首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary metabolites and host defense compounds were shown to occur in xylem sap, and leaves of Vitis vinifera cv. Italia and cv. Matilde naturally infected by the esca-associated fungi Phaeomoniella chlamydospora (Pch), Togninia minima (Tmi) and Fomitiporia mediterranea (Fme). Samples of xylem sap and leaves were collected from healthy vines and from vines showing severe symptoms of brown wood-streaking caused by Pch and Tmi, or from vines with symptoms of both brown wood-streaking and white rot caused by Fme. Xylem sap collection was carried out during the early spring of 2003 and 2004, corresponding to the phenological phases: (A) cotton bud; (B) green tip; (C) leaves out; (D) stretched out leaves; and (E) visible clusters. In the present work we have studied the accumulation of biomolecules (pentaketides and α-glucans), host defense compounds (benzaldehydes, benzoic acid and cinnamic acid derivatives, flavonols, flavanols, flavan-3-ol derivatives and stilbenes) at different stages of grapevine development. Accumulation and changes in total phenolics and recurring phenolics, and of three phytotoxic secondary metabolites (scytalone, isosclerone and pullulan) were analyzed by HPLC. On comparing results for cv. Italia and cv. Matilde, it can be seen that phenolic concentrations are strongly related to the cv.  相似文献   

2.
A vineyard of Vitis vinifera cv. Sangiovese was surveyed for incidence of esca and xylem sap collection. Sap samples were collected from healthy vines and from those with dual infection by Phaeomoniella chlamydospora (Pch) and Togninia minima (Tmi) or triple infection by Pch, Tmi and Fomitiporia mediterranea (Fme), during each early spring in a 3-year period (2001–2003). In order to analyse the possible trends in the climatic data, temperature and rainfall were assessed. At sap harvesting, aliquots of sap were assayed for phytotoxicity and extracted with ethyl acetate for phytotoxin recovery. Moreover, the exopolysaccharide (EPS) content was evaluated on several sap samples during the bleeding period. Conidia of Pch and Tmi, mycelium of Fme and their secondary metabolites were found in the sap of the esca-affected vines, indicating that the pathogens and their by-products together with some defence substances were accumulated and then translocated. Bioactivity tests showed toxicity of the sap from esca-affected vines to healthy detached leaves of cv. Sangiovese. The daily amount of sap, the pH, and the volume (Jv) and solute (Js) fluxes were analysed as a function of the infecting fungi. Pullulan, glucogalactomannan(s) and arabinogalactan(s) are the main EPS in the esca-infected vines, whereas in the sap of healthy vines no traces of pullulan were found. Scytalone and isosclerone usually produced in vitro by Pch and Tmi were also detected in the sap of vines infected by Pch and Tmi or by Pch, Tmi and Fme. The endogenous phytohormone content of healthy vines evaluated by the cutting bioassay was different from that of infected vines. Four phenolics belonging to three classes e.g., benzoic acid derivatives, stilbenes and flavonol-glycosides were separated and identified by HPLC.  相似文献   

3.
Secondary metabolites and host defense compounds were shown to occur in xylem sap, and leaves of Vitis vinifera cv. Italia and cv. Matilde naturally infected by the esca-associated fungi Phaeomoniella chlamydospora (Pch), Togninia minima (Tmi) and Fomitiporia mediterranea (Fme). Samples of xylem sap and leaves were collected from healthy vines and from vines showing severe symptoms of brown wood-streaking caused by Pch and Tmi, or from vines with symptoms of both brown wood-streaking and white rot caused by Fme. Xylem sap collection was carried out during the early spring of 2003 and 2004, corresponding to the phenological phases: (A) cotton bud; (B) green tip; (C) leaves out; (D) stretched out leaves; and (E) visible clusters. In the present work we have studied the accumulation of biomolecules (pentaketides and α-glucans), host defense compounds (benzaldehydes, benzoic acid and cinnamic acid derivatives, flavonols, flavanols, flavan-3-ol derivatives and stilbenes) at different stages of grapevine development. Accumulation and changes in total phenolics and recurring phenolics, and of three phytotoxic secondary metabolites (scytalone, isosclerone and pullulan) were analyzed by HPLC. On comparing results for cv. Italia and cv. Matilde, it can be seen that phenolic concentrations are strongly related to the cv.  相似文献   

4.
A vineyard of Vitis vinifera cv. Sangiovese was surveyed for incidence of esca and xylem sap collection. Sap samples were collected from healthy vines and from those with dual infection by Phaeomoniella chlamydospora (Pch) and Togninia minima (Tmi) or triple infection by Pch, Tmi and Fomitiporia mediterranea (Fme), during each early spring in a 3-year period (2001–2003). In order to analyse the possible trends in the climatic data, temperature and rainfall were assessed. At sap harvesting, aliquots of sap were assayed for phytotoxicity and extracted with ethyl acetate for phytotoxin recovery. Moreover, the exopolysaccharide (EPS) content was evaluated on several sap samples during the bleeding period. Conidia of Pch and Tmi, mycelium of Fme and their secondary metabolites were found in the sap of the esca-affected vines, indicating that the pathogens and their by-products together with some defence substances were accumulated and then translocated. Bioactivity tests showed toxicity of the sap from esca-affected vines to healthy detached leaves of cv. Sangiovese. The daily amount of sap, the pH, and the volume (Jv) and solute (Js) fluxes were analysed as a function of the infecting fungi. Pullulan, glucogalactomannan(s) and arabinogalactan(s) are the main EPS in the esca-infected vines, whereas in the sap of healthy vines no traces of pullulan were found. Scytalone and isosclerone usually produced in vitro by Pch and Tmi were also detected in the sap of vines infected by Pch and Tmi or by Pch, Tmi and Fme. The endogenous phytohormone content of healthy vines evaluated by the cutting bioassay was different from that of infected vines. Four phenolics belonging to three classes e.g., benzoic acid derivatives, stilbenes and flavonol-glycosides were separated and identified by HPLC.  相似文献   

5.
Phaeomoniella chlamydospora (Pch) and Togninia minima (Tmi) produced scytalone, isosclerone and pullulans in liquid cultures, as well as in calli. Secondary metabolites and host defense compounds were shown to occur in calli of Vitis vinifera cv. Italia and cv. Matilde infected by the esca-associated fungi Pch, Tmi and Fomitiporia mediterranea (Fme). Calli of both cvs. were grown as dual cultures with Pch, Tmi and Fme. The fungi grew well in the presence of calli of both cvs., but callus growth was reduced. Accumulation and changes of total phenolics and recurring phenolics, and of two phytotoxic pentaketides and pullulans were analyzed by HPLC. On comparing results for cv. Italia and cv. Matilde, it can be seen that concentrations of phenolics are strongly related to the cv. The paper discusses the possible relationship between melanin biosynthesis in Pch and Tmi, which utilize pentaketide metabolites as intermediates and their pathogenicity related to phytotoxity of scytalone and isosclerone.  相似文献   

6.
Phaeomoniella chlamydospora (Pch) and Togninia minima (Tmi) produced scytalone, isosclerone and pullulans in liquid cultures, as well as in calli. Secondary metabolites and host defense compounds were shown to occur in calli of Vitis vinifera cv. Italia and cv. Matilde infected by the esca-associated fungi Pch, Tmi and Fomitiporia mediterranea (Fme). Calli of both cvs. were grown as dual cultures with Pch, Tmi and Fme. The fungi grew well in the presence of calli of both cvs., but callus growth was reduced. Accumulation and changes of total phenolics and recurring phenolics, and of two phytotoxic pentaketides and pullulans were analyzed by HPLC. On comparing results for cv. Italia and cv. Matilde, it can be seen that concentrations of phenolics are strongly related to the cv. The paper discusses the possible relationship between melanin biosynthesis in Pch and Tmi, which utilize pentaketide metabolites as intermediates and their pathogenicity related to phytotoxity of scytalone and isosclerone.  相似文献   

7.
When the esca-associated fungi Phaeomoniella chlamydospora (Pch), Togninia minima (Tmi) and Fomitiporia mediterranea (Fme) were grown in liquid stationary cultures, it was seen that they were able to live in media containing resveratrol (RES) or tannic acid (TA) as the sole carbon source and that the fungi were able to convert both compounds. Particular attention is paid here to detecting RES and TA conversion. Pch, Tmi and Fme were partially inhibited by RES or TA. Pch, Tmi and Fme produced extracellular tannase, laccase and peroxidase enzymes in liquid or agarized cultures, whether glucose was present or not. When colonies of Pch, Tmi and Fme were confronted, they showed spatially and temporally heterogeneous patterns of laccase and peroxidase activity. The results indicate the non-synergistic, competitive association of Pch and Tmi and the inhibition of Fme growth. Muconic acid, a well-known intermediate in a large number of lignin and phenol oxidative processes, can partly or completely inhibit the lignolytic agent Fme, but is tolerated by Pch and Tmi. An explanation for wood pigmentation patterns by Pch, Tmi and Fme is given.  相似文献   

8.
When the esca-associated fungi Phaeomoniella chlamydospora (Pch), Togninia minima (Tmi) and Fomitiporia mediterranea (Fme) were grown in liquid stationary cultures, it was seen that they were able to live in media containing resveratrol (RES) or tannic acid (TA) as the sole carbon source and that the fungi were able to convert both compounds. Particular attention is paid here to detecting RES and TA conversion. Pch, Tmi and Fme were partially inhibited by RES or TA. Pch, Tmi and Fme produced extracellular tannase, laccase and peroxidase enzymes in liquid or agarized cultures, whether glucose was present or not. When colonies of Pch, Tmi and Fme were confronted, they showed spatially and temporally heterogeneous patterns of laccase and peroxidase activity. The results indicate the non-synergistic, competitive association of Pch and Tmi and the inhibition of Fme growth. Muconic acid, a well-known intermediate in a large number of lignin and phenol oxidative processes, can partly or completely inhibit the lignolytic agent Fme, but is tolerated by Pch and Tmi. An explanation for wood pigmentation patterns by Pch, Tmi and Fme is given.  相似文献   

9.
Esca is one of the most important grapevine trunk diseases, and it can induce severe decline. In the past, the disease occurred mostly on mature vines, but today it is also present in young vineyards. The aim of this study was to investigate the incidence of esca in young (< 7 years old) and mature (> 11 years old) vineyards on cvs Montepulciano, Sangiovese, Verdicchio and Passerina located in the main viticultural areas of the Marche Region, central-eastern Italy. The average incidence of diseased plants was higher in mature (32.6%) than young (5.2%) vineyards, and Verdicchio and Passerina appeared to be the most sensitive among the cultivars considered, followed by Sangiovese and Montepulciano. The analysis of the spatial spread of esca carried out in two mature vineyards on cv. Verdicchio and a young vineyard on cv. Sangiovese showed a fluctuation in the numbers of infected plants over the three years of observation. The fungi associated with symptomatic plants were detected by classical and molecular tools. Isolation on agar media yielded colonies of Phaeomoniella chlamydospora (Pch), Botryosphaeria spp. (Bot), Fomitiporia mediterranea (Fomed) and, sporadically, Phaeoacremonium aleophilum (Pal). In samples from young plants, Bot and Pch were recurrent, while Pch and Fomed were found in mature vines and old rootstocks. Molecular detection with specific primer pairs for Pch, Pal, Fomed, and B. dothidea confirmed the data obtained using classical tools, and in some cases it was more sensitive. This study thus provides a further contribution to the association between causal agents and esca symptoms, and it confirms the importance of molecular tools for a sensitive detection of associated pathogens, which can also be present in propagative materials.  相似文献   

10.
Effects of benomyl on incidence of pathogens affecting the culm base of rye were studied in field trials and growth chamber experiments. Spraying of the crop with the fungicide at a high dosage (2.4 kg.ha–1) resulted in a tenfold increase of sharp eyespot caused byRhizoctonia cerealis and reduced foot rot symptoms caused by fusaria by 50%. In a field trial at a low dosage (0.24 kg.ha–1) a slight increase of sharp eyespot was observed. In one year, probably because of wet conditions during the infection period, sharp eyespot did not occur in either benomyl-treated or untreated plots, but eyespot caused byPseudocercosporella herpotrichoides was abundant. Its occurrence was reduced from 74% affected culm bases in untreated plots to 8% and 1% in plots that received 0.24 and 2.4 kg.ha–1 of the fungicide, respectively.In growth chambers seedlings were grown in two sandy soils inoculated withR. cerealis. The soil was kept dry at about 35% of the moisture holding capacity. In plots with benomyl (1 mg.kg–1; moisture content 11% of fresh weight), fewer seedlings emerged than in plots without the fungicide. This result was highly significant (P<0.01) for one soil but not for the other. The number of seedlings that remained free of disease symptoms was higher (P<0.01) in untreated than in fungicide-treated plots of both soils.Isolates of pathogens obtained from diseased culms were tested for their sensitivity to benomyl. Growth of all of them includingR. cerealis was inhibited, although not always completely suppressed, at 10 g.ml–1 on potato-dextrose agar. ED50 values of most isolates ofR. cerealis were between 2.2 and 3.1 g.ml–1. The fungus was slightly but consistently less sensitive thanF. culmorum. Mycelial growth ofF. nivale was appreciably more sensitive than that of the otherFusarium spp. from cereals.P. herpotrichoides andF. nivale were the most sensitive pathogens tested with ED50 values of <1 g.ml–1. Accordingly,F. nivale was absent on culms from treated plots. In a growth chamber experiment, seedlings were protected from infection by supplying the fungicide (1 mg.kg–1) to previously inoculated soil.In a laboratory assay the effect of benomyl on microbial antagonism toR. cerealis was estimated for rhizosphere soil. Enhanced incidence of sharp eyespot in treated crops was associated with adverese effects of the fungicide on microbial antagonism. There is presumptive evidence thatR. cerealis is suppressed by bacteria after wet periods during the vegetation period of the crop and by fungi after dry periods. Only fungal antagonism, which may be less effective, is affected by benomyl. The response to benomyl of the microflora in different soils varied. Reasons for this inconsistency are suggested.Samenvatting In veldproeven en in een klimaatkamer werd de invloed van benomyl op het optreden van voetziekten in rogge onderzocht. In veldjes die bespoten waren met een hoge dosis van het fungicide (in totaal 2.4 kg.ha–1) bleken tienmaal zoveel halmen met scherpe oogvlekken, veroorzaakt doorRhizoctonia cerealis, voor te komen dan in onbespoten veldjes. Daarentegen was voetrot veroorzaakt doorFusarium-soorten met 50% verminderd. In een volgende veldproef, waarbij een voor de praktijk geadviseerde dosis (0.24 kg.ha–1) was toegepast, werd een lichte toename van scherpe oogvlekken waargenomen.In een ander jaar trad scherpe oogvlekkenziekte in het geheel niet op, ook niet in met benomyl behandelde veldjes. De vochtige omstandigheden tijdens de infectieperiode zijn daarvan waarschijnlijk de oorzaak. Daarentegen werd de oogvlekkenziekte, welke doorPseudocercosporella herpotrichoides werd veroorzaakt, veel aangetroffen. In de onbehandelde veldjes waren 74% van de halmen aangetast tegen 8 en 1% in de veldjes die met het fungicide waren behandeld in doseringen van 0.24 en 2.4 kg.ha–1.De invloed van het fungicide op de aantasting van kiemplanten werd in klimaatkamerproeven onderzocht. Daartoe werden twee zandgronden metR. cerealis geënt. De grond werd droog gehouden (op 35% van het waterhoudend vermogen). In grond met fungicide (1 mg.kg–1) was de opkomst minder dan in grond zonder fungicide. Dit was zeer significant (P<0.01) voor één van de beide zandgronden, maar niet voor de andere. Het aantal gezonde kiemplanten was in beide gevallen duidelijk hoger (P<0.01) voor de onbehandelde grond.De isolaten van ziekteverwekkers uit aangetaste halmen werden op hun gevoeligheid voor het fungicide getoetst. Op aardappel-glucoseagar werden alle isolaten in hun groei geremd bij een benomyl-concentratie van 10 g.ml–1.R. cerealis was iets minder gevoelig danF. culmorum. Voor het overgrote deel van de isolaten vanR. cerealis lag de ED50 waarde tussen 2,2 en 3,1 g.ml–1. De myceliumgroei vanF. nivale werd meer geremd dan die van de andereFusarium-soorten.P. herpotrichoides enF. nivale waren met een ED50 waarde van <1 g.m.–1 de gevoeligste pathogenen die uit de halmvoeten werden geïsoleerd. Dat de populatie vanF. nivale in benomylhoudende grond wordt onderdrukt, blijkt uit (1) het feit dat de schimmel niet voorkwam op halmen uit behandelde veldjes en (2) de bescherming tegen infectie van kiemplanten als aan de besmette grond fungicide (1 mg.kg–1) was toegevoegd.In laboratoriumproeven werd de invloed van benomyl op het microbiële antagonisme in rhizosfeergrond tegenR. cerealis bepaald. Een toename in het optreden van scherpe oogvlekkenziekte in behandelde gewassen bleek gepaard te gaan met een remming van het antagonisme tegen de ziekteverwekker. Er zijn sterke aanwijzingen datR. cerealis na vochtige perioden tijdens de vegetatieperiode door bacteriën wordt onderdrukt en na droge perioden door schimmels. Het antagonisme van de laatste groep lijkt minder effectief te zijn en alleen dit antagonisme wordt door benomyl verlaagd. Tenslotte wordt een mogelijke oorzaak aangegeven voor de ongelijke respons op het fungicide van het microbieel antagonisme in verschillende gronden.  相似文献   

11.
The generation and accumulation of reactive oxygen species (ROS), superoxide anion (O2) and hydrogen peroxide (H2O2), were studied in the interaction between wheat cv. ‘Suwon 11’ and two races of Puccinia striiformis f. sp. tritici (avirulent and virulent). Generation of O2 and H2O2 was analyzed histochemically using nitroblue tetrazolium (NBT) and 3,3-diamino-benzidine (DAB), respectively. At the pre-penetration stage during appressorium formation both stripe rust races induced H2O2 accumulation in guard cells. In the incompatible interaction, a rapid increase of O2 and H2O2 generation at infection sites was detected. The percentage of infection sites showing NBT and DAB staining was 36.1% and 40.0%, respectively, 12 h after inoculation (hai). At extended incubation time until 24 hai, percentage of infection sites showing H2O2 accumulation further increased, whereas those exhibiting O2 accumulation declined. The early infection stage from 12 to 24 hai coincided with primary haustoria formation in mesophyll cells. In contrast, in the compatible interaction, O2 and H2O2 generation could not be detected in most of the infection sites. In the incompatible interaction, intensive DAB staining was also determined in mesophyll cells, especially in cell walls, surrounding the infected cells 16–24 hai; thereafter, these cells contained fluorescing compounds and underwent hypersensitive response (HR). The number of necrotic host cells surrounding the infection sites increased continuously from 20 to 96 hai. It might be concluded that H2O2 accumulation during the early infection stage is associated with the occurrence of hypersensitive cell death and that resistance response is leading to arrest the avirulent race of the obligate stripe rust pathogen. In the compatible interaction at 96 hai, H2O2 accumulation was observed in mesophyll cells surrounding the rust lesion.  相似文献   

12.
In Ehime Prefecture, Japan, lettuce leaf spot (Septoria lactucae) caused huge losses in marketable lettuce yields. To explore potential measures to control disease outbreaks, the effects of inoculum density, leaf wetness duration and nitrate concentration on the development of leaf spot on lettuce (Lactuca sativa) were evaluated. Conidia were collected from diseased plants in an infested field by single-spore isolation and were used to inoculate potted lettuce plants with different conidial concentrations. Lesions developed on inoculated lettuce plants at inoculum concentrations from 100 to 106 conidia/ml. The disease was more severe when the inoculum exceeded 102 conidia/ml, and severity increased with increasing concentrations. Assessment of the relationship between disease development and the duration of postinoculation leaf wetness revealed that symptoms appeared when the inoculated plants remained wet for 12 h or longer. The number of lesions and total nitrogen content in the lettuce leaves both increased when nitrate was applied.  相似文献   

13.
Inoculum density, temperature, leaf age, and wetness duration were evaluated for their effects on the development of black streak (Itersonilia perplexans) on edible burdock (Arctium lappa L.) in a controlled environment. The effect of relative humidity (RH) on ballistospores production by I. perplexans was also evaluated. Symptoms of black streak on leaves increased in a linear fashion as the inoculum density of I. perplexans increased from 102 to 106 ballistospores/ml. Rugose symptoms on young leaves were observed at densities of ≥104 ballistospores/ml. Disease severity of I. perplexans in relation to leaf age followed a degradation curve when the leaves were inoculated with ballistospores. Disease severity was high in newly emerged leaves up to 5 days old, declined as leaf age increased to 29 days, and was zero when leaf age increased from 30 to 33 days. Disease development of edible burdock plants exposed to ballistospores of I. perplexans was evaluated at various combinations of temperature (10°, 15°, 20°, 25°C) and duration of leaf wetness (12, 24, 36, 48, and 72 h). Disease was most severe when plants were in contact with the ballistospore sources at 15° or 20°C. The least amount of disease occurred at 25°C regardless of wetness duration. Ballistospores required 24–36 h of continuous leaf wetness to cause visible symptoms by infection on edible burdock. Ballistospores production in infected lesions required at least 95.5% RH.  相似文献   

14.
The aim of this study was to compare the defense responses of embryo axes of Pisum sativum L. cv. Kwestor with different sucrose levels to pathogenic fungi, i.e. systemic acting Fusarium oxysporum f. sp. pisi and locally acting Ascochyta pisi. Embryo axes were cultured on Heller medium for 96 h. Four variants were compared: these included inoculated embryo axes cultured with or without 60 mM sucrose (+Si and −Si) and non-inoculated embryo axes cultured with or without 60 mM sucrose (+Sn and −Sn). After inoculation of the pea embryo axes with pathogenic fungi a generally higher concentration of free radicals was detected by electron paramagnetic resonance (EPR), in comparison to non-inoculated embryo axes. The inoculation with F. oxysporum caused stronger generation of free radicals in −Si than in +Si embryo axes. A different response was observed after inoculation with A. pisi; starting from 48 h, the concentration of free radicals in +Si axes was found to be 1.5 times higher than in −Si embryo axes. The values of spectroscopic splitting coefficients for these radicals suggest that they are semiquinone radicals. The EPR method also revealed Mn2+ ion accumulation after 24 h of culture. Over time, high levels of these ions were recorded in +Si embryo axes inoculated with F. oxysporum, while in +Si embryo axes inoculated with A. pisi they decreased. Up to 48 h after inoculation with the pathogenic fungi, Mn2+ ion levels were higher in +Si embryo axes than in +Sn axes. The activity of superoxide dismutase (SOD, EC 1.15.1.1) increased in +Si embryo axes up to 72 h after inoculation with pathogenic fungi; however, it was generally lower than in +Sn axes. Catalase activity (CAT, EC 1.11.1.6) increased up to 72 h after inoculation with F. oxysporum and the values were higher than in the non-inoculated tissue. Especially high activity of this enzyme was noted in −Si embryo axes after inoculation with either F. oxysporum or A. pisi. Peroxidase activity (POX, EC 1.11.1.7) towards pyrogallol in embryo axes increased during culture; however, it was lower or similar to that in non-inoculated embryo axes. SOD, CAT and POX zymograms showed that the synthesis of new isoforms was induced after inoculation with pathogenic fungi. Peroxidase isozymes detected by the reaction with diaminobenzidine in native PAGE were intensely stained in +Si embryo axes after inoculation with pathogenic fungi. Respiratory activity of the inoculated tissues was considerably higher than in non-inoculated tissues. The respiration rate was generally much higher in +Si than in −Si embryo axes. Growth of −Si embryo axes was more significantly retarded as a consequence of inoculation than that of +Si embryo axes.These results indicate that, depending on the manner of influence of a pathogenic fungus, both similar and differing defensive strategies may be initiated and a raised sugar levels in pea tissues limit the development of F. oxysporum and A. pisi.  相似文献   

15.
A mulberry epiphytic Enterobacter cloacae MUL1 harbors plasmid pMUL1 encoding five drug-resistance genes. This plasmid was examined upon its conjugal transfer into epiphytic Erwinia herbicola on the phylloplane of mulberry and 12 species of weeds. The plasmid was transferred into Er. herbicola at a frequency of 10–5–10–3/recipient in mulberry and Lolium multiflorum LAM. 1–8 days after wound inoculation with 106–108/ml suspensions. In Chenopodium album L. and C. album L. var. centrorubrum, however, it was transferred only after wound inoculation with a 108/ml suspension, but not with 107/ml or 106/ml suspensions, owing to the weak epiphytic fitness of Ent. cloacae on these weeds. Transconjugants were also obtained for seven other species of weeds in the case of inoculation with a 108/ml suspension. In contrast, when bacterial suspensions were sprayed on mulberry leaves with or without fresh wounds, transconjugants were obtained only in wounded leaves, which were considered suitable for bacterial conjugation. These findings suggest that epiphytic bacteria, including Ent. cloacae and Er. herbicola, may be carriers of drug-resistance genes distributed among plant pathogenic bacteria in nature.  相似文献   

16.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

17.
In this study, the biocontrol ability of seven grapevine-associated bacteria, previously reported as efficient against Botrytis cinerea under in vitro conditions, was evaluated in two vineyard orchards with the susceptible cv. Chardonnay during four consecutive years (2002–2005). It was shown that the severity of disease on grapevine leaves and berries was reduced to different levels, depending on the bacterial strain and inoculation method. Drenching the plant soil with these bacteria revealed a systemic resistance to B. cinerea, even without renewal of treatment. Accordingly, this resistance was associated with a stimulation of some plant defense responses such as chitinase and β-1,3-glucanase activities in both leaves and berries. In leaves, chitinase activity increased before veraison (end-July) while β-1,3-glucanase reached its maximum activity at ripening (September). Reverse patterns were observed in berries, with β-1,3-glucanase peaking at full veraison (end-August) and chitinase at a later development stage. Highest activities were observed with Acinetobacter lwoffii PTA-113 and Pseudomonas fluorescens PTA-CT2 in leaves, and with A. lwoffii PTA-113 and Pantoea agglomerans PTA-AF1 in berries. These results have demonstrated an induced protection of grapevine against B. cinerea by selected bacteria under field conditions, and suggest that induced resistance could be related to a stimulation of plant defense reactions in a successive manner.  相似文献   

18.
Saprophytic antagonists were evaluated for suppression of sporulation ofBotrytis allii andB. cinerea on artificially killed segments of onion leaves that were pre-inoculated with the pathogens. During incubation of the antagonisttreated leaf segments in moist chambers, periods of leaf wetness and leaf dryness were alternated to simulate conditions in the field. Interruption of humid conditions with dry periods had a differential effect on antagonists.Alternaria alternata, Chaetomium globosum, Ulocladium atrum andU. chartarum suppressed sporulation ofB. allii almost completely under continuously wet conditions, and when the leaf wetness periods were interrupted with drying periods of 9h imposed 16, 40, and 64 h after the antagonists were applied. When leaf wetness was interrupted 16 h after antagonist application, the number of conidia ofB. allii produced cm–2 leaf surface after eight days was under the detection limit of 5.2 × 103 conidia on leaves treated with these antagonists compared to 3.7 × 105 conidia on leaves that were not treated. On the other hand,Gliocladium roseum, G. catenulatum andSesquicillium candelabrum, all highly efficient under continuously wet conditions, were of low to moderate efficiency when leaf wetness periods had been interrupted 16 h after application of the antagonists. The antagonists showed the same differentiation and sensitivity to interrupted wetness periods when tested withB. cinerea.  相似文献   

19.
In growth cabinet experiments, the common phyllosphere yeastsSporobolomyces roseus andCryptococcus laurentii var.flavescens were sprayed as a mixture (11) onto the fourth leaves of maize plants (Zea mays) two-three days prior to inoculation withColletotrichum graminicola. In four experiments the average yeast population of the treated leaves at the time of pathogen inoculation varied between 5× 104 and 8× 105 cells cm–2 leaf, whereas on the untreated leaves the yeast population varied from <103 to 104 cells cm–2 leaf. The yeasts reduced lesion density and necrosis fromC. graminicola infection by approximately 50%. Contrary to findings with other necrotrophic pathogens, conidial germination, superficial mycelial growth and appressorium formation were not affected. Instead, the reduction of infection could only be explained by a reduced number of penetrations from the normally formed appressoria, a site of interaction not previously recorded.Samenvatting In klimaatkastexperimenten werden maisbladeren (4e blad) twee-drie dagen voor inoculatie metColletotrichum graminicola bespoten met een mengsel (11) van de algemeen voorkomende fyllosfeergistenSporobolomyces roseus enCryptococcus laurentii var.flavescens. In vier experimenten varieerde de gemiddelde gistpopulatie op de behandelde bladeren, op het moment van inoculatie met het pathogen, van 5× 104 tot 8× 105 cellen cm–2 blad, op de onbehandelde bladeren van <103 tot 104 cellen cm–2 blad. De gisten reduceerden de lesiedichtheid en het necrotisch bladoppervlak tengevolge van deC. graminicola infectie voor ongeveer 50%. De stadia in de ontwikkeling van andere necrotrofe pathogenen, die gewoonlijk gevoelig zijn voor antagonisme door gisten, zoals sporekieming, oppervlakkige myceliumgroei en vorming van appressoria, werden bijC. graminicola niet beïnvloed. De waargenomen reductie van infectie kon alleen verklaard worden door een remming van de penetratie vanuit normaal gevormde appressoria. Interactie in dit stadium van het infectieproces is nog niet eerder waargenomen.  相似文献   

20.
It has been reported that Alternaria brassicae, the causal agent of gray leaf spot in Brassica plants, produces a host-specific or host-selective toxin (HSTs) identified as destruxin B. In this study, the role of destruxin B in infection of the pathogen was investigated. Destruxin B purified from culture filtrates (CFs) of A. brassicae induced chlorosis on host leaves at 50–100 μg ml−1, and chlorosis or necrosis on non-host leaves at 250–500 μg ml−1. Destruxin B was detected in spore germination fluids (SGFs) on host and non-host leaves, but not in a sufficient amount to exert toxicity to host plants. When spores of non-pathogenic A. alternata were combined with destruxin B at 100 μg ml−1 and inoculated on the leaves, destruxin B did not affect the infection behavior of the spores. Interestingly, SGF on host leaves allowed non-pathogenic spores to colonize host leaves. Moreover, a high molecular weight fraction (>5 kDa) without destruxin B obtained by ultrafiltration of SGF had host-specific toxin activity and infection-inducing activity. From these results, we conclude that destruxin B is not a HST and does not induce the accessibility of the host plant which is essential for colonization of the pathogen. In addition, the results with SGF imply that a high molecular weight HST(s) is involved in the host–pathogen interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号