首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common off-flavor compounds including geosmin (GSM) bioaccumulate in fish cultured in recirculating aquaculture systems (RAS) resulting in unpalatable fillets that are objectional to consumers. Most RAS facilities relocate fish from grow-out tanks to separate depuration systems with increased water flushing to remediate pre-harvest off-flavors, but certain aspects of this procedure have not been optimized including characterization of water exchange rates that effectively diminish off-flavor. To this end, a study was carried out to evaluate the effects of flushing rate and associated depuration system hydraulic retention time (HRT) on GSM removal from Atlantic salmon Salmo salar originally produced in a semi-commercial scale freshwater RAS. Twenty-six fish (5−7 kg each) were stocked into twelve replicate depuration systems operated with system HRTs of 2.4, 4.6, and 11.3-h, respectively (N = 4). Geosmin was assessed at intervals in system water and fish flesh over a 10-day feed withholding period. Waterborne GSM concentration was affected by flushing rate and associated system HRT (P < 0.05). Depuration systems operated with an 11.3-h HRT had greater waterborne GSM levels at 3, 6, and 10 days post-stocking compared to 2.4 and 4.6-h HRT. A similar trend was generally reflected in salmon flesh. Residual GSM levels were successively higher in fillets on Day 6 from depuration systems with increasingly longer HRT. Geosmin levels were greatest in salmon flesh from the 11.3-h HRT treatment on Day 10, but fillet GSM between the 2.4 and 4.6-h HRT was similar. This research indicates that lowest residual GSM is achieved in water and Atlantic salmon flesh in depuration systems with increased flushing and shorter HRT, i.e., 2.4–4.6-h under conditions of this study. Selection of optimal flushing rate to remediate off-flavor from RAS-produced Atlantic salmon may also be dictated by water and energy use metrics and site-specific water availability among other factors.  相似文献   

2.
In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the circulating water and in the lateral part of the fish fillet. In water, concentrations up to 51 ng L−1 (GSM) and 60.3 ng L−1 (MIB) were found, while in the fillet, these were up to 9.8 ng g−1 (GSM) and 10.2 ng g−1 (MIB), decreasing with increasing number of PAA applications. PAA applications reduced the levels of off-flavor compounds, although this was insufficient to fully prevent the accumulation of GSM and MIB.  相似文献   

3.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

4.
Aquatic animals raised in recirculating aquaculture systems (RAS) can develop preharvest “off-flavors” such as “earthy” or “musty” which are caused by the bioaccumulation of the odorous compounds geosmin or 2-methylisoborneol (MIB), respectively, in their flesh. Tainted aquatic products cause large economic losses to producers due to the inability to market them. Certain species of actinomycetes, a group of filamentous bacteria, have been attributed as the main sources of geosmin and MIB in RAS. Previous studies have demonstrated that certain nutritional factors can stimulate or inhibit bacterial biomass and geosmin production by certain actinomycetes. In the current study, the effects of two nitrate-nitrogen (NO3--N) levels (20–40 mg/L and 80–100 mg/L) on geosmin and MIB levels in culture water and the flesh of rainbow trout (Oncorhynchus mykiss) raised in RAS were monitored. Water and fish tissue samples were collected over an approximately nine-week period from six RAS, three replicates each of low and high NO3--N, and analyzed for geosmin concentrations using solid phase microextraction–gas chromatography–mass spectrometry. Results indicated no significant difference in geosmin concentrations in water or fish flesh between the low and high NO3--N RAS. Therefore, higher NO3--N levels that may occur in RAS will not adversely or beneficially impact geosmin-related off-flavor problems.  相似文献   

5.
Swimming exercise, typically measured in body‐lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow‐through system and exposed to either high (1.5–2 BL/s) or low (<0.5 BL/s) swimming speeding and high (100% saturation) or low (70% saturation) DO while being raised from 10 g to approximately 350 g in weight. Throughout the study period, we assessed the impacts of exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p < .05); however, no significant differences were noted in survival and feed conversion. Caudal fin damage was associated with low DO, while right pectoral fin damage was associated with higher swimming speed. Finally, precocious male sexual maturation was associated with low swimming speed. These results suggest that providing exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.  相似文献   

6.
Successful operation of recirculating aquaculture systems is dependent on frequent monitoring of the optimal function of water treatment processes in order to maintain environmental conditions for optimal growth and welfare of the fish. Real time monitoring of fish status is however usually not an integrated part of automatized systems within RAS. The aim of this study was to evaluate the use of implanted acoustic acceleration transmitters to monitor Atlantic salmon swimming activity. Twelve salmon post-smolts were individually tagged and distributed in three tanks containing salmon at start density of 50 kg m−3. The tagging did not cause any mortality and all individuals increased their body weight during this study. Following initial recovery, acceleration data were continuously logged for one month, including treatment periods with exposure to hyperoxic (170% O2 saturation) and hypoxic (60% O2 saturation) conditions, and different tank hydraulic retention times (HRT; 23 and 58 min). Changes in-tank dissolved oxygen levels to hyperoxic and hypoxic conditions reduced the total activity of Atlantic salmon in this study. On the contrary, increased and reduced tank HRT increased the total activity levels. Feeding periods induced a sharp increase in the Atlantic salmon swimming activity, while irregular feeding caused larger oscillations in activity and also lead to increased swimming activity of the tagged fish. Atlantic salmon responded with a maximum recorded total activity to stress caused by technical problems within the system and consequent changes in the RAS environment. The results of this study indicate that Atlantic salmon respond quickly with changed swimming activity to changes in the water quality and acute stress caused by normal management routines within RAS. The use of acoustic acceleration transmitters for real time monitoring of swimming activity within aquaculture production systems may allow for rapid detection of changes in species-specific behavioural welfare indicators and assist in the refinement of best management practices. In addition, acceleration tag could potentially serve as a valuable research tool for behavioural studies, studies on stress and welfare and could allow for better understanding of interaction between fish and RAS environment.  相似文献   

7.
Recirculating aquaculture system (RAS) is an increasingly popular alternative to open aquaculture production systems. However, off‐flavours and odours can accumulate in the fish flesh from the circulating water and decrease the fish meat quality. Off‐flavours are typically caused by geosmin (GSM) and 2‐methylisoborneol (MIB) that are lipophilic compounds formed as secondary by‐products of bacterial metabolism. Even though GSM and MIB are not toxic, they often are disliked by consumers, and both have very low human sensory detection limits. Multiple methods have been suggested to remove or decrease GSM and MIB in fish, including ozonation, advanced oxidation processes (AOP)s and adsorption removal from water using activated carbon and/or zeolites. So far, purging with fresh water is the only efficient method available to remove the off‐flavours. There are multiple analytical methods available for the extraction and separation of GSM and MIB from fish flesh and water. This review discusses the current knowledge of GSM and MIB formation, the challenges faced by RAS farms due to these compounds and process solutions available for their removal.  相似文献   

8.
A headspace solid-phase micro-extraction (SPME) coupled with GS-MS method was used to measure volatile compounds in fillets from musty off-flavor, muddy off-flavor, and on-flavor channel catfish (Ictalurus punctatus), along with water and soil samples from the farm ponds in which the fish had been raised. Two ponds of each type of flavor were selected, and five fish, water, and soil samples were collected from each pond. Linear and multiple linear regression analyses were carried out between/among off-flavor strength and volatile compound contents to investigate their possible correlations. The combination of two strong off-flavor compounds, 2-methylisoborneol (MIB) and geosmin (GSM), was probably mainly responsible for the musty off-flavor in the catfish fillets, and an odorous alcohol, 1-hexanol, was correlated with muddy off-flavor (p =?0.015). There was a strong correlation between beta-cyclocitral and MIB in a pond that gave musty off-flavor catfish contents (p =?0.006), suggesting that these compounds might be generated by similar cyanobacteria. The contents of GSM, MIB, and beta-cyclocitral were high in the water of ponds that yielded off-flavor fish, indicating that catfish might acquire these compounds from pond water.  相似文献   

9.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

10.
Steroid hormones have been shown to accumulate in recirculation aquaculture system (RAS) water over time; however, their influence on the reproductive physiology of fish within RAS remains unknown. Whether ozonation impacts waterborne hormone levels in RAS has likewise not been fully evaluated. To this end, a controlled 3-month study was conducted in 6 replicated RAS containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether ozone, as typically applied in RAS to improve water quality, is associated with a reduction in waterborne hormones. Post-smolt Atlantic salmon (1253 ± 15 g) were stocked into each RAS; 109 of 264 fish placed in each system were sexually mature males, and 5 were mature females. Water ozonation, controlled using an ORP set-point of 290–300 mV, was applied with the pure oxygen feed gas within the low-head oxygenators of 3 randomly selected RAS, while the remaining 3 RAS did not receive ozone. The RAS hydraulic retention time was 6.9 ± 0.3 days. Study fish were raised under these conditions for 12 weeks; during weeks 10 and 12, triplicate water samples were collected from the following locations in each RAS: i) culture tank, ii) makeup water, iii) pre-biofilter, iv) post-biofilter, and v) post-gas conditioning. Concentrations of 3 waterborne hormones – testosterone, 11-ketotestosterone (11-KT), and estradiol (17β-estradiol) – were quantified using enzyme immunoassays (EIA). Estradiol was significantly reduced by ozonation; testosterone and 11-KT were also reduced by ozonation, although these reductions were not observed across all sampling locations and events. Testosterone and 11-KT concentrations, however, were significantly reduced following water passage through the biofilters of both ozonated and non-ozonated RAS. The results of this study demonstrate the potential for ozone to be used in RAS as a means of preventing the accumulation of steroid hormones. Further research is required to assess whether reducing hormones in this manner impacts precocious sexual maturation in RAS-produced Atlantic salmon.  相似文献   

11.
The use of biofloc technology production systems continues to increase in the aquaculture industry worldwide. Recent research demonstrated that outdoor biofloc systems can be used to produce high yields of channel catfish (Ictalurus punctatus). However, studies have not yet been performed to determine the development and composition of phytoplankton communities and related off-flavor problems in these biofloc production systems. In this study, water samples were collected biweekly from May to November and channel catfish samples were collected during harvest in November from nine 18.6 m2 biofloc culture tanks. Water and fillet samples were analyzed for levels of the common off-flavor compounds geosmin and 2-methylisoborneol (MIB). The development and composition of phytoplankton communities in each culture tank was also monitored. In addition, water and biofloc samples were evaluated to assess the microbial sources of geosmin and MIB within the culture tanks. Phytoplankton (including algae and cyanobacteria attached to bioflocs) biomass, as determined by concentrations of chlorophyll a in the water, gradually increased in all tanks over time. Phytoplankton communities that developed in the culture tanks were dominated by fast-growing, unicellular and small colonial types of green algae (chlorophytes) and diatoms (bacillariophytes) and slower growing, small colonial types of cyanobacteria (cyanophytes). A positive correlation (p < 0.05) between cumulative feed addition and chlorophyll a concentration was found. Although geosmin and MIB were present in the culture water of each tank during most of the study, levels were typically low and only one tank yielded catfish with geosmin and MIB in their flesh at levels high enough to be designated as off-flavor. A positive correlation (p < 0.05) between cumulative feed addition and MIB concentrations in the water of culture tanks indicates a greater potential for MIB-related off-flavor problems at high feed application rates. The microbial sources responsible for production of geosmin and MIB in the culture tanks remain unknown.  相似文献   

12.
We explored how currently manufactured feeds, under real‐world conditions and across geographically distinct locations, promoted flesh n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA, i.e. 20:5n‐3 + 22:6n‐3) levels in various life stages of farmed Atlantic Salmon (Salmo salar). Potential effects on flesh LC‐PUFA included: (1) diet and fish weight at one Canadian east coast farm, (2) diet and farm location across six east coast farms, and (3) diet and farm location between east and west coast farms. For objectives 1 and 2, salmon were fed a currently manufactured feed (labelled as feeds A, B or C) and harvested at 1, 3 and 5 kg. LC‐PUFA levels in 5 kg (harvest size) fish were then compared to previously published values for west coast farmed Atlantic Salmon (Obj. 3). Combined results revealed that variability in LC‐PUFA levels was better explained by diet than by fish weight or farm location. Fish size, however, was also important for two reasons. First, feeding a high LC‐PUFA diet early in life appeared important for ensuring high LC‐PUFA levels at harvest size. Second, salmon flesh LC‐PUFA levels increased with fish size, but only when dietary LC‐PUFA was provided above an apparent threshold value (~3000 mg per 100 g or 10% of total fatty acids) that likely promoted LC‐PUFA incorporation and storage. Overall, our comparison makes new recommendations for feed manufacturers and demonstrates that farmed Atlantic Salmon reared under real‐world conditions on currently available salmon feeds were good sources of n‐3 LC‐PUFA to consumers.  相似文献   

13.
Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The partial reuse systems were designed to increase fish production on a limited but biosecure water resource, maintain excellent water quality, and provide more optimum swimming speeds for salmonids than those provided in traditional single-pass or serial-reuse raceways. The two systems were stocked with a total of 147,840 Atlantic salmon parr in May of 2005 (mean size 89 mm and 8.5 g/fish) and operated with 87–89% water reuse on a flow basis. By the time that the smolt were removed from the systems between March 28 to April 12, 2006, the salmon smolt had reached a mean size of 24 cm and 137 g and hatchery staff considered the quality of the salmon to be exceptional. Overall feed conversion was <1:1. The Cornell-type dual-drain circular culture tanks were found to be self-cleaning and provided mean water rotational velocities that ranged from a low of 0.034 m/s (0.2 body length per second) near the center of the tank to a high of 39 cm/s (2.2 body length per second) near the perimeter of the tank. The fish swam at approximately the same speed as the water rotated. System water quality data were collected in mid-September when the systems were operated at near full loading, i.e., 24 kg/m3 maximum density and 52.1 and 44.1 kg/day of feed in system A and system B, respectively. During this evaluation, afternoon water temperatures, as well as dissolved oxygen (O2), carbon dioxide (CO2), total ammonia nitrogen (TAN), and total suspended solids (TSS) concentrations that exited the culture tank's sidewall drains averaged 14.8 and 15.9 °C, of 7.9 and 8.2 mg/L (O2), 4.0 and 3.2 mg/L (CO2), 0.72 and 0.67 mg/L (TAN), and 0.52 and 0.13 mg/L (TSS), respectively, in system A and system B. Dissolved O2 was fairly uniform across each culture tank. In addition, water temperature varied diurnally and seasonally in a distinct pattern that corresponded to water temperature fluctuations in the nearby river water, as planned. This work demonstrates that partial reuse systems are an effective alternative to traditional single-pass systems and serial-reuse raceway systems for culture of fish intended for endangered species restoration programs and supplementation programs such as salmon smolt.  相似文献   

14.
Possible interactive effects of temperature and photoperiod on flesh quality in Atlantic salmon post‐smolts were studied. Juvenile (initial mean weight 96.0 g ± 3.1 SEM) Atlantic salmon were reared at six different combinations of temperatures (4.3, 6.5 or 9.3°C) and photoperiods (continuous light or simulated natural photoperiod). At termination of the trial, the fish were slaughtered and flesh samples taken to investigate quality and textural properties in the different experimental groups. Final weight in the six experimental groups varied between 174 and 345 g. Softer texture was seen in the fast growing groups. Photoperiod has only minor effect on flesh quality and textural properties, whereas temperature had significant impact on most of the measured variables. Although positive for growth, higher temperatures might be less favourable in relation to softer muscle tissue.  相似文献   

15.
In the search for alternative farming methods, we investigated whether large salmon submerged below 10 m in winter conditions behaved normally and performed as well as control fish held in standard surface cages. On average, 2345 salmon of ~ 3.5 kg were kept in each of six 2000 m3 sea-cages for 6 weeks; three of which were submerged to 10–24 m depth and three acted as surface controls (0–14 m). Behaviour during both day and night was studied with echo-sounders, and underwater video cameras fitted with infra-red lamps. A sub-sample of fish from each cage was weighed, measured and assessed for fin and snout condition prior to and after the experimental period. In addition, the vertebral column of 50 fish from the control and submerged treatments were dissected and X-rayed to assess vertebral deformities. The submerged salmon seemed unable to re-fill any gas into the swim bladder, as a linear decrease in echo reflection to < 5% of pre-submergence levels after 22 days of submergence indicated loss of almost all gas from the physostomous swim bladders and negatively buoyant fish. Around day 22, submerged salmon swam at night time with a distinct ‘tail-down, head-up’ tilt (26°) compared to the horizontal swimming position of control fish (− 3°). Average swimming speed (body length per second) of submerged salmon were 1.3–1.4 times faster (day: 0.77 ± 0.02; night: 0.46 ± 0.02, (mean ± SE)) than control fish (day: 0.54 ± 0.01; night: 0.37 ± 0.02) both during day and night. Almost no mortality was seen, and the submerged salmon maintained similar diurnal vertical migrations as the surface fish, indicating that deep submergence did not exhaust the fish. However, submerged fish fed less efficiently, resulting in lower growth and reduced feed utilization. Fins and snouts of the submerged fish had small, but significantly more erosion than the control fish. Vertebrae in the tail region were significantly compressed in the submerged fish compared to control fish. This could be an early symptom of development of vertebral deformities. The results suggest that continuous submergence below 10 m for longer than 2 weeks reduces the welfare and performance of Atlantic salmon.  相似文献   

16.
The microbial metabolite 2-methylisoborneol (MIB) imparts a muddy off-flavor to channel catfish Ictalurus punctatus . Uptake and depuration of MIB from fish are important considerations in the design and implementation of systems to remove off-flavors from fish prior to processing. The kinetics of MIB uptake by channel catfish were determined by placing fish in 6.5, 14.0, 25.0, and 34.0 C water containing approximately 1.0 μg/L chemically-synthesized MIB. Fish were sacrificed following 0, 2, 4, 8, and 24 h exposure to MIB. Fillet tissue samples were subjected to gas chromatographic and fat content analysis. The model for MIB uptake was:
MIB in fillet tissue (μg/kg) =−0.61 ± 4.2 [log( h ± 1)] ± 0.0076( T ) ( h ) ± 0.089( T ),
where h is the duration of exposure to MIB in hours and T is the water temperature in degrees C. The model accounted for 74% of the total variation observed in the tissue MIB concentrations and indicated that the fillet fat content was not strongly correlated with MIB uptake. To investigate the depuration of off-flavors, exposure to MIB was halted. Tissue samples were obtained 4, 8, 24, 48, and 72 h from fish held at 6.5, 14.0, 25.0, and 34.0 C. These data yielded the model:
MIB in fillet tissue (μg/kg) = 3.6 ± 0.176( T ) – 2.06 [log( h ± 1)] – 0.00296( T ) ( h ) ± 0.197 (% fat),
where h is the duration of exposure to MIB in hours, T is the water temperature in degrees C, and % fat is the % fat in the fillet tissue. The model accounted for 67% of the total observed variation in tissue MIB concentrations. Reducing the fat content of fish and optimizing water temperatures may augment MIB removal from fish tissues prior to processing.  相似文献   

17.
Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems (RAS) to reduce CO2 accumulation, however, such as increased water pumping to decrease tank hydraulic retention time, can represent significant costs for operators. We exposed post-smolt S0 Atlantic salmon (197 ± 2 g, 423 days post-hatch) to either high (20 ± 1 mg/L) or low (8 ± <1 mg/L) dissolved CO2 in six replicated freshwater RAS for 384 days to investigate differences in performance and health as the salmon were grown to harvest size. All RAS were operated at moderate water exchange rates (1.0% of the total recirculating flow), a 24-h photoperiod was provided, fish were fed to satiation, and densities were maintained between 40 and 80 kg/m3. Over the study period, dissolved oxygen was kept at saturation, mean water temperature was 14.1 ± 0.1 °C, and alkalinity averaged 237 mg/L as CaCO3. At study’s end, no significant differences in fish weight (high CO2 mean weight = 2879 ± 35 g; low CO2 mean weight = 2896 ± 12 g), feed conversion ratio (1.14 ± 0.12 vs. 1.22 ± 0.13, respectively), or thermal growth coefficient (1.45 ± 0.01 vs. 1.46 ± 0.01, respectively), were observed. No significant differences in survival (high CO2 mean survival = 99.1 ± 0.4%; low CO2 mean survival = 98.9 ± 0.3%) or culls due to saprolegniasis (3.5 ± 1% vs. 3.0 ± 1%, respectively) were determined, and no nephrocalcinosis was observed through histopathological evaluation. Blood gas and chemistry evaluation revealed higher pCO2, bicarbonate, and total CO2, and lower chloride and glucose, in the high CO2 cohort. Molecular analyses of gill enzyme regulation showed significantly higher expression of Na+/K+ ATPase α1a in high CO2 fish at 3-weeks post-challenge, indicating physiological adaptation to the higher CO2 environment without any noticeable long-term impacts on health or performance. Overall, the results of this study suggest that, at 237 mg/L as CaCO3 mean alkalinity, post-smolt Atlantic salmon can be raised in freshwater RAS to harvest size with up to 20 mg/L CO2 without significantly impacting fish health and performance.  相似文献   

18.
To obtain optimal yields of channel catfish, Ictalurus punctatus, large quantities of feed are added to ponds. Nutrients released from feed support dense algal and bacterial populations. Although some microbes produce oxygen and remove wastes, certain taxa produce the muddy/earthy off-flavor metabolites, 2-methylisoborneol (1-R-exo-1, 2, 7, 7-tetramethyl-bicyclo-[2, 2, 1]-heptan-2-ol) (MIB) and geosmin (1α, 10β-dimethyl-9α-decalol). Currently, off-flavors are one of the biggest problems affecting the channel catfish industry. Fish exposed to water containing either geosmin or MIB rapidly concentrations of these compounds in their tissues. Conversely, fish placed in water free of off-flavor metabolites exhibited markedly reduced concentrations of MIB after 8 hours and continued to improve in flavor quality throughout 24 hours, indicating a progressive purging or clearing of off-flavor compounds from their tissues. Relatively lean (< 2.5% fat) fish lost MIB more rapidly than fish with greater fat contents (> 2.5% fat). This paper proposes that aquaculture production systems should be managed for maximum production efficiency and yields, and that fish containing off-flavors then could be purged in special facilities. Purging systems that rely on a constant flow require large amounts of water and may not be widely practical. Systems that recirculate water may be more feasible. However, biological filters and other components of recirculating systems may become sources of off-flavors. The early detection of off-flavor-producing taxa and the competitive exclusion of problematic populations may be useful in preventing off-flavor production in recirculating purging systems.  相似文献   

19.
20.
The Northeastern U.S. has the ideal location and unique opportunity to be a leader in cold water marine finfish aquaculture. However, problems and regulations on environmental issues, mandatory stocking of 100% native North American salmon, and disease have impacted economic viability of the U.S. salmon industry. In response to these problems, the USDA ARS developed the National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, Maine. The NCWMAC is adjacent to the University of Maine Center for Cooperative Aquaculture Research on the shore of Taunton Bay and shares essential infrastructure to maximize efficiency. Facilities are used to conduct research on Atlantic salmon and other cold water marine finfish species. The initial research focus for the Franklin location is to develop a comprehensive Atlantic salmon breeding program from native North American fish stocks leading to the development and release of genetically improved salmon to commercial producers. The Franklin location has unique ground water resources to supply freshwater, brackish water, salt water or filtered seawater to fish culture tanks. Research facilities include office space, primary and secondary hygiene rooms, and research tank bays for culturing 200+ Atlantic salmon families with incubation, parr, smolt, on-grow, and broodstock tanks. Tank sizes are 0.14 m3 for parr, 9 m3 for smolts, and 36, 46 and 90 m3 for subadults and broodfish. Culture tanks are equipped with recirculating systems utilizing biological (fluidized sand) filtration, carbon dioxide stripping, supplemental oxygenation and ozonation, and ultraviolet sterilization. Water from the research facility discharges into a wastewater treatment building and passes through micro-screen drum filtration, an inclined traveling belt screen to exclude all eggs or fish from the discharge, and UV irradiation to disinfect the water. The facility was completed in June 2007, and all water used in the facility has been from groundwater sources. Mean facility discharge has been approximately 0.50 m3/min (130 gpm). The facility was designed for stocking densities of 20–47 kg/m3 and a maximum biomass of 26,000 kg. The maximum system density obtained from June 2007 through January 2008 has approached 40 kg/m3, maximum facility biomass was 11,021 kg, water exchange rates have typically been 2–3% of the recirculating system flow rate, and tank temperatures have ranged from a high of 15.4 °C in July to a low of 6.6 °C in January 2008 without supplemental heating or cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号