首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究冻融期水氮用量对土壤硝态氮迁移及累积的影响,设置了两个灌水量(375、750 m~3·hm~(-2))、三个施肥水平(100、300 kg·hm~(-2)和500 kg·hm~(-2))组成6种水氮组合,进行田间冬灌试验。结果表明,水氮处理显著增加了相变区(0~60 cm)土壤硝态氮水平,各处理下硝态氮累积量差异显著。未冻期和冻结期0~60 cm土壤硝态氮累积量随水、氮量的增加而增加,消融期硝态氮累积量随肥量的增加而增加。冻结前、后期土壤剖面聚氮区(特指硝态氮)由0~30 cm逐渐下移至30~60 cm。硝态氮向相变区的迁移量随水氮量的增加而呈增加态势,在N500下迁移趋势更明显。封冻前0~30 cm土壤硝态氮的相对累积量随灌水量增加而降低,30~60 cm土层则增加。冻结期,随施氮量的增加,0~30 cm土层硝态氮相对累积量增加,30~60 cm土层则降低。消融期0~30 cm土层硝态氮相对累积量随施氮量的增加而增加,随灌水量的增加而减少,而30~60 cm土层则呈现相反规律。  相似文献   

2.
为了有效利用氮肥,减少残留NO3^--N在土壤剖面中的累积,在位于半干旱半湿润地区的陕西岐山、杨凌、澄城和甘肃的定西,我们连续几年对不同试验处理条件下土壤剖面中残留NO3^--N的累积强度及其影响因子进行了系统研究。研究结果表明,在半干旱半湿润农田生态系统石灰性土壤剖面中累积着大量的残留NO3^--N。在所有测定土壤剖面中,NH4^4-N含量和累积量不仅在不同土层中差异不大,而且在不同生态系统和管理条件土壤剖面中的差异也不大,其含量变化在1~3μgN/g之间,累积量相当于14~42kg/hm^2,平均28kg/hm^2,显著小于残留NO3^--N。残留NO3^--N累积量平均占总矿质氮(NO3^--N NH4^ -N)累积量的75%以上,是土壤剖面中可浸取态矿质氮的主体。在岐山测定的129个土壤剖面中,O~100cm土层残留NO2^--N累积量小于50kg/hm^2的有26个,占20%,大干70kg/hm^2的有86个,占66.7%,大于100kg/hm^2的有47个,占36%,大干140kg/hm^2的有13个,占10%,每季作物吸氮量大约是70kg/hm^2,说明在目前施肥和生产水平下,有66.7%田块O~100cm土层中的残留NO3^--N最少与1季作物吸氮量相当;在杨凌、澄城、定西等地大部分试验小区(与当地一般施肥水平相当的小区),甚至有些不施氮肥对照小区土壤剖面中残留的.NO3^--N与1季作物的吸氮量也基本一致。这些结果充分说明,在半干旱农田生态系统石灰性土壤剖面中残留累积的NO3^--N是不可忽视的有效氮库。因此,在估计土壤供氮水平和确定施氮量,或者在制定这一地区土壤供氮指标测定方法时,必须要充分考虑在一定土层土壤剖面中的残留NO3^--N。土壤剖面中的残留NO3^--N通过对流(Convection)和扩散(Diffusion)等途径,逐渐向深层移动,脱离根区。在杨陵灌溉试验站和蔬菜试验站的测定结果表明,O~1000cm土层累积的NO3^--N分别高达1295.6kg/hm^2和710.4kg/hm^2,O~600cm土层累积的NO3^--N分别为。706.1kg/hm2和435.1kg/hm^2。在200cm土层以下累积着大量NO3^--N。在以上观测的2个剖面中,200~400cm、400~600cm、600~800cm和800~1000cm各土层累积的NO3^--N数量显著大干0~200cm土层,说明在上层(特别是在耕层)以各种途径增加的NO3^--N,通过长期淋溶,完全有可能脱离根区,淋溶到1000cm以下土层。在不同试验区进行的所有试验结果均表明,与不施氮对照小区相比,施氮小区在作物收获时,土壤剖面中残留.NO3^--N累积量呈增加趋势,并随施氮量增加,残留累积量增加。在杨凌和澄城进行的长期定位试验表明,连续施用氮肥,特别是高量氮肥田块,土壤剖面中残留NO3^--N与不施氮对照之间的差异很大:在杨凌长达25a的长期定位试验中,NP处理O~120cm土层残留NO3^--N累积量(163.4kg/hm。)比不施肥对照(51.8kg/hm^2)增加111.6kg/hm^2,如果在施NP的基础上休闲,残留NO3^--N增加效果更加突出,比对照增加156.5kg/hm^2;试验还发现,在施NP的基础上,配施玉米秸秆,一定程度上能够降低残留NO3^--N累积量,并随秸秆用量增加,残留NO3^--N累积量下降;在澄城,连续4季作物施用氮肥后,从2个灌水处理平均结果看,与不施氮对照相比,在每季作物施氮量低(<75kg/hm^2)时,不会发生NO3^--N残留累积,而当施氮量高于112.5kg/hm^2时,在O~120cm土层中残留NO3^--N累积量显著增加。在杨凌进行的2次大田试验表明,无论是在降雨丰富年份,还是在干旱年份,休闲都能够显著增加土壤剖面中NO3^--N的累积量,并且不管在任何采样时期,休闲小区100~120cm土层的NO3^--N含量均比复种玉米小区高,复种玉米能够减少残留NO3^--N在土壤剖面中的累积。由于地膜覆盖改变了土壤水热状况和生物性质,因而也必然影响土壤氮素转化过程,从而影响NO3^--N在土壤剖面中的累积。在定西进行的2a试验结果表明,如果在春小麦播种后全生育期覆膜,能够显著增加收获时土壤剖面中残留NO3^--N的累积:1999年,不施氮时,增加9.4kg/hm^2,施氮后,增加88.9kg/hm^2;2000年,不施氮时,增加17.9kg/hm^2,施氮后,增加39.9kg/hm^2;定西试验还表明作物生育前期覆膜,后期揭膜,有利于减少残留NO3^--N在土壤剖面中的累积。在作物生长后期,地膜覆盖处理耕层土壤水分条件较好,温度较高,有利于土壤有机氮的矿化。而在这一时期,小麦对NO3^--N的吸收能力减弱,需要量减小,因而在土壤剖面中易产生残留NO3^--N的大量累积。小麦收获后,值降水较多期,累积的NNO3^--N非常容易通过淋溶和反硝化损失,从这一角度考虑,在春小麦栽培中,不宜提倡全生育期地膜覆盖。  相似文献   

3.
针对黄土高原半干旱区春玉米全膜双垄沟播栽培中施肥不科学和氮肥利用率低的问题,研究不同施氮量对春玉米产量、土壤硝态氮及氮肥利用率的影响。采用2011—2012年两年田间定位试验,设置0、135、180、225、270 kg·hm~(-2)和360 kg·hm~(-2)六个施氮量,探讨不同施氮水平对作物和环境的影响。结果表明,随施氮量的增加,玉米产量先增加后降低。2011年施氮量180 kg·hm~(-2)时玉米子粒产量达到最大,为4 922.22 kg·hm~(-2),显著高于N135,与N225、N270差异不显著;2012年施氮量225 kg·hm~(-2)时,玉米子粒产量达到最大,为10 267.06 kg·hm~(-2),与对照及其它施氮处理差异不显著。硝态氮累积量在200 cm土层中随氮素投入量的增加而显著增加,随种植年限的增加各处理间差异增大。2011年N180、N225、N270、N360处理间硝态氮累积量差异均不显著,但显著高于N135处理;2012年各施氮处理间硝态氮累积量差异相互显著,N360累积量高达615.50 kg·hm~(-2)。玉米氮肥吸收利用率随着施氮量的增加呈先增加后降低趋势,施氮量为180 kg·hm~(-2)时,氮肥吸收利用率达到25.13%。适宜的施氮量能提高玉米产量及氮肥利用率,并且200 cm土层内硝态氮累积量较低,对环境的潜在危害较小。  相似文献   

4.
旱地不同栽培模式下土壤水分和矿质氮含量的时空变化   总被引:3,自引:0,他引:3  
以田间试验为研究手段连续两年研究了旱地不同栽培模式和施用氮肥对冬小麦生长期间土壤水分、硝态氮和铵态氮含量时空变化的影响.结果表明:与常规相比,覆膜和覆草均显著增加了0~5、5~10和10~20cm土层水分含量,而施用氮肥却是0~20 cm各土层水分含量均有所降低.不同栽培模式对土壤贮水量的影响园作物各生育时期的不同而不同,返青期覆膜和覆草模式土壤贮水量显著高于常规对照,拔节期覆草模武土壤贮水量显著高于覆膜模式,灌浆期各模式之同土壤贮水量的差异未达显著水平.冬小麦生长期间不同处理的土壤铵态氮含量均较低,时空变化较小;而不同处理的土壤硝态氮含量的时空变化较大,其含量的时空变化与施氮量、栽培模武和不同时期有密切关系.增加氮肥用量明显提高0~20 cm土层硝态氮含量和矿质氮的累积量,随着生长时期的推进,土壤硝态氮含量降低明显.0~100 cm土层中硝态氮的累积量为覆草>常规>覆膜.  相似文献   

5.
通过田间定位试验研究秸秆覆盖条件下施氮量对小麦氮素吸收利用及土壤硝态氮残留的影响.试验包括覆盖(不覆盖和秸秆覆盖4500 kg/hm2)和施氮量(0,75,150,225和300 kg N/hm2)两个因素,共10个处理,重复3次.3年结果表明:秸秆覆盖对冬小麦吸氮量没有显著影响,但在偏旱年份,秸秆覆盖有利于提高氮肥利用效率.与不覆盖类似,秸秆覆盖冬小麦吸氮量在3年间呈持续增加趋势.不论秸秆覆盖还是不覆盖,施氮量小于等于150 kg/hm2时,对土壤硝态氮残留量均没有显著影响;施氮量高于150 kg/hm2时,土壤残留硝态氮量则显著增加,0~200 cm剖面出现明显的累积峰,秸秆覆盖土壤残留硝态氮累积峰较不覆盖处理深40 cm左右.  相似文献   

6.
覆膜种植技术已在旱作农区大面积推广,为了探明覆膜种植模式下科学合理的施肥水平,尽量减少土壤氮素残留与淋溶,采用田间定位试验,设全膜双垄沟播(F)、半膜平作(H)和裸地平作(O) 3种种植方式,配套优化施肥(OPT)、农民习惯施肥(FP)和不施肥(CK) 3种施肥水平,测定了春玉米各生育时期的土壤硝态氮含量,分析了不同处理的土壤硝态氮残留量、分布以及动态变化。结果表明:土壤中硝态氮残留累积量随着氮肥用量的增加而增加,0~200 cm土壤中硝态氮残留量最高可达428.3 kg·hm~(-2),OPT和FP处理的硝态氮平均累积量分别是CK的7.6和4.4倍;覆膜种植可以减少氮素残留,以全膜双垄沟播尤为明显;裸地平作下长期施氮容易出现硝态氮的残留,其主要残留在60~140 cm土层中,100 cm土层附近最高。两种覆膜种植方式下,随着玉米生育期的推进,0~200 cm土壤硝态氮含量逐渐降低,收获时土壤硝态氮残留量保持在较低水平,而在裸地平作下施氮后硝态氮含量始终维持在较高水平,收获期残留量高。因此,在OPT施肥水平下,配合全膜双垄沟播可以提高氮素利用效率,减少土壤硝态氮下层淋溶,降低因高施氮导致的土壤硝态氮累积。  相似文献   

7.
以田间试验方法研究了玉米秸秆还田配施氮肥对后茬冬小麦产量和小麦生育期土壤硝态氮累积量的影响。试验采用裂区设计,主处理包括玉米秸秆还田(S1)和不还田(S0)2个处理,副处理为5个不同施氮水平,分别为0、84、168、252 kg·hm~(-2)和336 kg·hm~(-2)。结果表明,施氮量较低时(分别低于99 kg·hm~(-2)和79 kg·hm~(-2)时),秸秆还田处理小麦产量低于秸秆不还田处理,施氮量较高时则相反;两条氮肥肥效曲线呈相交规律。施氮252 kg·hm~(-2)时,秸秆还田处理分别增产9.5%和2.1%,施氮336 kg·hm~(-2)时,秸秆还田处理分别增产7.0%和5.6%。冬小麦冬前分蘖期土壤硝态氮主要累积在0~40 cm土层;施氮量高于84 kg·hm~(-2)时,秸秆还田处理硝态氮累积量有高于相同施氮量下不还田处理的趋势,其中0~20 cm土层N336+秸秆还田处理硝态氮累积量比不还田处理提高25%(武功试验地)。冬小麦返青期土壤硝态氮较冬前分蘖期大幅降低,此期秸秆还田处理0~20 cm土层硝态氮累积量有低于秸秆不还田处理的趋势。周至县连续三年田间试验结果表明,秸秆还田处理冬小麦收获期土壤硝态氮累积量有高于秸秆不还田处理的趋势,不施氮肥处理0~1 m土层秸秆还田比不还田处理累积量显著提高43.4%。秸秆还田对冬小麦产量和土壤硝态氮累积量的影响与施氮量有关,施氮量较低时秸秆还田条件下冬小麦返青期土壤硝态氮含量较低,引起作物速效氮供应的短期(返青期追施氮肥前)缺乏,影响小麦生长,进而导致小麦减产。连续秸秆还田处理有利于小麦收获期2 m土壤硝态氮累积,减少向下淋溶。  相似文献   

8.
灌水量及减氮模式对冬小麦产量及水氮利用的影响   总被引:1,自引:0,他引:1  
为探究关中平原冬小麦合理的减氮模式及相应的灌水量,以灌水量为主处理、减氮模式为副处理开展冬小麦田间裂区试验,灌水量设90 mm和150 mm,参照本地习惯施氮(尿素CO,施氮量210 kg·hm~(-2))设置减氮模式,施氮量为150 kg·hm~(-2),有3种施氮类型:尿素+硝化抑制剂(DMPP)、控释氮肥和尿素掺施(PCU)和控释复合肥(SF),另以不施氮肥(N0)为对照,对小麦产量、水分和氮肥利用效率及土壤硝态氮残留状况进行分析。结果表明:灌水量和减氮模式两因素及其交互作用对冬小麦有效穗数、千粒重、籽粒产量、土壤硝态氮残留量及水分和氮肥利用效率均有显著影响;灌水量对冬小麦产量的影响随减氮模式而变,与灌水90 mm相比, PCU150和DMPP150处理在灌水量150 mm时产量降低,SF150和N0处理产量有所增大;灌水90 mm时,减氮模式PCU150和DMPP150较习惯施氮CO210减少施氮28.6%,籽粒产量和有效穗数显著增加,分别增产17.4%和11.6%,水分利用效率提高17.5%和13.5%,氮肥利用效率增加64.3%和58.4%, 0~200 cm土层硝态氮残留量减少57.8%和45.6%。关中平原在冬小麦全生育期灌水90 mm,采用尿素加硝化抑制剂基施、树脂包膜尿素基施60%+尿素拔节期追施40%两种减氮模式,冬小麦可维持较高产量和水肥利用效率。  相似文献   

9.
为探讨青海省山旱区马铃薯发展的新途径,研究了缓释复混肥料对地膜覆盖马铃薯产量、土壤硝态氮含量、硝态氮累积量及氮肥利用率的影响。结果表明:施用1 050 kg·hm~(-2)缓释复混肥(RZ70)处理马铃薯产量最高,为47 240 kg·hm~(-2);较农民习惯施肥(NXG)处理增产2 175 kg·hm~(-2),增产率为4.83%;较马铃薯专用肥(MZY)处理增产5 085 kg·hm~(-2),增产率为12.06%。马铃薯从苗期到成熟期,农民习惯施肥(NXG)和马铃薯专用肥(MZY)处理显著提高了0~100 cm各土层硝态氮的含量,1 050 kg·hm~(-2)缓释复混肥(RZ70)处理显著降低了0~100 cm各土层硝态氮的含量。马铃薯生长季0~100 cm各土层硝态氮含量呈先增加后降低的趋势。硝态氮含量在团棵期出现了一个峰值,且主要集中在20~40 cm土层。随着马铃薯的生长发育,0~100 cm各土层硝态氮含量差异逐渐减小,至成熟期趋于稳定并降至最低。农民习惯施肥(NXG)处理下,马铃薯整个生育期0~100 cm土层硝态氮累积量呈现降低的趋势;除了习惯施肥(NXG),马铃薯整个生育期0~100 cm土层硝态氮累积量与土壤硝态氮含量变化一致。1 050 kg·hm~(-2)缓释复混肥(RZ70)处理下,氮肥利用率最高,达到了53.70%。较农民习惯施肥(NXG),增幅为3.38%~40.85%;较马铃薯专用肥(MZY)施肥处理,增幅为5.01%~33.25%。该结果可为缓释复混肥料在青海省马铃薯种植中的合理施用提供理论依据。  相似文献   

10.
陕西省新老苹果产区果园土壤硝态氮累积特性研究   总被引:1,自引:0,他引:1  
以陕西省新、老果区(分别为洛川及礼泉)为研究对象,调查了两县各15个成龄果园的施肥现状,计算了果园氮素表观平衡,并测定了这15个果园的0~200 cm土壤剖面硝态氮含量,分析了树龄、施氮量与土壤剖面硝态氮累积量的关系。结果表明:新、老果区苹果园均过量施用氮肥,平均施氮量分别高达1 287±244 kg·hm-2(洛川)和1 193±300 kg·hm-2(礼泉),导致土壤中盈余了大量的氮素。新、老果区土壤0~200 cm硝态氮累积量分别达2 724 kg·hm-2和5 226 kg·hm-2, 老果区土壤剖面硝态氮累积量显著高于新果区。相关分析表明,果园土壤剖面累积的硝态氮与树龄和施氮量呈正相关,与树龄的相关系数为0.641,与洛川、礼泉果园施氮量的相关系数分别为0.402和0.306。因此,建议研究区域采取措施控制果园施氮量,减少果园土壤硝态氮累积带来的资源浪费及环境污染。  相似文献   

11.
通过旱棚小车模拟小麦/玉米垄沟套作种植试验,研究了3种不同垄沟部位(垄顶、垄底和沟中)施肥对小麦/玉米生长和产量及土壤水氮分布的影响。结果表明:相同灌水条件下,施肥部位对垄沟套作水分分布影响不显著,但土壤硝态氮的分布差异较大;垄顶施肥和垄底施肥处理下,由于水肥异区,其垄上小麦生长带的硝态氮主要分布在0~30 cm土层,有效地减少了硝态氮向土壤深层淋溶,而后期沟内玉米生长带的水氮处理相同,因此其硝态氮分布差异较小;在相同灌水条件下,垄沟套作可以有效降低水分流失,减少氮肥损失,因此较传统平作更有利于作物生长,提高小麦、玉米的产量,且以垄顶施肥和垄底施肥效果最显著,小麦产量较平作分别增加11.47%、10.81%,玉米产量较平作分别增加18.87%、22.70%。  相似文献   

12.
为研究旱地矮化苹果树当季肥料氮在土壤中的累积与淋溶效应,采用土钻采样法与15N同位素示踪技术,测定了6 a生晚熟矮化‘延长红’苹果园土壤剖面(0~300 cm)的氮素累积分布特征与当季氮肥残留。结果表明:土壤含水率与硝态氮含量变化表现出较强的一致性,不施肥CK、减氮施肥N400与常规施肥N800处理硝态氮在80~140 cm土层存在明显富集现象,其含量峰值分别为174.9、194.8 mg·kg-1与211.1 mg·kg-1。CK、N400与N800处理0~300 cm土壤剖面中,全氮累积量分别为10 927.3、13 734.8 kg·hm-2与15 645.4 kg·hm-2,硝态氮累积量分别为1 873.5、2 353.9 kg·hm-2与2 892.7 kg·hm-2,铵态氮累积量分别为12.2、42.6 kg·hm-2与44.4 kg·hm-2。N400和N800处理下果园土壤中各土层(0~300 cm)氮素来自当季氮肥的比例分别为0.10%~1.50%和0.18%~2.03%。当季氮肥在0~300 cm深度各土层均有残留且主要集中在0~140 cm土层;80~100 cm土层的全氮来自当季氮肥的比例(减氮施肥N400和常规施肥N800分别为1.50%与2.03%)显著高于其他土层。N400处理下TN-15N、NO-3-15N、NH+4-15N的残留率分别为21.6%、19.2%、0.2%,N800处理分别为48.8%、39.3%、0.3%,土壤中氮的残留率随着施氮量的增加显著增加,且以硝态氮为主。100~300 cm土层中减氮施肥N400与常规施肥N800处理NO-3-15N残留率分别为8.5%与25.0%,当季氮肥淋溶出根区(0~80 cm)现象明显。最佳施肥量及施肥量对产量的影响在N400的基础上仍有待进一步研究确定。  相似文献   

13.
半干旱区农田生态系统石灰性土壤施入的氮肥和有机氮矿化产物,除植物吸收、微生物固定、粘土矿物固定、挥发损失和反硝化损失外,有相当一部分最终以NO3--N形态残存在土壤中。土壤剖面中的残留NO3--N通过对流和扩散等途径,逐渐向深层移动,脱离根区。影响土壤剖面NO3--N残留累积和淋溶的主要因素包括施氮量、植物吸氮量、前作收获后的植物残留物、氮肥种类、施氮方式和降雨量等。残留NO3--N本身具有很高的生物有效性,但能否被植物吸收利用,关键在于残留NO3--N所在深度及其是否能够到达根区。在半干旱区降雨量较高的雨季,NO3--N向深层移动,而在较干旱条件下即使土壤剖面深层NO3--N,也可随水分上移供根系利用,因此土壤剖面中累积的残留NO3--N显著影响氮肥肥效果,许多地方用一定深度土层中累积的NO3--N作为土壤供氮指标,以减少NO3--N的淋溶损失和提高氮肥肥效。过去对半干旱地区土壤剖面中NO3--N的研究主要涉及3方面,一是土壤剖面中NO3--N的残留累积及其影响因素,二是与根系分布深度相适应土层中残留NO3--N对氮肥肥效的影响,三是根据土壤剖面中的残留NO3--N确定农田作物施氮量。在分析过去研究结果的基础上,提出了今后需进一步深入研究的科学问题。  相似文献   

14.
为探究水分和氮肥增效剂对夏玉米生长及水肥利用的综合影响,通过设置40 mm(W1)和60 mm(W2)两个灌水水平下不施氮肥(N0)、施用氮肥(U)、氮肥+硝化抑制剂(U+DCD)、氮肥+脲酶抑制剂(U+NBPT)、氮肥+双效抑制剂(U+N+D)5种氮肥施用措施,开展夏玉米田间试验。结果表明:相较于施用氮肥处理,氮肥配施增效剂可以显著提高夏玉米产量、成熟期地上生物量、净收益、水分利用效率和氮肥偏生产力,增幅分别为5.92%~13.82%、5.85%~18.07%、11.12%~24.30%、12.35%~41.83%和5.93%~13.80%,其中氮肥配施双效抑制剂效果较优;氮肥配施脲酶抑制剂和双效抑制剂可以降低夏玉米农田土壤氨挥发累积量和成熟期土壤硝态氮残留量,前者效果最优。相比于W1,W2水平下氮肥配施双效抑制剂处理玉米产量、成熟期地上生物量、净收益、水分利用效率和氮肥偏生产力分别提高10.54%、15.51%、19.40%、20.31%和27.36%;氮肥配施脲酶抑制剂处理农田土壤氨挥发累积量和硝态氮残留量分别降低11.33%和48.46%。综合考虑夏玉米施肥灌水方案的经济效益、环境效益、水肥利用效率和玉米植株生长,构建模糊综合评价体系,得到最优处理为灌水量60 mm下氮肥配施双效抑制剂。  相似文献   

15.
生物质炭与不同形态氮肥配施对黄绵土氮素矿化的影响   总被引:1,自引:0,他引:1  
通过室内培养试验将生物质炭施用于西北黄土高原旱地土壤,旨在探讨不同形态化学氮肥施用下施用生物质炭对土壤氮素矿化速率及无机氮库的影响。结果表明:(1)施用化学氮肥会提高土壤无机氮累积量,但会在无机氮释放高峰过后显著降低氮素矿化速率;其中,施用酰胺态氮肥和铵态氮肥对土壤氮素的矿化抑制作用强于施用硝态氮肥。(2)在无机氮释放高峰过后,生物质炭的施用会显著降低施用酰胺态氮肥处理下的氨化速率、硝化速率及净氮矿化速率,降低幅度分别为64.9%,44.6%和47.7%,且其降低程度在较低土壤含水量水平大于较高土壤含水量,而对施用硝态氮肥和铵态氮肥无显著影响。(3)生物质炭的施用一定程度上降低了施用酰胺态氮肥和铵态氮肥处理下的无机氮累积量,且在较低土壤含水量下无机氮累积低于较高土壤含水量处理。综合考虑,旱地施用酰胺态氮肥或铵态氮肥配合施用生物质炭可以有效降低土壤无机氮累积量,从而降低氮素损失的风险。  相似文献   

16.
栽培模式、施氮量对旱作春玉米农田矿质氮和产量的影响   总被引:2,自引:0,他引:2  
研究了旱地不同栽培模式(全膜双垄沟和传统种植模式)和施氮量(0、170、200、230 kg·hm~(-2))对春玉米生长期间矿质氮和产量的影响。结果表明:不同处理条件下,硝态氮主要分布在0~40 cm土层,施氮量越高土壤中硝态氮的含量也就越高,随土层深度增加硝态氮含量降低;不同栽培模式对土壤中硝态氮的分布有明显影响,全膜双垄沟模式有助于玉米植株高效吸收利用土壤中的氮素,施氮量为0、170、200、230 kg·hm~(-2)处理的吸氮量分别提高了89.3%、51.1%、66.6%和102.8%,所有处理的吸氮量平均提高77.4%,从而减少土壤硝态氮的残留,而传统种植模式的玉米植株利用土壤氮素效率低,易造成硝态氮残留在土壤中,当遇到强降雨时硝态氮的淋洗现象严重,将硝态氮迁至作物无法吸收利用的土壤深度,造成资源浪费;而铵态氮在土壤中不易迁移,施氮量、栽培模式及玉米不同生育时期对铵态氮在土壤剖面中的分布几乎没有影响;玉米的植株吸氮量与玉米产量成正比,施氮处理植株吸氮量与产量显著高于不施氮处理,但是不同施氮处理间的差异不显著。全膜双垄沟模式下春玉米的最佳施氮量为200 kg·hm~(-2),而传统种植模式下的最佳施氮量为170 kg·hm~(-2),且在干旱地区宜采用全膜双垄沟栽培模式种植春玉米。  相似文献   

17.
通过12a大田长期定位试验研究了在自然降水条件、冬小麦—大豆轮作(或休闲)种植制度下,0~400cm土娄土剖面硝态氮分布与积累的特点。结果表明,长期单施氮肥,氮的表观利用率特别低,仅0.51%,氮肥配施钾、磷肥,氮的表观利用率为25%~35%,氮磷钾平衡施肥及配施有机肥,氮的表观利用率达到50%;施N肥方式显著影响土壤硝态氮积累和淋移,旱地土娄土长期单施化学氮肥或氮钾、氮磷、氮磷钾肥使土壤NO-3-N大量积累和淋移;氮磷钾与有机肥的配合施用能有效地缓解土壤对硝态氮的积累,提高氮肥利用率。  相似文献   

18.
硝态氮的淋洗及其影响因素   总被引:41,自引:0,他引:41  
本文对影响硝态氮淋洗的灌溉与降水、施肥、土壤性质、植被、耕作等因素的研究结果分别进行了分析和总结,指出硝态氮的淋洗是这些因素共同作用的结果,提出了防止和减少硝态氮淋失的主要措施。这些措施包括施肥与作物需肥相配合、改进肥料施用技术、平衡施肥、合理限量使用肥料、缓效肥的施用、控制灌溉量,掌握最佳灌水时期以及调整作物类型等。  相似文献   

19.
新疆新和县郊区菜地硝态氮的淋洗调查   总被引:1,自引:2,他引:1  
对新和县郊区菜地的调查表明 ,由于过量施氮和灌水 ,造成菜地土壤硝态氮在 0~ 2 .8m土体中大量积累 ,平均 1m土体累积量 2 5 2kg/hm2 N ,接近一季蔬菜的需氮量。 0~ 2 .8m土体累积量平均高达 5 88.4kg/hm2 N ,已对浅层地下水构成威胁 ;菜地土壤 0~ 2 .8m土体硝态氮累积量 (y) 与施氮量 (x)呈极显著正相关 ;蔬菜种植年限较长的地块 ,1m以下土体硝态氮的绝对累积量和相对累积量较高。  相似文献   

20.
本试验在片麻岩新成山地土壤上,设置0(CK)、N 120kg/hm2(N120)、N 225 kg/hm2(N225)、N 300kg/hm2(N300)4个施氮水平,布置田间微区试验,小区面积为10m2,研究了尿素不同施用量对旱地谷子生长及土壤硝态氮时空分布的影响。定位试验第二年的结果表明:在该试验条件下,N120处理谷子产量达到最高为4.76 kg/10m2,之后提高施肥量N225和N300处理的谷子产量并没有显著增加;从0~60 cm土壤剖面中硝态氮时空分布的差异可以看出:在施肥20 d后,N120、N225和N300处理NO3--N含量在0~40 cm土层显著增加,其中N225和N300处理NO3--N已经下移到40~60 cm土层。施肥80 d后,各施肥处理的硝态氮有一部分已经移出60 cm土层。到施肥96 d(谷子收获),N120、N225和N300处理比CK处理土壤剖面中NO3--N含量显著增加,且氮肥用量越高,土壤中NO3--N含量越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号