首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinobacteria and cyanobacteria accounted for less than 1% of total of bacteria in water in a recirculated aquaculture system (RAS) during a 15-week feeding trial with 0.11-g Japanese seabass. Resulting concentration of geosmin and 2-methylisoborneol (2-MIB) in RAS water was 169 and 45 ng L?1, sufficient to produce strong off-flavour. The seabass were fed diets with 42%, 45% and 49% protein, and each protein level was supplemented with 15% or 18% lipid. Accumulation of off-flavours was independent of diet in fatty ventral tissue. Dietary protein significantly reduced off-flavours in lean, dorsal tissue. This was mainly rationalized by linear reduction in 2-MIB in response to increasing DP/DE and a strong, 2nd degree polynomial response in geosmin. The ratio between geosmin and 2-MIB was slightly higher at the beginning of a 10-day period with clean water and fasting, than what was observed throughout depuration. 2-MIB remained between 0.2 and 1 µg kg?1 in dorsal tissue throughout depuration. Geosmin in ventral tissue ranged from 10 to more than 30 µg kg?1at the termination of the feeding period and was reduced to a range from 6 to 20 µg kg?1 by depuration.  相似文献   

2.
There is expanding interest in the culture of the Australian shortfin eel Anguilla australis Richardson; however, there is a lack of fundamental biology and husbandry information necessary to further develop an industry within Australia. The present study was undertaken to gain a preliminary understanding of basic husbandry requirements for rearing of juvenile A. australis (glass eels and elvers) in tanks and earthen ponds. Newly caught glass eels were successfully acclimated to culture conditions. During tank culture trials, specific growth rates (SGR) and survival rates ranged from ?2.1 to 2.8% day?1 and 52% to 100% respectively. Glass eels weaned onto a commercial eel diet exhibited a significantly greater SGR and survival rate than those weaned onto a commercial trout diet. Glass eels weaned onto an eel diet over a 15‐day period grew slightly faster than eels weaned over a 5‐day period, but survival rates were not significantly different for each treatment. SGRs (up to 2.8% day?1) were significantly higher for glass eels fed at 9 and 12% day?1 than at 6% day?1. Stocking densities between 2.5 kg m?3 and 30 kg m?3 did not influence either SGR or survival rates. SGRs were significantly higher for glass eels cultured at 25 °C than at lower temperatures. During pond culture trials, SGRs and survival rates ranged from 1.36 to 1.65% day?1 and 39% to 77% respectively. The SGR and survival rates of juvenile eels stocked into ponds receiving supplementary feeding with a commercial eel diet were not significantly different to those of eels stocked into ponds that did not receive supplementary feeding.  相似文献   

3.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

4.
The compensatory growth response of the European sea bass (Dicentrarchus labrax) that faced cycling starvation and restricted ration was assessed. Juveniles (10.5 g) were stocked into 15 tanks at a density of 25 fish per tank. Five different feeding regimes were tested on triplicate groups of fish: CSatiation: control fed for 60 days without deprivation, CRestricted: 25% restricted feeding, S‐R: 1 day starvation then 4 days CRestricted feeding, R‐F: 1 day CRestricted feeding then 4 days CSatiation feeding, and, finally, S‐F: 1 day starvation then 4 days CSatiation feeding. The specific growth rate of fish in the CSatiation (2.5 ± 0.06% day?1), S‐F (2.5 ± 0.11% day?1) and R‐F (2.4 ± 0.18% day?1) were significantly higher than that of CRestricted (2.2 ± 0.05% day?1) or S‐R (2.0 ± 0.01% day?1). Fish in S‐F group were able to achieve catching up with the CSatiation. There was no significant difference in feed conversion rates but R‐F and S‐F consumed approximately 34% more feed than CSatiation following the first re‐feeding day. Although, the highest lipid content was observed in CSatiation (14.4%), S‐R (33.3% dry matter) had the highest water content compared with the CSatiation and CRestricted (37.8% and 36.9% dry matter respectively). In conclusion, it may be concluded that sea bass has rapid response to cycling starvation/re‐feeding and that a 25% restricted feeding ratio is insufficient to invoke a compensatory growth response in sea bass.  相似文献   

5.
The effect of initial channel catfish (Ictalurus punctatus, Rafinesque, 1818) fingerling biomass (1.4, 1.8, or 2.3 kg m?3) on phytoplankton communities, common off‐flavours and stocker catfish production parameters was evaluated in biofloc technology production tanks. Stocker catfish size (145.5–172.6 g fish?1) at harvest did not differ among treatments, but net yield increased linearly as initial biomass increased (R2 = 0.633). Mean total feed consumption increased linearly with initial catfish biomass (R2 = 0.656) and ranged from 10.7 to 15.8 kg m?3. Total suspended solids (TSS) in all treatments increased linearly with total feed addition, and high TSS appeared to impact negatively daily feed consumption. Initial phytoplankton populations were dominated by small colonial green algae and diatoms, and later transitioned to populations dominated by a small, filamentous cyanobacteria and diatoms. Low, variable concentrations of 2‐methylisoborneol and geosmin were present in biofloc tank water during most of the study and two tanks yielded catfish with 2‐methylisoborneol or geosmin concentrations that might be classified as off‐flavour. One isolate of actinomycete was isolated sporadically from some biofloc tanks, but its abundance was not correlated with 2‐methylisoborneol concentration in tank waters. The microbial sources of 2‐methylisoborneol and geosmin in biofloc tanks remain unidentified.  相似文献   

6.
Egg yolk immunoglobulins (IgY) were obtained from laying hens immunized with inactivated Aeromonas hydrophila. The purified IgY was shown to inhibit the growth of A. hydrophila in vitro and the optimum concentration for inhibition of A. hydrophila‐specific IgY was 75 mg mL?1. In a subsequent challenge trial, 100 carp (200~250 g) were assigned to one of ten tanks with ten carp per tank. The fish in one tank were unchallenged whereas the remaining 90 fish were injected intraperitoneally with 100 μL of A. hydrophila at a concentration of 108 cfu mL?1. For the next 21 days, all fish were moved in their respective groups to a clean tank for 20 min day?1. The fish in four tanks (one unchallenged tank and three challenged tanks) received no treatment whereas the fish in the remaining six tanks were immersed in either 0.5 g L?1 aqueous nonspecific IgY (= 3) or 0.5 g L?1 aqueous specific IgY (= 3). Haemoglobin concentrations, white and red blood cell numbers as well as the mortality of specific IgY‐treated fish were significantly different from those of the control. These results suggest that passive immunization by immersion with pathogen‐specific IgY may provide a valuable treatment for A. hydrophila infection in carp.  相似文献   

7.
Two feeding trials were carried out to determine the optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Fish averaging 5.0 ± 0.11 g (mean ± SD) in experiment 1 and 20.2 ± 0.54 g (mean ± SD) in experiment 2 were fed a commercial diet at the feeding rates of 0%, 3.0%, 4.0%, 4.25%, 4.5% and 4.75% body weight (BW) day?1 and satiation (5.52% BW day?1) in experiment 1 and 0%, 1.0%, 2.0%, 3.0% and 3.5% BW day?1 and satiation (4.12% BW day?1) in experiment 2 at 20 ± 1 °C. Both feeding trials lasted for 2 weeks. Results from experiment 1 indicated that weight gain (WG) and specific growth rate (SGR) of fish fed to satiation were significantly higher than those of fish fed at other feeding rates while feed efficiency (FE) and protein efficiency ratio (PER) of fish fed at 4.25% BW day?1 were significantly higher than those of fish fed to satiation and fish fed at 3.0% BW day?1 (< 0.05). In experiment 2 WG, SGR and PER leveled out after the feeding rate of 3.5% BW day?1 whereas FE reached a plateau at 3.0% BW day?1. anova of FE indicated that the optimum feeding rates in 5.0 and 20 g juvenile olive flounder could be 4.25% and 3.0% BW day?1, respectively. Broken line analysis of WG suggested the optimum feeding rates of 5.17% and 3.47% BW day?1 in 5.0 and 20 g fish, respectively. Therefore, these results indicated that the optimum feeding rates could be >4.25 but <5.17% BW day?1 for 5.0 g, and it could be >3.0 but <3.47% BW day?1 for 20 g size of juvenile olive flounder at the optimum rearing temperature.  相似文献   

8.

The present study evaluated the effect of initial stocking density and water recirculation rate on larval yield (percent of initially stocked larvae alive at the end of the experiment) and production of competent larvae (percent of initially stocked larvae alive at the end of the experiment retained on a sieve with mesh size 239 μm) of Crassostrea gigas in a recirculation aquaculture system (RAS). Different initial larval stocking densities (80, 160 and 320 larvae mL?1) and water flow rates (100, 200 and 300 mL min?1, totalling renewal rates of 60, 120 and 180 times day?1 of water volume in culture tanks, respectively) were evaluated in 2.4-L tanks using a completely randomized design in a factorial scheme. The physicochemical parameters of the water (temperature, salinity, pH, dissolved oxygen and conductivity) were stable in all treatments during the experimental period. Our results demonstrated that the production of C. gigas larvae was feasible at the proposed densities. However, the water renewal rate affected both yield and competent larvae in the recirculation aquaculture system. Oyster cultures with densities of 160 larvae mL?1 and flow of water of 300 mL min?1 showed the best yield (89.34 ± 18.43%) and rate of competent larvae (84.09 ± 16.38%) and are therefore recommended with the aim of optimizing larvae cultivation.

  相似文献   

9.
The study was conducted to determine the optimum stocking density for rearing tilapia. Oreochromis spilurus (Günther), fingerlings in tanks during winter using warm (21-26°C) underground sea water (37%o). Seawater-acclimated fingerlings with mean weight of 2 g were stocked in eighteen 400-1 fibreglass tanks at 750 and 1000 fish m?3. Fish were fed at the rates of 2.5, 3.0 and 3.5% day?1 of the fish biomass. After 83 days, the mean individual daily weight gain was significantly higher (P < 0.028) at stocking of 750 fish m?3 than at 1000 fish m?3. Feed conversion ratio was significantly higher at stocking of 1000 fish m?3 than at 750 fish m?3 and at feeding rate of 3.5% day1 than at 2.5% day?1. However, because no significant differences were observed on survival rates between the two stocking densities and among feeding rates, it is recommended that the stocking density of 1000 fish m?3 and a feeding rate of 2.5% day?1 be used for optimum production of tilapia fingerlings in tanks during winter using warm underground sea water.  相似文献   

10.
A 10‐week growth trial was performed to evaluate the effects of feeding rate on growth performance, nutrient partitioning, and to determine the optimum feeding rate for young‐of‐the‐year white sturgeon. Three tanks with 30 fish per tank each were assigned to five feeding rates, 0.4–2.0% body weight per day (BW day?1). Weight gain significantly (< 0.05) increased with increasing feeding rate up to 1.2% BW day?1. Feed efficiency exhibited an inverse relationship to weight gain. Hepatosomatic and gonadal‐fat‐body (GFB)‐somatic indices were significantly affected by feeding rate, and the lowest values were observed at 0.4% BW day?1. The increased feeding rate significantly affected whole‐body and carcass lipid and moisture contents. Protein gain in the carcass, but not in the GFB, was significantly influenced by feeding rate. Lipid gain in the carcass and GFB was also significantly affected by feeding rate. Four regression models were tested for the estimation of optimum feeding rate, including one‐slope straight broken‐line, two‐slope straight broken‐line, quadratic broken‐line and quadratic models. Adjusted coefficient of correlation and corrected Akaike information criterion were used to compare model performance. The quadratic broken‐line model was chosen as the best based on the criteria. The estimated optimum feeding rate for young‐of‐the‐year white sturgeon (360 g) is 1.5% BW day?1.  相似文献   

11.
The use of biofloc technology production systems continues to increase in the aquaculture industry worldwide. Recent research demonstrated that outdoor biofloc systems can be used to produce high yields of channel catfish (Ictalurus punctatus). However, studies have not yet been performed to determine the development and composition of phytoplankton communities and related off-flavor problems in these biofloc production systems. In this study, water samples were collected biweekly from May to November and channel catfish samples were collected during harvest in November from nine 18.6 m2 biofloc culture tanks. Water and fillet samples were analyzed for levels of the common off-flavor compounds geosmin and 2-methylisoborneol (MIB). The development and composition of phytoplankton communities in each culture tank was also monitored. In addition, water and biofloc samples were evaluated to assess the microbial sources of geosmin and MIB within the culture tanks. Phytoplankton (including algae and cyanobacteria attached to bioflocs) biomass, as determined by concentrations of chlorophyll a in the water, gradually increased in all tanks over time. Phytoplankton communities that developed in the culture tanks were dominated by fast-growing, unicellular and small colonial types of green algae (chlorophytes) and diatoms (bacillariophytes) and slower growing, small colonial types of cyanobacteria (cyanophytes). A positive correlation (p < 0.05) between cumulative feed addition and chlorophyll a concentration was found. Although geosmin and MIB were present in the culture water of each tank during most of the study, levels were typically low and only one tank yielded catfish with geosmin and MIB in their flesh at levels high enough to be designated as off-flavor. A positive correlation (p < 0.05) between cumulative feed addition and MIB concentrations in the water of culture tanks indicates a greater potential for MIB-related off-flavor problems at high feed application rates. The microbial sources responsible for production of geosmin and MIB in the culture tanks remain unknown.  相似文献   

12.
The effects of flow rate on growth and welfare of juvenile turbot (Scophthalmus maximus L.) were investigated in the present study. Fish with same initial weight (102.5 ± 10.6 g) were subjected to four flow rates, equalling to 0.5, 1, 1.5 and 2 tank volumes per hour in twelve 392 L tanks during 80 days. Results showed that specific growth rate of turbots increased (0.40–0.58% day?1) significantly with promoted flow rate (< 0.05). Total ammonia nitrogen, nitrite nitrogen, unionized ammonia nitrogen, chemical oxygen demand, total bacteria and total vibrio in tanks were affected significantly by flow rate and accumulations were found in low rate (200 L h?1) (< 0.05). Free carbon dioxide increased significantly with the increased flow rate and ranged between 4.5 and 13.5 mg L?1 (< 0.05). Both superoxide dismutase activity and lysozyme activity increased significantly with flow rate (< 0.05), with ranges of 108.51–131.57 U mL?1 and 551.81–869.28 U mL?1. Serum cortisol showed reversed tendency and ranged between 7.39–19.26 ng mL?1. The principal components analysis suggested that increased flow rate promoted fish welfare. It was concluded that increased flow rate promoted the growth of juvenile turbot, possibly explained by fish welfare differences in combination of health, water quality and serum parameters.  相似文献   

13.
Four one‐week growth trials were conducted on green sturgeon fry to determine the effect of feeding rate on their growth performance at 18 °C when they were fed a salmonid soft moist feeds containing 445–457 g kg?1 of crude protein and 201–207 g kg?1 of lipid. The fry used in Trials I‐IV were 5–8 weeks after their initiation of exogenous feeding. Their average initial body weights were 1.63 ± 0.01, 2.63 ± 0.03, 5.08 ± 0.08 and 7.49 ± 0.05 g, respectively. Six feeding rates used were as follows: 2.5–15.0% body weight per day (% BW day?1) with a 2.5% increment in Trial I; 1.25–7.50% BW day?1 with a 1.25% increment in Trial II; and 2.0–7.0% BW day?1 with a 1.0% increment in Trials III and IV. Four replicates with 50 fry per tank in Trials I‐III and 30 fry per tank in Trial IV were assigned randomly to each feeding rates. The final body weight, specific growth rate, feed efficiency, protein retention, and whole‐body moisture, lipid, and energy contents were significantly (< 0.05) affected by the feeding rates. The optimum feeding rates determined by the broken‐line model were 7.1, 5.7 and 5.3% BW day?1 for Trials I, II and IV, when the fry were 5, 6 and 8 weeks after their initiation of exogenous feeding, respectively.  相似文献   

14.
A 10‐week study was conducted to investigate the effects of feeding rate and frequency on growth performance, digestion and nutrients balances of Atlantic salmon (Salmo salar) in replicated recirculating aquaculture systems (RAS). Replicated groups of juvenile salmon weighing 90 ± 2.5 g (mean ± SD) were fed a commercial feed (21.63 MJ kg?1 gross energy) to designed feeding rate (1.4%, 1.6% and 1.8% body weight day?1, BW day?1) and feeding frequency (2 and 4 meals day?1) combinations. Specific growth ratio varied between 1.15 ± 0.02 and 1.37 ± 0.16% day?1, and feed conversion ratio ranged from 0.96 ± 0.03 to 1.16 ± 0.02. The nitrogen and phosphorus retention rates were from 36.50 ± 1.94 to 47.08 ± 5.23% and from 20.42 ± 1.05 to 38.59 ± 2.80%. Apparent digestibility coefficients (ADC) in dry matter, protein, lipid and energy showed no significant differences for all groups. However, fish fed at 1.6% BW day?1 and 4 meal day?1 groups had relatively better growth and nutrient retention efficiency compared to other groups. In addition, concentrations of nitrogenous and phosphorous compounds were also detected in this study. These results suggested that salmon of 100–200 g in RAS could in practice be fed at 1.6% BW day?1 and 4 meals day?1, taking environmental impacts into account.  相似文献   

15.
The ‘earthy’ and ‘muddy’ off‐flavours in pond‐reared fish are due to the presence of geosmin or 2‐methylisoborneol in the flesh of the fish. Similar off‐flavours have been reported in fish raised in recirculating aquaculture systems (RAS); however, little information is available regarding the cause of these off‐flavours. Our hypothesis was that earthy and muddy off‐flavour compounds, found previously in pond‐raised fish, are also responsible for off‐flavours in fish raised in RAS. In this preliminary study, we examined water, biofilms in RAS and fillets from cultured arctic charr known to have off‐flavours and requiring depuration using instrumental [solid‐phase microextraction procedure and gas chromatograph‐mass spectrometry (GC‐MS)] and human sensory analyses. Geosmin was present in the samples taken from the biofilter and on the side walls of the tanks. Two‐methylisoborneol was only found in low levels in the samples. The GC‐MS results indicated the presence of geosmin in the fillets (705 ng kg?1), but lower levels were found in the water (30.5 ng L?1). Sensory analyses also detected an earthy flavour (i.e., geosmin presence) in the fillets, and, therefore, it appears that geosmin is the main compound responsible for the off‐flavour in RAS. Further studies are being performed to identify the microorganisms responsible for geosmin production in RAS.  相似文献   

16.
Common off-flavor compounds, including geosmin (GSM) and 2-methylisoborneol (MIB), bioaccumulate in Atlantic salmon Salmo salar cultured in recirculating aquaculture systems (RAS) resulting in earthy and musty taints that are unacceptable to consumers. To remediate off-flavor from market-ready salmon, RAS facilities generally relocate fish to separate finishing systems where feed is withheld and makeup water with very low to nondetectable GSM and MIB levels is rapidly exchanged, a process known as depuration. Several procedural aspects that affect salmon metabolism and the associated rate of off-flavor elimination, however, have not been fully evaluated. To this end, a study was carried out to assess the effects of swimming speed and dissolved oxygen (DO) concentration on GSM levels in water and fish flesh during a 10-day depuration period. Atlantic salmon (5–8 kg) originally cultured in a semi-commercial-scale RAS (150 m3 tank) were exposed to a concentrated GSM bath before being transferred to 12 replicated partial reuse depuration systems (5.4 m3 total volume). Two swimming speeds (0.3 and 0.6 body lengths/sec) and two DO levels (90% and 100% O2 saturation) were applied using a 2 × 2 factorial design (N = 3), and each system was operated with a 5-h hydraulic retention time, creating a water flushing to biomass ratio of 151 L/kg fish biomass/day. Geosmin was assessed at Days 0, 3, 6, and 10 in system water and salmon flesh. A borderline effect (P = 0.064; 0.068) of swimming speed was measured for water and fish, respectively, at Day 3, where slightly lower GSM was associated with low swimming speed (0.3 body lengths/sec); however, differences were not detected at Days 6 or 10 when salmon are commonly removed for slaughter. Overall, this research indicates that significant improvements in GSM depuration from RAS-produced Atlantic salmon are not expected when purging with swimming speeds and DO concentrations similar to those tested during this trial.  相似文献   

17.
Residue levels of the antibacterials enrofloxacin and ciprofloxacin were analysed in 15 commercially relevant animal by‐products (ABPs). Enrofloxacin was detected in all ABPs, and ciprofloxacin was detected in 11 of 15 ABP samples. Feed to muscle and skin carry –over of low background enro‐ and ciprofloxacin levels were assessed by applying a simple toxicokinetic model. The muscle and skin uptake and elimination rates were established in Atlantic salmon (Salmo salar L.) fed enrofloxacin enriched diets (100 μg kg?1 ‘low’ and 4000 μg kg?1 ‘high’) in triplicate for 41 days followed by a 90 days depuration period. The terminal half‐lives were 17 ± 0.4 and 18 ± 0.7 days, and uptake rates were 9.3 ± 3.3 and 11 ± 3.1 (day?1) for the ‘low’ and ‘high’ groups, respectively. Only fish fed high background levels had quantifiable levels of the metabolite ciprofloxacin with a formation of 0.25 ± 0.01% day?1. The toxicokinetic carry‐over model predicted muscle and skin steady state levels of 1.8 μg kg?1 when fed theoretically high enrofloxacin levels (158 μg kg?1), which is below the EU limit of 100 μg kg?1 for enrofloxacin in finfish food products. The antibacterial residue levels could however be detected in EU food surveillance programmes.  相似文献   

18.
Eastern little tuna (ELT, Euthynnus affinis) is expected to see use as a novel aquaculture species due to its rapid growth and high economic value. In this study, closing of the complete life cycle of ELT in land‐based tanks was successfully carried out. Seed production of a first generation (F1) derived from wild‐caught ELT broodstock was conducted in 2010, 2011 and 2012. Survival percentages of F1 ELT at 365 days post hatching for the 2010, 2011 and 2012 year classes were 0.9%, 0.4% and 6.3% respectively. On average, F1 ELT were approximately 40 cm in total length and weighed 1500 g by the time they reached 1 year of age. Successful artificial induction of spawning was achieved in 1‐year‐old F1 ELT using a gonadotropin‐releasing hormone analogue (GnRHa). Induction of spawning was successful at the first administration of GnRHa in the 2010, 2011 and 2012 year classes. First spawning was observed at 4 or 5 days post implantation, which indicated that oogenesis and spermatogenesis progressed within 1 year of rearing in land‐based tanks. During spawning periods, the average number of fertilized eggs and the average number of hatched larvae per spawning event in the 2010, 2011 and 2012 year classes were 20,480 eggs day?1 and 177 larvae day?1, 39,423 eggs day?1 and 9347 larvae day?1, and 819,555 eggs day?1 and 674,445 larvae day?1 respectively. Therefore, it was concluded that both male and female ELT reared in land‐based tanks were capable of reproduction at 1 year of age.  相似文献   

19.
An experiment was conducted to compare the seed production of tilapia, Oreochromis spilurus (Günther), under ambient water temperature and photoperiod, and under controlled water temperature (29.0 ± 2.0 °C), and photoperiods of 13 and 14 h day?1. Male and female breeders with average weights of 155.4 and 78.7 g, respectively, were stocked in nine 1.04 X 1.04 X 0.40 m (L X W X H) fibreglass tanks. Each tank was stocked with two males and six females. Seed collection was carried out biweekly for 300 days. The results showed that the seed kg?1 female day?1, seed m?2day?1, total seed production per tank and spawning rates of females were highest during the 14 h day?1 photoperiod (112.4, 77.4, 24 724 and 42.1%, respectively), followed by ambient spawning conditions (104.0, 57.9, 18 356 and 36.6%, respectively), and lowest during the 13 h day?1 photoperiod (49.5, 36.5, 12 021 and 25.7%, respectively). Under ambient spawning conditions, peak spawning occurred in May. Monthly seed production was affected by changes in temperature and light duration. In both controlled photoperiods, the peak of seed production was observed during the first month after stocking. In all treatments, spawning declined gradually after the peak, which can be attributed to exhaustion of the breeders. The findings of this study indicate that seed production of O. spilurus in Kuwait can be extended beyond the restricted spawning season of 6-7 months by maintaining water temperature at 29.0 ± 2.0 °C and photoperiod at 14 h day?1.  相似文献   

20.
Two feeding trials were conducted to determine the effects of feeding rates in juvenile Korean rockfish, (Sebastes schlegeli) reared at 17 and 20 °C water temperature. Fish averaging 5.5 ± 0.2 g (mean ± SD) at 17 °C and 5.5 ± 0.3 g (mean ± SD) at 20 °C water temperature were randomly distributed into 18 indoor tanks. At each water temperature, triplicate tanks were randomly assigned to one of six different feeding rates: 2.8, 3.8, 4.1, 4.4, 4.7 % and satiation (4.99 % BW day?1) at 17 °C and 2.8, 3.8, 4.1, 4.4, 4.7 % and satiation (5.0 % BW day?1) at 20 °C. After 4 weeks of feeding trial, weight gain (WG) and specific growth rate of fish fed groups at satiation and 4.7 % (BW day?1) were significantly higher than those of fish fed groups at 2.8, 3.8 and 4.4 % (BW day?1) in both 17 and 20 °C temperature. Feed efficiency and protein efficiency ratio of fish fed group at 2.8 % (BW day?1) was significantly lower than those of fish fed groups at 3.8, 4.1, 4.4 and 4.7 % (BW day?1) in both experiments. Hematocrit was significantly higher in fish fed group at 4.4 % (BW day?1) at 17 °C, and there was no significant difference in hemoglobin content amongst all fish fed groups at 20 °C. Glutamic oxaloacetic transaminase and glutamic pyruvic transaminase of the fish fed group at 2.8 % (BW day?1) were significantly higher than those of all other fish fed groups in both experiments. Broken line regression analysis of WG indicated that the optimum feeding rate of juvenile Korean rockfish was 4.48 % (BW day?1) at 17 °C and 4.83 % (BW day?1) at 20 °C. Therefore, these results indicated that the optimum feeding rate could be >4.1 % but <4.48 % at 17 °C and >4.4 % but <4.83 % at 20 °C. As we expected, current results have indicated that 5 g of juvenile Korean rockfish perform better at 17 °C than at 20 °C water temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号