首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rainbow trout (Oncorhynchus mykiss) maintained in crowded (100 kg m− 3) and uncrowded (20 kg m− 3) conditions were fed 42 days with five experimental diets having different levels of vitamin E (25.6 and 275.6 mg kg diet− 1), C (0 and 1000 mg kg diet− 1) and HUFA (highly unsaturated fatty acids, 12.5 and 320.5 g kg diet− 1): −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA. Cortisol, plasma metabolites, tissue glycogen, fish composition, and tissue fatty-acid profile were evaluated at the end of the experimental period. In general, no changes in cortisol levels were associated with crowding, although +E+HUFA and −C+E+HUFA fish showed higher levels (mean ± SE, 55.5 ± 11.1 and 78.0 ± 11.3 ng ml− 1) as a consequence of a possible interaction between chronic crowding and diet composition. Protein and glucose con-centration in plasma displayed no effect of crowding, but liver glycogen showed a general tendency to decrease in −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA crowded groups (70.2 ± 2.1, 52.1 ± 2.5, 73.4 ± 7.4, 91.7 ± 3.3, 74.2 ± 8.4 mg g− 1 tissue, respectively) compared to uncrowded groups (108.9 ± 14.2, 82.7 ± 8.8, 92.4 ± 10.7, 99.1 ± 10.0, 103.5 ± 15.6 mg g− 1 tissue, respectively), thus proving significant in −E+HUFA fish. Variations in total lipids, triglycerides, total cholesterol and HDL as well as LDL cholesterol in plasma were manifested under crowding conditions, displaying a certain influence of vitamin E and HUFA dietary content. Final body composition, in general, showed no change attributable to fish density, but some differences associated with diet composition were found in lipid and moisture percentages of crowded fish. Liver and muscle fatty-acid profile revealed a clear effect of the dietary lipid source that was more evident in muscle than in liver at normal fish density, and in some cases this effect was modulated by dietary vitamin E and C content and fish-culture conditions.  相似文献   

2.
A 90-day feeding experiment was conducted using flow through system to evaluate the requirement of vitamin E for rohu fry in relation to growth performance and to assess the relationship between the dietary vitamin E levels and carcass composition. Five semi-purified diets supplemented with 0, 50, 100, 150, 200 mg vitamin E/kg dry diet as --tocopheryl acetate were fed to rohu fry (av. wt.±S.E.=0.58±0.01 g) in triplicate groups. At the end of the experiment, growth and dietary performance were evaluated and vitamin E deposition in the tissue, erythrocyte fragility, thiobarbituric acid reactive substances (TBARs) were analyzed. The average net weight gains were 6.82±0.09, 7.38±0.03, 8.20±0.03, 8.07±0.09 and 8.12±0.08 (g/90 days), respectively, for fish fed diets 0, 50, 100, 150, 200 mg vitamin E/kg. The fish fed diets containing less than 100 mg supplemental vitamin E/kg had significantly (P<0.05) reduced weight gain, feed efficiency and other nutritional indices compared to those fed diets supplemented with vitamin E at 100–200 mg/kg. With the increasing level of vitamin E, both TBARs and erythrocyte fragility values were reduced. Regression analysis of weight gain data using broken-line model indicated a minimum vitamin E requirement of 131.91 mg/kg dry diet. The erythrocyte fragility and TBARs were maximum in fish fed the vitamin E-deficient diet. From the present experiment, it may be concluded that the vitamin E requirement of Labeo rohita fry for optimum growth and other dietary performances is 131.91 mg/kg of dry diet.  相似文献   

3.
In order to investigate sparing effects of vitamin C on vitamin E for juvenile hybrid tilapia, fish were fed diets with or without vitamin E each supplemented with either adequate or a high (3× adequate) level of two ascorbate sources, -ascorbic acid (AA) and its derivative, -ascorbyl-2-monophosphate-Mg (C2MP-Mg). Each diet was fed to three replicate groups of fish initially weighing a mean value of 0.54±0.01 g/fish in a closed-recirculated rearing system for 8 weeks. Weight gain and feed efficiency of fish fed the vitamin E-deficient diet supplemented with adequate levels of either AA or C2MP-Mg were significantly lower (P<0.05) than fish fed the other diets. Plasma and liver -tocopherol concentrations were lower in fish fed vitamin E-deficient diets regardless of the level or source of supplemented ascorbate. Gill -tocopherolxxxxxxxx concentration was highest in fish fed vitamin E-adequate diets, intermediate in fish fed vitamin E-deficient diets supplemented with a high level of AA or C2MP-Mg and lowest in fish fed a vitamin E-deficient diet supplemented with an adequate level of AA or C2MP-Mg. Fish fed a vitamin E-deficient diet supplemented with an adequate level of AA or C2MP-Mg had higher hepatic thiobarbituric acid-reactive substances than fish fed the other diets. These data suggest that the high supplementation level (3× adequate) of ascorbate could spare vitamin E in diets for hybrid tilapia and that both AA and C2MP-Mg exhibits the same sparing effect.  相似文献   

4.
The role of dietary linolenic acid (LN), vitamin E (E) and vitamin C (C) in regulating fish growth and immune response was tested on juvenile darkbarbel catfish Pelteobagrus vachelli. Five dietary combinations were used (?E?LN, +E?LN, ?E+LN, +E+LN and ?C+E+LN; ‘+’ with addition and ‘?’ without addition) in triplicate. Weight gain was highest in the ?E+LN feeding group. Red blood cell in fish fed the +E+LN diet was highest. The haematocrit and haemoglobin of fish fed the ?E+LN diet was lowest. Superoxide dismutase, catalase, glutathione peroxidase and glucose‐6‐phosphate dehydrogenase activities in fish fed the ?E+LN diet were higher than those in fish fed other diets. Malondialdehyde in fish fed the ?C+E+LN diet was highest. Fish fed the +E+LN diet had higher levels of lysozyme activity, serum protein, complements C3 and C4, and immunoglobulin contents than fish fed other diets. Fish fed the +E+LN diet showed lower mortality and higher antibody titre than fish fed other diets after the fish were challenged with Aeromonas hydrophila for 14 day. This study suggests that the growth of darkbabel catfish is improved by increasing dietary linolenic acids. The diets with high linolenic acid, vitamin E and vitamin C can enhance the immune response and resistance in darkbarbel catfish challenged with A. hydrophila.  相似文献   

5.
A 10‐week feeding trial was conducted to evaluate the effect of dietary vitamin E and astaxanthin on growth performance, skin colour and antioxidative capacity of large yellow croaker Larimichthys crocea. Six practical diets were formulated in a 2 × 3 factorial design to supplement with two levels of astaxanthin (25 and 50 mg/kg) and three levels of vitamin E (0, 120 and 800 mg/kg). The results showed that both the highest final body weight and specific growth rate were found in fish fed diets with 120 mg/kg vitamin E supplementation. No significant differences were found in survival rate, feed conversion ratio and protein efficiency ratio among all the treatments (> .05). Skin lightness (L*) was not significantly affected by dietary treatments (> .05). Ventral skin redness (a*) of fish fed diet with 25 mg/kg astaxanthin and 0 mg/kg vitamin E supplementation was significantly lower than that of fish fed with other diets. Yellowness (b*) and carotenoid contents both in the dorsal and in the ventral skin were found to be significantly increased with increasing dietary astaxanthin or vitamin E (< .05), but no significant interactions were found (> .05). The vitamin E content in liver reflected the dietary vitamin E content. Level of vitamin E content in fish fed diets with 800 mg/kg vitamin E supplementation was significantly higher than that in fish fed with the other diets (< .05). Liver superoxide dismutase activity and thiobarbituric acid reactive substance levels were found to be decreased with increasing dietary astaxanthin and vitamin E levels, respectively. Levels of reduced glutathione in the liver were found to be increased with increasing dietary vitamin E contents. The total antioxidative capacity in the liver was found to be decreased with increasing dietary vitamin E or astaxanthin contents. In conclusion, adequate dietary vitamin E can improve the growth of large yellow croaker, and the supplementation of astaxanthin and vitamin E benefited the skin coloration and antioxidative capacity of large yellow croaker.  相似文献   

6.
A 9-week feeding experiment was conducted to evaluate the effects of dietary vitamin E supplementation on growth, lipid peroxidation and fatty acid composition of black sea bream fed oxidized oil. The FL and OL diets contained fresh fish oil and oxidized oil, respectively, without additional vitamin E supplementation. Another four α-tocopherol levels (150, 250, 450 and 800 mg kg−1 diet) were used within the OL diet, giving a total of six experimental diets. Fish were hand-fed to apparent satiation twice daily. At end of the trial, the weight gain and survival rate of fish were significantly reduced by diets with oxidized oil, whereas hepatosomatic index was remarkably high in fish fed oxidized oil diet. However, vitamin E supplementation to diet significantly improved growth performance and increased vitamin E content in the liver. Although, liver thiobarbituric acid reactive substances and docosahexaenoic acid were significantly increased by dietary oxidized oil, their levels were reduced by dietary vitamin E supplementation. Our results indicate that the fish were performing the best at intermediate concentrations of α-tocopherol and a dose of >150 mg α-tocopherol kg−1 diet could reduce lipid peroxidation and improve fish growth performance when oxidized oils exist in diet.  相似文献   

7.
Juvenile yellow perch Perca flavescens were fed semipurified diets with varying protein to metabolizable energy ratios (PME, g protein MJ−1 metabolizable energy) and nutrient densities in three experiments to determine recommended dietary protein and energy concentrations. Experiment 1 fish (18.6 g) were fed diets containing 450 g crude protein kg−1 dry diet and 14.5–18.8 MJ ME kg−1 dry diet for 10 weeks. No differences were found in the growth of experiment 1 fish fed the different diets. Experiment 2 fish (21.9 g) were fed diets containing 15.7 MJ ME kg−1 dry diet and 210–420 g crude protein kg−1 dry diet for 8 weeks. Fish fed the diet containing 340 g kg−1 protein (diet PME = 22) exhibited the greatest weight gain. Experiment 3 fish (27.1 g) were fed diets with a PME of 22 and varying nutrient density (yielding 205–380 g crude protein kg−1 dry diet) for 8 weeks. No differences were found in the growth of experiment 3 fish. Yellow perch fed the semipurified diets exhibited increased liver fat content, liver size and degree of liver discoloration compared with fish fed a commercial fish meal-based diet. Liver changes may have resulted from high dietary carbohydrate levels. We conclude that a protein level of 210–270 g kg−1 dry diet is suitable for juvenile yellow perch provided that the dietary amino acid profile and carbohydrate content are appropriate for yellow perch.  相似文献   

8.
The aim of the present study was to evaluate the effects of three formulated diets: wheat‐gluten‐protein‐based diets supplemented with Lys‐Gly dipeptide (LG) or free lysine and glycine (FL), a control diet without lysine supplementation (C) and commercial starter Bio Oregon (BO) for on the growth and digestive system morphology of yellow perch. After 48 days of experimental feeding, fish fed LG diet showed the highest body mass. Fish fed LG diet showed the highest number of gastrin/cholecystokinin positive cells and the lowest number of CD3‐positive cells. The brush border of anterior intestine was the most PepT1 immunopositive in fish fed LG diet, the weakest in fish fed C diet. The largest hepatocytes were observed in fish fed BO, while the smallest in those fed FL diet, the difference being statistically significant. Relative hepatocyte cytoplasm volume occupied by lipids was higher in fish fed BO and FL compared to those fed C and LG. Number of proliferating cell nuclear antigen‐positive hepatocyte nuclei did not significantly differ among experimental groups. These results indicate that wheat‐gluten‐protein‐based diets supplemented with dipeptide Lys‐Gly (LG) were appropriate for yellow perch.  相似文献   

9.
在基础饲料中分别添加维生素E(VE)(60mg/kg标为e或300mg/kg标为E)和硒(Se)(0mg/kg标为s或2.5mg/kg标为S),制成4种试验饲料(s/e,s/E,S/e,S/E)分别饲喂初始体重为38.5±0.15g的牙鲆70d,观察其对生长性能、肝脏及血清中谷胱甘肽过氧化物酶(GSH-Px)活性、非特异免疫力以及抗病力的影响。结果表明,饲喂添加高剂量VE的两组饲料(s/E,S/E),牙鲆的特定生长率和吞噬率明显地提高(P0.05)。饲喂添加硒的两组饲料(S/e,S/E),牙鲆血液和肝脏的GSH-Px活性显著升高(P0.05)。70d投喂实验结束后,利用鳗弧菌进行攻毒试验,不添加硒和低剂量VE(s/e)使牙鲆的累积死亡率明显高于其他3组。  相似文献   

10.
A growth experiment was conducted to determine the optimal dietary protein to energy (P/E) ratio for juvenile Japanese seabass (initial average weight 6.26±0.10 g). Nine practical diets were formulated to contain three protein levels (36%, 41% and 46%), each with three lipid levels (8%, 12% and 16%), in order to produce a range of P/E ratios (from 19.8 to 28.6 mg protein kJ−1). Each diet was randomly assigned to triplicate groups of 60 fish in sea floating cages (1.5×1.5×2.0 m). Fish were fed twice daily (06:30 and 16:30) to apparent satiation for 8 weeks. The water temperature fluctuated from 26.5 to 32.5 °C, the salinity from 32‰ to 36‰ and dissolved oxygen content was approximately 7 mg l−1 during the experimental period. The results showed that the growth was significantly affected by dietary P/E ratio (P<0.05). Fish fed the diets with 46% protein (12% and 16% lipid, P/E ratio of 26.7 and 25.7 mg protein kJ−1) had the highest specific growth rates (SGR) (4.26 and 4.24% day−1). However, fish fed the diet with 41% protein and 12% lipid showed comparable growth (4.20% day−1), and had higher protein efficiency ratio (PER), protein productive value (PPV) and energy retention than other groups (P<0.05). No significant differences in survival were found among dietary treatments. Carcass lipid content positively correlated with dietary lipid level irrespective of protein level and inversely correlated with carcass moisture content. Carcass protein and ash contents increased with increasing dietary lipid at each protein level. These results suggest that the diet containing 41% protein and 12% lipid with P/E of 25.9 mg protein kJ−1 is optimal for Japanese seabass.  相似文献   

11.
A growth experiment was conducted to investigate the effects of replacement of fish meal (FM) by meat and bone meal (MBM) in diets on the growth and body composition of large yellow croaker (Pseudosciaena crocea). Six isonitrogenous (43% crude protein) and isoenergetic (20 kJ g− 1) diets replacing 0, 15, 30, 45, 60 and 75% FM protein by MBM protein were formulated. Each diet was randomly allocated to triplicate groups of fish in sea floating cages (1.0 × 1.0 × 1.5 m), and each cage was stocked with 180 fish (initial average weight of 1.88 ± 0.02 g). Fish were fed twice daily (05:00 and 17:30) to apparent satiation for 8 weeks. The water temperature ranged from 26.5 to 32.5 °C, salinity from 32 to 36‰, and dissolved oxygen content was approximately 7 mg l− 1 during the experimental period. Survival decreased with increasing dietary MBM and the survival in the fish fed the diet with 75% protein from MBM was significantly lower than other groups (P < 0.05). There were no significant differences in specific growth rate (SGR) among the fish fed the diets with 0 (the control group), 15, 30 and 45% protein from MBM. However, SGR in the fish fed the diets with 60 and 75% protein from MBM were significantly lower than other groups (P < 0.05). No significant differences in feeding rate were observed among dietary treatments. The digestibility experiment showed that the apparent digestibility coefficients (ADC) of dry matter, protein, lipid and energy of MBM were significantly lower compared with those of FM (P < 0.05). Essential amino acid index was found to be correlated positively with SGR in the present study, suggesting that essential amino acid balance was important. Body composition analysis showed that the carcass protein and essential amino acids were not significantly affected by dietary MBM. The lipid and n-3 highly unsaturated fatty acid (n-3 HUFA) in fish muscle, however, significantly decreased with increasing dietary MBM. These results showed that 45% of FM protein could be replaced by MBM protein in diets of large yellow croaker without significantly reducing growth. It was suggested that the reduced growth with higher MBM was due to lower digestibility and imbalance of essential amino acids.  相似文献   

12.
A feeding trial was conducted to determine the interactive effects of vitamin C (ascorbic acid, AsA) and E (α‐tocopherol, α‐Toc) supplementation with dietary oxidized fish oil (OFO) on the growth performance, whole‐body AsA, and α‐Toc concentrations and fatty acid composition of juvenile sea cucumber. In a 9‐wk feeding trial, juveniles (average weight: 0.6 ± 0.1 g) were cultured in twenty‐four 50‐L tanks (30 juveniles per tank) in triplicate, and fed with eight test diets containing two levels of OFO (8.9 and 156.9 meq/kg) with varying levels of vitamin C (500 and 1000 mg AsA equivalents/kg diet) and E (100 and 200 mg α‐Toc equivalents/kg diet) supplementation, respectively. Body weight gain of sea cucumber was significantly reduced by dietary OFO, while mortality and whole‐body thiobarbituric acid‐reactive substances value were increased significantly. Increasing dietary vitamin C and E levels significantly increased whole‐body α‐Toc and AsA concentrations, respectively. A high level of vitamin E combined with OFO led to consumption of AsA. Even with supplementation of a large dose of vitamin C and/or E in diets, growth performance could not be improved, probably due to the high levels of vitamins in the control diets.  相似文献   

13.
The 96-h LC50 of ammonia-N and the effects of dietary vitamin C on oxygen consumption, ammonia-N excretion and Na+/K+ ATPase activity of Macrobrachium nipponense exposed to ambient ammonia were investigated. The results showed that the 96-h LC50 of ammonia-N was 36.6 mg l−1 for the freshwater prawn, M. nipponense, at pH 8.0. When prawns were exposed to high ambient ammonia-N concentrations, the oxygen consumption rate increased and ammonia excretion decreased. Dietary vitamin C supplementation led to higher oxygen consumption and lower ammonia excretion. Na+/K+ ATPase activity increased with increased ambient ammonia-N exposure in the range of 0–18.3 mg l−1, and then was reduced at ambient ammonia-N 36.6 mg l−1. Na+/K+ ATPase activities of prawns fed a vitamin C-supplemented diet were significantly lower than those of prawns fed a diet which was not supplemented with vitamin C.  相似文献   

14.
A 12-week feeding trial was conducted to establish the minimum dietary vitamin E requirement of juvenile red drum by broken-line regression analysis. The semi-purified basal diet was supplemented with 10, 20, 30, 40, 60 or 80 IU vitamin E kg−1 as all-rac -α-tocopheryl acetate. Juvenile red drum were conditioned by feeding the basal diet for 8 weeks prior to the feeding trial to reduce whole-body vitamin E levels. Then, fish initially averaging 12.2 ± 0.4 g fish−1 (mean ± SD) were fed the experimental diets at a rate approaching apparent satiation for 12 weeks. Weight gain and feed efficiency responses of fish fed diets were significantly ( P  < 0.01) altered by the level of vitamin E supplementation but not strictly in a dose-dependent manner. Vitamin E concentrations in liver and plasma also were significantly ( P  < 0.001) influenced by dietary vitamin E level. Plasma ascorbic acid in fish fed the basal diet tended ( P  = 0.066) to be lower than in fish fed diets containing the various levels of vitamin E. In addition, fish fed the basal diet showed edema in the heart, while fish fed all other diets were normal. Fish fed 60 or 80 IU all-rac -α-tocopheryl acetate kg−1 diet had significantly higher respiratory burst of head kidney macrophages than fish fed all other diets, although dietary effects on hematocrit and neutrophil oxidative radical production were not significant. The minimum dietary vitamin E requirement of juvenile red drum was established based on broken-line regression of liver thiobarbituric acid reactive substances to be 31 mg all-rac -α-tocopheryl acetate kg−1 diet.  相似文献   

15.
A 12‐week feeding trial was conducted to evaluate the effects of dietary vitamin C on growth performance, antioxidant status and innate immune responses in juvenile yellow catfish, Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets (44% crude protein and 7% lipid) were formulated to contain six graded dietary vitamin C (ascorbate‐2‐poly‐ phosphate, ROVIMIX® STAY‐C® 35) levels ranging from 1.9 to 316.0 mg kg?1 diet. The results of present study indicated that fish fed the lowest vitamin C diet had lower weight gain (WG) and specific growth rate (SGR) than those fed the diets supplemented vitamin C. WG and SGR did significantly increase with dietary vitamin C levels increasing from 1.9 to 156.5 mg kg?1. However, no significant increase was observed with further dietary vitamin C levels increasing from 156.5 to 316 mg kg?1. Survival, protein efficiency ratio and feed efficiency were not significantly affected by the dietary vitamin C levels. The activities of serum superoxide dismutase, catalase and glutathione peroxidase significantly increased when dietary vitamin C levels increased from 1.9 to 156.5 mg kg?1, fish fed the lowest vitamin C diet had higher serum malondialdehyde content than those fed the diets supplemented with vitamin C. Fish fed the diet containing 156.5 mg kg?1 vitamin C had the highest lysozyme, total complement activity, phagocytosis index and respiratory burst of head kidney among all treatments. The challenge test with Aeromonas hydrophila indicated that lower cumulative survival was observed in fish fed the lowest vitamin C diet. Analysis by broken‐line regression of SGR and lysozyme activity indicated that the dietary vitamin C requirement of juvenile yellow catfish was estimated to be 114.5 and 102.5 mg kg?1 diet, respectively.  相似文献   

16.
A study was conducted to characterize the effects of oxidized marine fish oil (MFO) on skeletal development in juvenile Atlantic halibut (Hippoglossus hippoglossus) and to determine the role of vitamin E on their bone health and antioxidant defense mechanisms. Juvenile halibut (4.5 ± 0.1 g) were fed six experimental diets containing untreated (peroxide value (POV)  =0.6 meq kg− 1), mod`rately oxidized (POV = 7.5 meq kg− 1) and highly oxidized (POV = 15 meq kg− 1) MFO either with or without α-tocopherol acetate (0 or 300 IU kg− 1) supplementation for 14 weeks. No significant effects on growth, survival, hepatosomatic indices, or hematocrit were observed among the dietary treatments. Fish fed diets without vitamin E and highly oxidized dietary lipids showed increased hepatic malonaldehyde concentrations indicating a response to oxidative stress. Both muscle and liver α-tocopherol concentrations were significantly lower in fish fed diets without vitamin E supplementation. Alkaline phosphatase levels in serum and bone were increased when vitamin E was present within the diet indicating higher bone formation activity by osteoblasts. Oxidized lipids and lack of dietary vitamin E significantly increased saturated and decreased polyunsaturated hepatic fatty acids. Liver lipids of fish fed diets without vitamin E also exhibited a lower ratio of 22:6n-3 to 22:5n-3 and n-3 fatty acids. The most frequent skeletal deformity observed was scoliosis, spanning the cephalic/prehemal regions, as well as the anterior hemal region of the vertebral column, which increased the frequency according to elevated levels of oxidized dietary lipid. Lordosis was also observed, with no specific pattern along the vertebral column. The pattern and type of abnormalities observed were similar to those reported in an earlier study in halibut from a commercial hatchery.  相似文献   

17.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

18.
The effects of feed intake level on energy and nitrogen partitioning were studied in juvenile Atlantic cod (250 g) fed two fish meal based diets differing in protein and lipid content (54:31 and 65:16) at 10 °C. Replicate groups of cod were feed deprived for 32 days or fed one of the two diets at 25, 50, 75 or 100% of group satiation for 60 days. Feed intake and oxygen consumption were measured daily and weights and chemical composition of carcass, liver, viscera and whole body were measured at start and end. Diet digestibilities were assessed in a separate experiment.

The whole body and carcass growth rates at a given feed intake did not differ between dietary groups, but the liver grew faster in the fish fed the low protein diet, resulting in higher hepatosomatic indices at the end of the experiment in the groups fed this diet.

The efficiency of utilisation of digestible nitrogen for growth (kDNg) was higher for the low protein diet (0.73 ± 0.02) than for the high protein diet (0.53 ± 0.05), resulting in higher nitrogen retention at a given nitrogen intake. No difference in percentage nitrogen retention was seen in full-fed fish however (31.2 ± 2.5 and 28.4 ± 1.6% for the low protein and high protein diets, respectively). This can be explained by higher nitrogen intake in the fish fed the high protein diet, resulting in a smaller proportion of the intake being used for maintenance.

There was no difference in energy utilisation between dietary groups. The digestible energy requirement for maintenance (DEmaint) was 53.8 ± 0.9 kJ kg− 1 d− 1 (42.3 ± 0.7 kJ kg− 0.8 d− 1) and the utilisation efficiency for growth (kDEg) was 0.80 ± 0.02. The energy retention in full-fed fish was 31.3 ± 3.5 and 31.7 ± 1.0% for the low protein and high protein diets, respectively. The deposited energy was distributed in approximately equal proportions in the liver and carcass, whereas viscera accounted for a minor proportion. At a given energy intake, the fish fed the high protein diet deposited more energy in the carcass and less in the liver than did those fed the low protein diet.  相似文献   


19.
Juvenile channel catfish Ictalurus punctatus (average initial weight, 6.5 g/fish) were fed twice daily to apparent satiation with practical-type diets containing 0, 50, 150, or 250 mg supplemental vitamin C/kg from L-ascorbyl-2-polyphosphate for 10 wk under laboratory conditions. At the end of the feeding period, one half of the fish were stressed for 2 h by confinement and both stressed and nonstressed fish were exposed to a virulent strain of Edwardsiella ictaluri. Weight gain and feed conversion efficiency were lower for fish fed the basal diet than those fed diets containing supplemental vitamin C. No differences were observed in weight gain and feed conversion among fish fed diets containing supplemental vitamin C. There were no differences in feed consumption and survival (prior to experimental infection) among treatments. No vitamin C deficiency signs except reduced weight gain were observed in fish fed the basal diet. Serum cortisol concentrations were higher in stressed fish than in non-stressed fish. Dietary vitamin C level had no effect on serum cortisol concentration. As dietary vitamin C increased, ascorbate concentration in serum and liver increased. Confinement stress had no effect on serum and liver ascorbate concentrations. Cumulative mortality of channel catfish 21 d subsequent to experimental infection with E. ictaluri was higher for stressed fish than for nonstressed fish. Regardless of stress or nonstress, overall mortality for fish fed the basal diet was lower than the fish fed diets containing supplemental vitamin C. There were no differences in post-infection antibody levels among treatments or between stressed and nonstressed fish. Results from this study indicate that channel catfish require no more than 50 mg/kg dietary vitamin C for normal growth, stress response, and disease resistance.  相似文献   

20.
An 8 weeks growth experiment was conducted to determine the effects of dietary vitamin C on the survival, growth, tissue ascorbic acid contents and immunity of large yellow croaker (Pseudosciaena crocea) with initial weight of 17.82 ± 0.68 g. Seven practical diets were formulated to contain 0.1, 12.2, 23.8, 47.6, 89.7, 188.5 and 489.0 mg ascorbic acid equivalent kg− 1 diet, supplied as l-ascorbyl-2-polyphosphate (LAPP). Each diet was fed to triplicate groups of fish in seawater floating cages (1.5 × 1.5 × 2.0 m), and each cage was stocked with 120 fish. Fish were fed twice daily (05:00 and 17:00) to apparent satiation for 8 weeks. The water temperature fluctuated from 19.5 to 25.5 °C, the salinity from 25 to 28‰ and dissolved oxygen content was approximately 7 mg l− 1 during the experimental period. Results showed that the specific growth rate (SGR) (from 1.80 to 1.96% d− 1) had an increasing trend with the increase of dietary vitamin C, but no significant difference was observed among dietary treatments. No gross deficiency signs were observed in any of the experimental fish. Survival rate, however, significantly increased with increasing dietary vitamin C (P < 0.05). The vitamin C contents in liver and muscle correlated positively with the vitamin C in diets. The vitamin C requirement was estimated to be 28.2 mg kg− 1 based on survival, and 87.0 mg kg− 1 on liver content of vitamin C. The activities of serum lysozyme and alternative complement pathway (ACP), phagocytosis percentage (PP) and respiratory burst activity of head kidney significantly increased with increasing dietary vitamin C. The challenge experiment with Vibrio harveyi showed that fish fed the diets with supplementation of vitamin C had significantly lower cumulative mortality compared to the control group (66.7%), and the cumulative mortality (16.7%) in fish with 489.0 mg kg− 1 ascorbic acid was significantly lower than that (41.7%) in fish with 23.8 mg kg− 1 ascorbic acid. These results suggested that vitamin C significantly influenced the immune response and disease resistance of large yellow croaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号