首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract –  Body sizes of young-of-the-year (YOY) perch ( Perca fluviatilis ) at the end of their first summer are extremely variable and range in different studies between 4 and 15 cm. To analyse whether size divergences in YOY perch may be attributed to alternative use of food resources, adult perch were stocked into two previously fishless ponds and growth, size distribution and food intake of the YOY perch were recorded. In addition to perch, adult bream ( Abramis brama ) were introduced to produce juvenile bream that could serve as a food resource for YOY perch. The body sizes of YOY perch at the end of the experiment ranged from 32 to 168 mm with a bimodal size distribution. The combination of stomach content analyses and stable isotope signatures revealed that the small size cohort were planctivorous/benthivorous while the large size cohort was piscivorous/cannibalistic. Results implicated that different feeding behaviour contributed to the size divergences in YOY perch and that the extreme growth of the large size cohort was induced by piscivory.  相似文献   

2.
Abstract –  Size is a crucial factor affecting the survival of fish during winter. Pond and laboratory experiments with three size classes of perch (small: 40–70 mm, medium: 71–100 mm, large: 101–186 mm) revealed that the feeding history of perch prior to winter is reflected in the amount and type of accumulated energy reserves. The minimal amount of reserves was 2% of the perch's biomass for fat and 9% for protein. An increase in glycogen levels either reflected mobilisation of energy in the body when perch were starving or an increase in accumulated energy over winter. In the laboratory, only the smallest perch suffered from high mortality rates, even if all were fed with low amounts of food. However, feeding the fish reduced the mortality rate after a certain time lag. Size-selective mortality rates occurred in the pond experiments as well. Small perch which survived the winter were able to rebuild their energy stores.  相似文献   

3.
Abstract –  Foraging juvenile fish with relatively high food demands are usually vulnerable to various aquatic and avian predators. To compromise between foraging and antipredator activity, they need exact and reliable information about current predation risk. Among direct predator-induced cues, visual and olfactory signals are considered to be most important. Food intake rates and prey-size selectivity of laboratory-reared, naive young-of-the-year (YOY) perch, Perca fluviatilis , were studied in experiments with Daphnia magna of two size classes: 2.8 and 1.3 mm as prey and northern pike, Esox lucius , as predator. Neither total intake rate nor prey-size selectivity was modified by predator kairomones alone (water from an aquarium with a pike was pumped into the test aquaria) under daylight conditions. Visual presentation of pike reduced total food intake by perch. This effect was significantly more pronounced (synergistic) when visual and olfactory cues were presented simultaneously to foraging perch. Moreover, the combination of cues caused a significant shift in prey-size selection, expressed as a reduced proportion of large prey in the diet. Our observations demonstrate that predator-induced olfactory cues alone are less important modifiers of the feeding behaviour of naive YOY perch than visual cues under daylight conditions. However, pike odour acts as a modulatory stimulus enhancing the effects of visual cues, which trigger an innate response in perch.  相似文献   

4.
Abstract –  Life-history variation in perch ( Perca fluviatilis L.), with special emphasis on age and size at maturity in females, was studied in five lakes in Northern Sweden, differing in perch size distribution and relative predator abundance. Age at maturity was negatively correlated with size of young-of-the-year perch in the end of their first growth season. Length at maturity was positively correlated with L (asymptotic length when age is close to infinity) and negatively correlated with K (growth rate coefficient) from von Bertalanffy growth model. Relative predator abundance was negatively correlated with minimum size at maturity. However, predation was probably more important in its effect on growth, with a high predation leading to a decrease in population density, decreased food competition, and as a consequence, higher growth rates. Instantaneous mortality rates did not affect maturation patterns when comparing across the five lakes. Age and size at maturity in the perch populations studied here seemed to be mainly influenced by factors affecting growth.  相似文献   

5.
Abstract –  Eurasian ruffe are invading habitats in the North American Great Lakes watershed occupied by commercially important native yellow perch. We conducted laboratory experiments to evaluate potential overlap in habitat (macrophytes, mud, cobble) and food (benthic invertebrates) use. Ruffe and yellow perch both preferred macrophytes > cobble > mud in the light, but only ruffe increased their use of mud in the dark. Neither fish density nor food availability affected habitat preferences, and competition for habitat was not evident. For both species, feeding rates were marginally lower in macrophytes but did not differ between species. Our experiments suggest that if ruffe and yellow perch share a habitat (e.g., during invasion or because of predation risk), competition for space will be weak or absent. However, within a shared habitat, competition for food may occur when food is limiting because neither species has a clear advantage in its ability to consume invertebrates in any habitat.  相似文献   

6.
The effects of feeding on the development and growth of pike perch muscle and on proliferation of their progenitor myogenic cells were evaluated. Larvae were fed starting on Day 5 after hatching with Artemia nauplii, two commercial diets (Aglo Norse [AN] and Biokyowa [BK]), and two formulated diets (C [nonhydrolyzed casein] and CH [25% casein hydrolysate]). The survival, body mass, and length of pike perch juveniles fed Artemia nauplii and AN and BK diets were significantly higher compared to the C and CH groups. The highest somatic growth rate was associated with an increased contribution of hyperplasia to white muscle growth. Significantly higher frequency of proliferating cell nuclear antigen‐ and Ki‐67‐positive nuclei in the white muscle of fish fed Artemia nauplii and commercial diets compared to those fed C and CH feeds indicates that feeding affected the number of fibers. The pike perch fed the CH diet exhibited significantly lower total cross‐section area and average fiber area, additionally to the pathological changes in muscle morphology. The larvae fed natural food and diets promoting a fast growth rate exhibited a higher contribution of hyperplasia to muscle growth, which in turn, promoted an increase in the body size of adult fish.  相似文献   

7.
Abstract –  Predator–prey interactions in aquatic food webs depend on the sizes of both predator and prey. In the present study, size-dependent interactions between >70 mm total length pikeperch Sander lucioperca (L.) and four different prey species in the biomanipulated Bautzen Reservoir were investigated. Gape widths of 597 pikeperch were measured, and the stomach contents of 806 specimens were analysed. Additionally, total lengths (TL) and body depths of 1448 prey fish were determined. The highest prey length to predator length ratio (PPR) was 0.63. Total lengths of piscivorous pikeperch and total lengths of prey fish [pikeperch, ruffe Gymnocephalus cernuus (L.) and roach Rutilus rutilus (L.)] were positively and linearly related. This was not the case for prey perch ( Perca fluviatilis L.) as all size groups of pikeperch fed strongly on age-0 perch. This study coupled with results of previous studies suggests that predation by pikeperch can have a major impact on the population dynamics of especially perch.  相似文献   

8.
Abstract –  To elucidate the performances of perch and ruffe in oligotrophic lakes, we carried out a field study in reoligotrophic Upper Lake Constance. Both these percids used the same habitat, albeit with different activity patterns. Interspecific competition for food was relevant only in summer when both species fed on zoobenthos. Even then, niche overlap was low, while intraspecific diet overlap was moderate to high throughout the season. Perch did not perform fixed, ontogenetic diet shifts, but used a wide range of prey. During spring and early summer, all size classes were planktivorous, then switched to benthivory and cannibalism in summer, and part of the population reverted to planktivory in autumn. Ruffe, by contrast, fed mainly on chironomid larvae and pupae throughout the year. It is suggested that in lakes of low productivity the euryphagous characteristics of perch, including cannibalism, provide a clear advantage over the benthivorous specialist ruffe in two ways: (i) it allows perch to switch to alternative prey types if one prey type becomes scarce; and (ii) reduces both intra- and interspecific competition for food.  相似文献   

9.
Abstract –  Predation risk allocation hypothesis predicts that a prey's response to predator depends on prey's previous experience on predator. Here we tested whether the group of three perch respond differentially to pike, predator of perch, depending on the timing of high constant (HC) and high unpredictable (HU) risk periods within low constant risk periods in short-term (10 h) experiments, and whether the response is stronger during a HU risk period than during a HC risk period. Perch clearly erected the dorsal fin in response to predation risk treatments (pike odour only, odour and visible pike). Decrease in activity and increase in shoaling behaviour were observed mainly during high risk periods. However, the perch's responses to pike did not differ statistically between periods of various levels of predation risk or depending on the timing of high risk situations within constant low risk periods, and thus, suggesting that perch respond mainly to changes in the current predation risk.  相似文献   

10.
Abstract – Larvae and juveniles of perch Perca fluviatilis and bream Abramis brama of Lake Speldrop, a highly eutrophicated gravel-pit lake in the floodplain of the Lower Rhine, were used in laboratory experiments to study predation of perch on bream. In the first series of experiments (control), 0+ perch of 30 mm total length (TL) did not prey on 0+ roach of about 24 mm TL. The perch fed only on zooplankton, resulting in low growth rates of 0.17 mm  ·  day−1. In the second series of experiments, perch (30 mm TL) were combined with 0+ bream with an average TL of 14 and 19 mm at different ratios. As in the first series, even a nine-fold higher amount of zooplankton food had no significant influence on the growth rate of perch, regardless of the perch:bream ratio. At a perch: bream ratio of 7:1 and 4:4 all bream were eaten by the perch and restocked twice daily. At the end of the experiment, the TL of perch at a perch:bream ratio of 7:1 was significantly lower compared to a perch:bream ratio of 4:4 (mean growth rates at 7:1 of 0.16 mm  ·  day−1 and at 4:4 of 0.35 mm  ·  day−1). At the perch:bream ratio of 1:7, perch fed on bream in varying amounts, averaging between 3 and 12 bream per day and per individual. After 20 days, the final length of these fish was always significantly higher than the TL of perch at other perch:bream ratios and increased in correlation to number of bream eaten per day (mean growth rate 1.13 mm  ·  day−1). The results are discussed with respect to the piscivore-dominated fish community of the eutrophied Lake Speldrop. Note  相似文献   

11.
Abstract –  Nile tilapia ( Oreochromis niloticus L.) is the dominant of the introduced tilapiines in many East African lakes and has flourished in the presence of introduced Nile perch ( Lates niloticus L.). We explored the hypothesis that O. niloticus exhibits increased omnivory in response to a decline in abundance of haplochromine cichlids. First, we quantified variation in habitat use and diet of O. niloticus in Lake Nabugabo, Uganda. Second, we compared the diet of O. niloticus in lakes with (Nabugabo, Victoria) and without (Mburo, Wamala, Nyamusingiri, Kyasanduka) introduced Nile perch. In Lake Nabugabo, a higher level of phytoplanktivory was observed in small juveniles than in larger fish and in wetland ecotone areas where haplochromines were most abundant. An omnivorous diet dominated by detritus and invertebrates was recorded for O. niloticus in lakes Nabugabo and Victoria, while a predominantly herbivorous diet was characteristic of O. niloticus in lakes without Nile perch. Availability of a broad food base in lakes where inshore insectivores have been reduced may explain the increased omnivory recorded in lakes Nabugabo and Victoria.  相似文献   

12.
We studied the relationships between the planktonic food base and feeding patterns of juvenile mid-summer/early autumn Eurasian perch Perca fluviatilis L., a common predatory freshwater fish in large parts of Europe and Asia. The feeding of 0+ perch was studied during summer and autumn in littoral habitats of seven lakes with different environmental conditions – four Latvian (Auciema, Riebinu, Vārzgūnes, Laukezers) and three Estonian (Kaiavere, Prossa and Akste) lakes. Simultaneously, the abundance, biomass and structure of zooplankton communities were examined. We focused on the littoral areas because many studies in lakes suggest that littoral habitats are particularly important for 0+ fish growth and survival. We were interested in the question: can the diet and growth of 0+ perch be explained by zooplankton community structure? We also presumed that if the amount of zooplankton is low, more benthic invertebrates will be consumed by 0+ perch. Opposite to expectations, we found that zooplankton always counted for over 90% of diet biomass in perch. There were also clear correlations between the zooplankton biomass in a given lake, the zooplankton biomass in 0+ perch stomachs, and the fish growth rate. The study also suggested that nutrient enrichment can positively impact the 0+ perch feeding conditions in lakes.  相似文献   

13.
Abstract –  We used a longline tethering method to examine the relationship between prey refugia, prey body morphology and the location and magnitude of predation mortality within an individual lake and among three lakes that differed in coarse woody habitat (CWH) and aquatic macrophyte abundances. Predation events were lowest in the macrophyte and/or CWH refuges, peaked at or just beyond the refuge edge and declined in pelagic portions of the lakes. Predation risk at the refuge edge and just beyond was positively correlated with the abundance of littoral refuge. In contrast, predation events within the refuge and in the pelagic zone were negatively correlated with littoral refuge abundance. Deep-bodied and spiny prey morphologies were less vulnerable to predation than fusiform prey lacking fin spines. The structural complexity of littoral zones and prey fish body morphology may influence the outcome of predator–prey interactions and ultimately determine fish species assemblages in lakes.  相似文献   

14.
Abstract –  The selection of spawning depth by Eurasian perch Perca fluviatilis was investigated in an experiment using artificial substrata in Lake Constance during the spawning season of 2007. The experiment compared spawning behaviour at substrata between 0.5 and 15 m depth at two sites exposed to different regimes of ship-generated wave action. The total abundance of egg ribbons did not differ significantly between the two sites, but the preferred spawning depth was deeper at the wave exposed site (5 m) compared to the sheltered site (2 m). While water temperatures could not account for the observations, differences in wave exposure may explain the different spawning depth preferences. At both sites, large egg ribbons were generally found in deeper water, and large egg ribbons occurred more frequently at the sheltered site. Because the egg ribbons of perch are likely to have a size-dependent susceptibility to hydrodynamic stress, large females may be expected to select deeper spawning locations where the effects of surface waves are considerably attenuated.  相似文献   

15.
Triplicate groups of pike perch (Sander lucioperca) juveniles were fed six experimental diets containing protein levels varying from 263 to 619 g kg−1 dry matter (d.m.) for 56 days. Dietary protein was supplied by graded amounts of fish meal (with 720 g kg−1 crude protein). Crude lipid and gross energy content of 101–107 g kg−1 and 19.9–20.6 MJ kg−1 remained constant between experimental diets. Pike perch with an initial body weight of 1.05 ± 0.05 g were randomly distributed in 18 tanks of two similar recirculation systems and fed on gradually decreasing feeding rates of 10 to 6% of their body weight per day. Growth performance and feed conversion increased with dietary protein level from 263 to 549 g kg−1 d.m. but did not decline at highest dietary protein level. Protein efficiency ratio declined linearly with increasing dietary protein. Survival ranged between 89.7 and 93.9% and was not affected by dietary composition. Dry matter and crude lipid content of pike perch fingerlings decreased with increasing dietary protein supply and significantly the lowest dry matter and crude lipid levels were observed in fish fed diets containing 619 g kg−1 of crude protein. The dietary protein requirement for pike perch fingerlings calculated by broken‐line and second‐order polynomial regression ranged between 529 and 577 g kg−1, respectively.  相似文献   

16.
Sympatric populations occur in many freshwater fish species; such populations are typically detected through morphological distinctions that are often coupled to food niche and genetic separations. In salmonids, trophic and genetically separate sympatric populations have been reported in landlocked Arctic char, whitefish and brown trout. In Arctic char and brown trout rare cases of sympatric, genetically distinct populations have been detected based on genetic data alone, with no apparent morphological differences, that is “cryptic” structuring. It remains unknown whether such cryptic, sympatric structuring can be coupled to food niche separation. Here, we perform an extensive screening for trophic divergence of two genetically divergent, seemingly cryptic, sympatric brown trout populations documented to remain in stable sympatry over several decades in two interconnected, tiny mountain lakes in a nature reserve in central Sweden. We investigate body shape, body length, gill raker metrics, breeding status and diet (stomach content analysis and stable isotopes) in these populations. We find small significant differences for body shape, body size and breeding status, and no evidence of food niche separation between these two populations. In contrast, fish in the two lakes differed in body shape, diet, and nitrogen and carbon isotope signatures despite no genetic difference between lakes. These genetically divergent populations apparently coexist using the same food resources and showing the same adaptive plasticity to the local food niches of the two separate lakes. Such observations have not been reported previously but may be more common than recognised as genetic screenings are necessary to detect the structures.  相似文献   

17.
Abstract –  Serious impacts by nonindigenous species often occur via predation. The magnitude of impact is expected to be closely tied to the invading species niche breadth. For predatory impacts, diet breadth should be particularly important. We examined the relationship between a species foraging behaviour and its invasiveness and impact by comparing the feeding behaviour of four Gambusia species, two invasive and of high impact and two noninvasive. Individual feeding rates, feeding preferences, and diet breadths were tested across three prey items in a sequence of four laboratory feeding trials. Invasive Gambusia consistently fed at higher rates, but no species differences were found in feeding preferences or diet breadth. All Gambusia preferred Daphnia , avoided Lirceus , and consumed Drosophila in proportion to their availability. Female size affected most feeding variables. Larger fish consumed more prey per unit time and were able to incorporate larger prey items into their diets, thus increasing diet breadth.  相似文献   

18.
To assess the effect of dietary composition on growth performance and body composition of pike perch (Sander lucioperca), fingerlings with an initial body weight of 1.36 g (just trained to accept formulated feed) were fed three experimental diets in triplicate for 90 days. Two feeding groups were fed with formulated diets (CD, CD+7) containing varying levels of crude lipid (CL) of 14.65% and 21.94% dry matter (d.m.) with crude protein (CP) levels of 59.73% and 56.56%, and one feeding group was fed a natural diet (chironomids, CP = 65.93% d.m.; CL = 7.20% d.m.). Furthermore, pike perch of the same age caught in different natural habitats were analysed to determine their naturally fluctuations in body composition. Specific growth rate (SGR; CD = 3.36, CD+7 = 3.47) and feed conversion ratio (FCR; CD = 1.02, CD+7 = 0.93) of fish fed formulated diets did not differ significantly with rising dietary lipid content, due to high variability within the individuals of each feeding groups. In contrast, pike perch fed with chironomids showed a significantly lower SGR of 2.49 and higher FCR of 2.37 (on a dry matter basis). Body composition of pike perch fed formulated diets was affected by dietary composition and showed increased lipid contents [CD=6.25% original matter (o.m.), CD+7 = 9.00% o.m.] with rising dietary lipid levels. Pike perch of CD and CD+7 feeding groups showed significant increased hepatosomatic indices (HSIs) of 1.99 and 2.05 in contrast to fish fed chironomids with HSI of 1.11. Fish caught in the different natural habitats were characterised by low body lipid and dry matter contents of 0.64–1.88% o.m. and 21.08–23.75% o.m. Higher lipid incorporation of fish fed with formulated diets accompanied with poor benefit on growth performance at higher dietary lipid content indicated that pike perch ability to utilise lipids is low when dietary crude protein content is higher than 56.56%.  相似文献   

19.
Abstract – We have studied the population dynamics and reproductive biology of perch ( Perca fluviatilis L.) from five neighbouring lakes in Norway. The lakes vary in water quality, varying from strongly acidified (pH≤5.0) to not acidified (pH≥6.0). Estimated annual survival rates did not differ among populations. There was no strong relationship between age at maturity in female perch and acidification. However, age at maturity was lower for female perch from the most acidic lake ( c . 2 years) compared with perch in the four other lakes (2.5–3.5 years). There was no relationship between acidification level and size-adjusted egg size, fecundity or reproductive investment (Gonadosomatic index – GSI). Perch in the most acidified lake showed large variation in egg size, the lowest length-specific fecundity, the highest GSI, and the lowest age at maturity. Environmental stress, such as acidification, induces a number of changes to a lake community. It is therefore difficult to predict how acidification will influence the population dynamics and reproductive biology of a perch population.  相似文献   

20.
Heynen M, Hellström G, Magnhagen C, Borcherding J. Does morphological variation between young‐of‐the‐year perch from two Swedish lakes depend on genetic differences?
Ecology of Freshwater Fish 2010: 19: 163–169. © 2009 John Wiley & Sons A/S Abstract – Different local environmental conditions have often been found to generate phenotypic diversity. In the present study we examined morphological differences between young‐of‐the‐year perch from two lake populations with differences in size‐specific predation risk. A common garden setup was used to examine the genetic and environmental components of the morphological variation. We found differences in head and jaw length and slight differences in body depth between the wild young‐of‐the‐year perch from Lake Ängersjön and Lake Fisksjön. The differences found between the wild fish from the two lakes were not maintained under common garden rearing. The observed morphological divergence between the wild young‐of‐the‐year perch from Lake Ängersjön and Lake Fisksjön seems to stem mainly from a plastic response to different environmental conditions in the two lakes. It is clear that the morphological traits are not influenced by direct reaction to the size‐specific risk of cannibalism, but probably stem from a combination of different environment characteristics, including resource and habitat use, and the density of other piscivores, such as pike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号