒力,同时用人工土壤法和密闭法分别测定了6种药剂对蚯蚓的急性毒性和对土壤呼吸强度的影响。结果显示,溴虫腈、茚虫威和甲维盐对小地老虎3龄幼虫的毒力明显高于3种已登记药剂毒死蜱、辛硫磷和高效氯氟氰菊酯;溴虫腈、茚虫威和甲维盐对蚯蚓的LC50分别为1320.80、1153.42和167.91mg/kg,均低于其它3种药剂,属于低毒级;供试杀虫剂中以溴虫腈对小地老虎和蚯蚓的毒力选择性最高,其毒力选择性比值(蚯蚓LC50/小地老虎LC50)为7115.23;6种药剂对土壤微生物均无危害性。  相似文献   

16.

Background

Although the pupal parasitoid Trichopria drosophilae is used in conservative and augmentative biocontrol of Drosophila suzukii infestations, current pest management strategies mostly rely on multiple insecticide applications. In this context, the aim of the study was to investigate the baseline toxicity of nine insecticides on D. suzukii larvae and their multiple sublethal effects (LC10) on immature stages of the pest feeding on contaminated diet and T. drosophilae developing within the intoxicated host.

Results

Chlorpyriphos and azadirachtin showed the lowest and the highest LC10, the values of which were 9.78 × 1013 and 1.46 × 103 times lower than their recommended label field rate, respectively. Among tested insecticides, imidacloprid, malathion and dimethoate were the only treatments that did not affect the juvenile development time of D. suzukii, while spinosad and the organophosphates chlorpyriphos and dimethoate did not influence fly pupal size. No sublethal effects were recorded on T. drosophilae degree of infestation (DI) and juvenile development time. On the contrary, cyazypyr and dimethoate negatively affected the success of parasitism (SP) and the number of progeny of the pupal parasitoid, in association with malathion for the first parameter and spinosad for the fertility. Compared to the untreated control, more female progeny emerged following azadirachtin exposure, while dimethoate caused the opposite effect. Imidacloprid, lambda-cyhalothrin and spinetoram decreased hind tibia length of emerged parasitoids.

Conclusion

This study provides new insights on the (eco)toxicological profile of nine insecticides and new information needed to support the deployment of T. drosophilae in the field within the sustainable management techniques against D. suzukii. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.
为寻找防治枸杞蚜虫的适用药剂,采用玻璃管药膜法,测定了4种拟除虫菊酯类杀虫剂对枸杞蚜虫的毒力及对其三磷酸腺苷酶(ATPase)和谷胱甘肽S-转移酶(GSTs)活性的影响。结果表明:枸杞蚜虫对联苯菊酯最敏感,LC50值为4.34 mg/L;氯菊酯、高效氯氰菊酯和甲氰菊酯的LC50值分别为17.08、40.50和184.84 mg/L。4种杀虫剂对枸杞蚜虫两种ATPase活性均有抑制作用,药剂浓度为1×10-4mol/L时,4种药剂对Na+-K+-ATPase活性的抑制率均高于对Ca2+-M g2+-ATPase的抑制率,其中对Na+-K+-ATPase活性的抑制率从高到低依次为:联苯菊酯高效氯氰菊酯氯菊酯甲氰菊酯,而对Ca2+-M g2+-ATPase的抑制率则是联苯菊酯最高(46.41%),高效氯氰菊酯最低(33.04%)。4种药剂对枸杞蚜虫GSTs活性的影响差异较大:联苯菊酯在低浓度时对GSTs具有诱导作用,高浓度时则表现为一定的抑制作用;不同浓度高效氯氰菊酯和氯菊酯对GSTs活性均表现为抑制作用,抑制率最高达85.02%;而甲氰菊酯处理后GSTs的活性则升高了193.07%~249.96%。  相似文献   

18.

BACKGROUND

Tuta absoluta (Lepidoptera: Gelechiidae) is difficult to control by means of foliar insecticides, partly because of the endophytic feeding behavior of its larvae. The biopesticide spinosad is applied as a foliar spray for control of T. absoluta and has systemic properties when applied as a soil drench to the growing medium of tomato plants. The aims of this study were to determine the: (i) instar-dependent tolerance of larvae to spinosad; (ii) efficacy of spinosad drench application for the control of larvae; (iii) residual period of systemic activity of spinosad in leaves and fruit after drenching; and (iv) effect of spinosad drenching on tomato plant growth parameters.

RESULTS

The estimated LC50 value (Lethal Concentration at which 50% of the larvae died) differed between instars. The LC50 for second-instar larvae (0.41 ppm) to spinosad was significantly lower than that for third- (0.64 ppm) and fourth-instar (0.63 ppm) larvae. The LC80 value (Concentration at which 80% of the larvae died) for fourth-instar larvae (2.48 ppm) was 2.6- and 1.7-fold higher than that for the second- and third-instar larvae, respectively. The spinosad concentration recorded in leaves at 25 days after treatment (DAT; 0.26 μg g−1) was significantly lower than that in leaves sampled at 3, 10 and 15 DAT. High larval mortalities were, however, recorded for the duration of the experiment, which lasted 25 days (equivalent to one T. absoluta generation).

CONCLUSION

Systemic spinosad effectively controlled T. absoluta larvae over a prolonged period. However, drenching this insecticide violates the recommendation of the Insecticide Resistance Action Committee to avoid treating consecutive insect generations with the same mode of action and can therefore result in the evolution of insecticide resistance. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

19.

BACKGROUND

The cotton aphid (Aphis gossypii Glover) is one of the most invasive pests of cotton. Many botanical phytochemicals have a long history as a source of insecticides, and as templates for new insecticides. This study was undertaken to isolate aphicidal compounds from the seeds of Erythrina crista‐galli L. using the bioassay‐guided isolation method.

RESULTS

Three novel and 11 known Erythrina alkaloids were isolated. Erysodine ( 9 ), erysovine ( 10 ), erysotrine ( 8 ) and erythraline ( 11 ) showed moderate to excellent aphicidal activity with LD50 values of 7.48, 6.68, 5.13 and 4.67 ng aphid–1, respectively. The Potter spray tower bioassay gave corresponding LC50 values of 186.81, 165.35, 163.74 and 112.78 µg ml–1. A unique substructure, which presents an sp3 methylene at C‐8, a non‐oxygenated site at N‐9 and a conjugated dienes group (Δ1,2 and Δ6,7), plays a crucial role in the aphicidal activity. Application of erythraline ( 11 ) led to different increases in the activities of superoxide dismutase, catalase and glutathione S‐transferase.

CONCLUSION

The study demonstrated that the Erythrina alkaloids erysodine ( 9 ), erysovine ( 10 ), erysotrine ( 8 ) and erythraline ( 11 ) have potential use as botanical aphicides for commercial application, or as templates for the development of new insecticides. © 2017 Society of Chemical Industry  相似文献   

20.
BACKGROUND: The crayfish Procambarus clarkii inflicts severe ecological and economic damages in Europe. To develop an efficient method for its control, four experiments were carried out to assess the impact of natural pyrethrum (i.e. Pyblast) on crayfish: (1) the 24 h LC100 and LC50 were quantified on crayfish; (2) the breakdown time of the 24 h LC100 was assessed using Daphnia magna as a bioindicator; the effects of 24 h LC100 on crayfish were investigated by applying the biocide into burrows (3) and in a drainage channel (4). RESULTS: Pyblast concentrations of 0.05 and 0.02 mg L?1 corresponded to 24 h LC100 and LC50 respectively. The concentration of 0.05 mg L?1 broke down after 72 h, whereas 0.02 mg L?1 did not cause any significant mortality in D. magna after 24 h. However, 0.05 mg L?1 had no effect on crayfish when introduced into the burrows, but led to a mortality of 95% when applied in the water. CONCLUSION: Experimental evidence is provided for the efficacy of Pyblast to control invasive crayfish. Obviously, before its use on a large scale, further studies are needed to find a concentration that will achieve the target 100% mortality with the shortest recovery time of the environment. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号