首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This research examined the haematological and immunological responses of quadruplicate groups of juvenile (~400 g initial weight) Atlantic salmon (Salmo salar L.) that had each been fed daily to satiation for 12 weeks one of three high‐energy extruded diets of identical composition except for the supplemental dietary lipid (234.7 g kg?1) source. The three experimental diets varied in the composition of supplement lipid; diet 1 contained 100% anchovy oil (AO), while diets 2 and 3 replaced 29.8% and 59.7% of the AO (respectively) with a 1:1 blend of canola oil (CO) and poultry fat (PF). Immediately following the feeding trial, a random sample of fish from each diet was sampled for determination of baseline levels of various haematological and immunological parameters. Thereafter, duplicate diet groups were vaccinated (against Listonella anguillarum) and reared on their respective experimental diets for an additional 4 weeks. At that time, the remaining fish were sampled similarly, and the different parameters were measured again. Comparisons between the different diet treatment groups were made before and after vaccination. There were no significant diet treatment effects at either sample time, for haematocrit, differential leucocyte counts, erythrocyte counts, serum hemolytic activity or head kidney leucocyte respiratory burst activity. The fish fed diet 1 however, did show significantly higher post‐vaccination levels of peripheral blood leucocyte respiratory burst activity and higher serum antibody titres against L. anguillarum. The results suggest that the relatively low n‐6/n‐3 fatty acid ratios in the muscle and presumably other tissues of fish fed diet 1, may have resulted in a reduced production of immunocompromising eicosanoids than were produced in fish ingesting the other two diets that were based in part on the different amounts of the CO and PF blend. Long‐term studies are required to confirm this possibility.  相似文献   

2.
Copepod oil (CO) from the marine zooplankton, Calanus finmarchicus, is a potential alternative to fish oils (FOs) for inclusion in aquafeeds. The oil is composed mainly of wax esters (WE) containing high levels of saturated fatty acids (SFAs) and monounsaturated fatty alcohols that are poorly digested by fish at low temperatures. Consequently, tissue lipid compositions may be adversely affected in salmon‐fed CO at low temperatures. This study examined the lipid and FA compositions of muscle and liver of Atlantic salmon reared at two temperatures (3 and 12 °C) and fed diets containing either FO or CO, supplying 50% of dietary lipid as WE, at two fat levels (~330 g kg?1, high; ~180 g kg?1, low). Fish were acclimatized to rearing temperature for 1 month and then fed one of four diets: high‐fat fish oil (HFFO), high‐fat Calanus oil (HFCO), low‐fat fish oil (LFFO) and low‐fat Calanus oil (LFCO). The fish were grown to produce an approximate doubling of initial weight at harvest (220 days at 3 °C and 67 days at 12 °C), and lipid content, lipid class composition and FA composition of liver and muscle were determined. The differences in tissue lipid composition between dietary groups were relatively small. The majority of FA in triacylglycerols (TAG) in both tissues were monounsaturated, and their levels were generally higher at 3 °C than 12 °C. Polyunsaturated fatty acids (PUFA), particularly (n‐3) PUFA, predominated in the polar lipids, and their level was not significantly affected by temperature. The PUFA content of TAG was highest (~26%) in the muscle of fish fed the HFCO diet at both temperatures. Tissue levels of SFAs were lower in fish‐fed diets containing HFCO than those fed HFFO, LFFO or LFCO, particularly at 3 °C. The results are consistent with Atlantic salmon being able to incorporate both the FA and fatty alcohol components of WE into tissue lipids but, overall, the effects of environmental temperature on tissue lipids were more pronounced in fish fed the CO diets than FO diets.  相似文献   

3.
The objective of this study was to access the suitability of using poultry fat (PF) or blends of PF with flaxseed oil (FO) to replace 75% of the supplemental anchovy oil (AO) in the diet of juvenile sablefish (Anoplopoma fimbria), a relatively new marine species to aquaculture. Sablefish were fed one of four diets twice daily to satiation for 15 weeks. The test diets were identical in composition except for the source of supplemental lipid which was either 100% AO (100AO), or had 75% of the supplemental AO replaced with 50% FO:25% PF, 25% FO:50% PF or 75% PF. Sablefish growth parameters, whole body and fillet proximate constituent concentrations, and apparent digestibility coefficients were uninfluenced by diet treatment. There were also no adverse effects of the diet treatments on fish health, as determined from analysis of various haematological and innate immunological parameters. Terminal fillet fatty acid compositions generally reflected the dietary fatty acid compositions. Results indicated that PF or blends of PF and FO may comprise 75% of the supplemental lipid in a grower diet for sablefish and are an economic alternative to AO while still providing humans with a rich dietary source of highly unsaturated fatty acids.  相似文献   

4.
The effects of various dietary blends of menhaden oil (MO) with canola oil (CO) on the growth performance, whole body proximate composition, flesh quality (muscle proximate and lipid composition) and thyroidal status of immature Atlantic salmon in sea water were studied.Atlantic salmon (initial weight, 145.2–181.3 g), held on a natural photoperiod and in 1100 L fibreglass tanks that were supplied with running, aerated (D.O., 9–10.5 p.p.m.), ambient temperature (8–10.5 °C) sea water (salinity, 28–30), were fed twice daily to satiation one of four isonitrogenous (36% digestible protein) and isoenergetic (18.8 MJ of digestible energy kg-1) extruded high-energy diets for 112 days. All diets contained omega –3 (n-3) fatty acids in excess of requirements and differed only with respect to the source of the supplemental lipid which was either, 25% MO; 20.75% MO and 4.25% CO; 16.5% MO and 8.5% CO; or 12.25% MO and 12.75% CO. Thus, CO comprised, respectively, 0, 15.5, 31.2, or 47.0% of the total dietary lipid content (28% on an air-dry basis).Dissimilar percentages of saturated fatty acids in the dietary lipids were not found to be consistently related to the apparent gross energy digestibility coefficients of the diets. Atlantic salmon growth, dry feed intake, feed and protein utilization, percent survival, thyroidal status, and whole body and muscle proximate compositions were generally not influenced by the different sources of supplemental lipid. Therefore, our results suggest that canola oil may comprise as much as 47% of the lipid in high-energy grower diets for Atlantic salmon without compromising performance.The muscle lipid compositions generally mirrored those of the dietary lipids which, in turn, were influenced strongly by the concentrations and compositions of the CO and MO in the diet. Hence, as the dietary CO level was increased there were attendant increases in percentages of oleic acid (18:1(n-9)), linoleic acid (18:2(n-6)), total omega-6 (n-6) fatty acid content, and ratios of (n-6) to (n-3) and decreases of eicosapentaenoic acid (EPA; 20:5(n-3)), docosahexaenoic acid (DHA; 22:6(n-3)) and n-3 HUFAs (EPA & DHA) in the flesh lipids. The ranges for percentages of saturated and unsaturated fatty acids in the flesh lipids were, however, much less than those noted respectively in the dietary lipids probably because of selective metabolism of many of the former acids and some of the 18 carbon unsaturates for energy purposes.  相似文献   

5.
The growth performance, fatty acid composition, hepatic lipid content, hepatic somatic index and lipid peroxidation in Russian sturgeon were investigated using diets containing three lipid levels 50 g kg?1 (L5), 150 g kg?1 (L15) and 250 g kg?1 (L25) and three n‐3/n‐6 fatty acid ratios (1 : 3, 1 : 1 and 3 : 1) for 8 weeks. Weight gain significantly increased with the increase in dietary lipid levels at n‐3/n‐6 fatty acid ratios of 1 : 3 and 1 : 1, but not at the 3 : 1 ratio. Correspondingly, fish survival gradually decreased with the increase in dietary lipid at the 3 : 1 n‐3/n‐6 fatty acid ratio. The dietary lipid level significantly affected the composition of whole‐body fatty acid. The retention of highly unsaturated fatty acid dramatically decreased at the level of 250 g kg?1 dietary lipid. The liver malondialdehyde increased with the increase in dietary lipid levels and the n‐3/n‐6 fatty acid ratios. The contents of lipid and triglyceride in the liver and the hepatic somatic index also increased with the increase in dietary lipid. The diet combination of L25 + 3 : 1 showed the highest aspartate transaminase and alanine transaminase, indicatives of hepatic injury. This study indicates that the L25 + 1 : 3 diet can improve fish growth performance, whereas the L25 + 3 : 1 diet may lead to poor growth performance due to high lipid peroxidation.  相似文献   

6.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

7.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

8.
This study was undertaken to determine the suitability of using cold‐pressed flaxseed oil (FO) as a major source of lipid in place of anchovy oil (AO) in the diet of juvenile sablefish (Anoplopoma fimbria), a relatively new marine species to aquaculture. Sablefish were fed one of four diets twice daily to satiation for 15 weeks. The test diets were identical in composition, except for the source of supplemental lipid which was either 100% AO (100AO), or increasing replacement of AO with FO i.e., 75AO:25FO, 50AO:50 FO or 25AO:75FO. Sablefish growth parameters, whole body and fillet proximate constituent concentrations and apparent digestibility coefficients were uninfluenced by diet treatment. There were also no adverse effects of the diet treatments on fish health, as determined from analysis of various haematological and innate immunological parameters. Terminal fillet fatty acid compositions generally reflected the dietary fatty acid compositions, while flesh contaminant concentration decreased with increasing dietary flaxseed oil content. Results indicated that FO may comprise up to 75% of the supplemental lipid in a grower diet for sablefish, while still providing humans with a rich dietary source of highly unsaturated fatty acids.  相似文献   

9.
This study was conducted to determine the effects of the use of farmed salmon oil (FSO) as a substitute for anchovy oil (AO) on growth and nutrient utilization performance, and proximate and fatty acid compositions of turbot, Psetta maxima. Two fish oil sources, AO and FSO, were incorporated into the diet at a level of 6.77% and fed to turbot with an initial average weight of 266.25 ± 0.53 g in brackish water for 9 wks. Each diet was tested in four replicates and fed to apparent satiation twice a day. At the end of the experiment, data of growth and nutrient utilization performances (feed conversion ratio, nitrogen, lipid and energy intakes, gains, and retentions), and organo‐somatic indices were similar between the dietary oil sources. Likewise, there were no significant differences in final whole body proximate compositions between two treatments. However, AO and FSO diets significantly affected whole body fatty acids and fatty acids classes. Briefly, FSO fish was characterized with higher n‐6 poly unsaturated fatty acids (PUFA) mainly 18:2n‐6 whereas AO fish with higher n‐3 PUFA and highly unsaturated fatty acids mainly 22:6n‐3. The whole body fatty acid profile reflected that of the diets. It is concluded that incorporation of FSO instead of AO in turbot diets supports similar growth and nutrient utilization performances but change whole body fatty acid profile.  相似文献   

10.
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components.  相似文献   

11.
This study assessed refined canola oil (CO) as a supplemental dietary lipid source for juvenile fall chinook salmon, Oncorhynchus tshawytscha, parr with respect to possible effects on their growth and osmoregulatory performance and body composition. Diets with equal protein ( 57%) and lipid ( 19%) content (dry weight basis) were supplemented with lipid from either anchovy oil (AO) or CO with AO so that CO comprised 0 (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO) or 54% (54CO) of the dietary lipid content. Triplicate groups of juvenile chinook salmon were fed their prescribed diets for 104 days in freshwater (FW) and 31 days in seawater (SW) after a 4-day transition period. Dietary fatty acid compositions reflected the different proportions of AO and CO in the supplemental lipid. Diet treatment had no effect on fish growth, feed intake, feed efficiency, protein utilization, fish mortality or terminal whole body water and ash percentages. Whole body lipid percentages were higher in 11CO and 43CO fish than in 33CO fish and in 11CO fish versus 22CO fish. Whole body protein percentages were highest in 33CO, 43CO and 54CO fish and lowest in 0CO and 22CO fish. Terminal whole body fatty acid compositions were influenced strongly by the dietary fatty acid compositions. Haematocrit and muscle water percentages were not affected consistently and plasma Na+ and Cl concentrations were unaffected by diet treatment in FW or 24-h seawater challenges during FW residency. Also, diet treatment had no effect on the physiological parameters after SW residency. We conclude that dietary treatment had no effect on fish growth performance under our experimental conditions. Also, the dietary inclusion of CO neither facilitated nor impaired the transfer of chinook salmon parr to seawater. Thus, CO was found to be an excellent and cost-effective source of supplemental dietary lipid for culture of juvenile fall chinook salmon during freshwater residency.  相似文献   

12.
13.
Reductions in flesh contaminant concentrations were evaluated in a 36‐week feeding trial examining several dietary techniques. Atlantic salmon were fed one of seven dietary treatments for 24 weeks. These diets included a fishmeal, fish oil control diet, an industry control diet, three diets that examined a 75% replacement level of anchovy oil (AO) with flaxseed oil, canola oil and poultry fat, and two diets formulated to be low in contaminants formulated with canola oil, activated carbon‐treated anchovy oil and canola protein concentrate or soy protein concentrate. Following this initial 24‐week feeding interval, a 12‐week finishing diet was utilized to restore the levels of omega‐3 highly unsaturated fatty acids (n‐3 HUFAs). The salmon had marked reductions in their flesh concentrations of total polychlorinated biphenyls (PCBs), dioxin‐like PCBs and total toxic equivalents by the end of the grow‐out phase, but also exhibited significant depressions in their flesh concentrations of n‐3 HUFAs relative to 100AO‐fed fish. The 12‐week finishing diet period was effective in partially re‐instating omega‐3 levels to those present in the flesh lipids of fish fed 100AO while concurrently maintaining lower flesh contaminant concentrations.  相似文献   

14.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase.  相似文献   

15.
The substitution of fish oil with wax ester‐rich calanoid copepod‐derived oil in diets for carnivorous fish, such as Atlantic salmon, has previously indicated lower lipid digestibility. This suggests that the fatty alcohols (FAlc) present in wax esters may be a poorer substrate for intestinal enzymes than the fatty acids (FA) in triacylglycerol (TAG), the major lipid in fish oil. The hypothesis tested was that the possible lower utilization of dietary FAlc by salmon enterocytes is at the level of uptake and that subsequent intracellular metabolism was identical to that of FA. A dual‐labelled FAlc–FA metabolism assay was employed to determine simultaneous FAlc and FA uptake and relative utilization in enterocytes isolated from pyloric caeca of Atlantic salmon fed either a diet supplemented with fish oil or wax ester‐rich Calanus oil. The diets were fed for 10 weeks before caecal enterocytes from each dietary group were isolated and incubated with equimolar mixtures of either [1‐14C]16:0 FA and [9,10(n)‐3H]16:0 FAlc, or [1‐14C]18:1n‐9 FA and [9,10(n)‐3H] 18:1n‐9 FAlc. Uptake was measured after 2 h with relative utilization of labelled FAlc and FA calculated as a percentage of uptakes. Differences in uptake were observed, with FA showing higher uptake than FAlc, and 18:1 chains a higher uptake than 16:0. A proportion of unesterified FAlc was possibly recovered in the cells, but the majority of FAlc was recovered in lipid classes such as TAG and phospholipids indicating substantial conversion of FAlc to FA followed by esterification. However, incorporation of FA and FAlc into esterified lipids was higher when derived from FA than from FAlc. Twenty‐five to fifty percentage of the absorbed 16:0 FA was recovered in TAG fraction of the enterocytes compared with 15–75% of 18:1 FA. Twenty to thirty percentage of the absorbed 16:0 FA was recovered in the phosphatidylcholine fraction of the enterocytes compared with only 5–15% of the 18:1 FA. Less than 15% of the fatty chains taken up by the cells were used for energy production, with significantly higher oxidation of 18:1 in enterocytes from fish fed the fish oil diet compared with the Calanus oil diet. However, overall, dietary copepod oil had little effect on FAlc and FA metabolism. Metabolic modification by elongation and/or desaturation was generally low at 1–5% of the uptake. We conclude that our hypothesis was generally proved in that the uptake of FAlc by salmon enterocytes was lower than the uptake of FA and that subsequent intracellular metabolism of FAlc was similar to that of FA. However, unesterified FAlc was possibly recovered in the cells suggesting that the conversion to FA may not be concomitant with uptake.  相似文献   

16.
This study assessed the potential of refined canola oil (CO) as a source of supplemental dietary lipid for pre-smolt spring chinook salmon (Oncorhynchus tshawytscha) over a period of 30 weeks. Triplicate groups of 320 fry (∼ 0.80 g), reared in flow-through well water (8-11.5 °C), were fed one of four steam-pelleted dry diets with equivalent gross energy (24.3 MJ/kg), protein (∼ 51.3%) and lipid (∼ 21.6%) content on a dry-weight basis. CO furnished either 0%, 33%, 67%, or 100% of the supplemental dietary lipid, with the remainder from a commercial blend of 1:1 anchovy oil and poultry fat (APF). Thus, CO comprised either 0% (dAPF), 25% (CO25), 49% (CO49), or 72% (CO72) of total dietary lipid content. Overall fish growth rate, feed intake, feed efficiency, protein utilization, percent survival, and terminal whole body proximate constituents were unaffected by diet treatment. Dietary lipid compositions reflected the ratios of CO and APF in the supplemental lipid and their respective fatty acid compositions. Whole body fatty acid compositions mirrored those of diet treatments. However, some essential fatty acids, namely, arachidonic acid (20:4n-6; AA), and docosahexaenoic acid (22:6n-3; DHA) were conserved in fish regardless of dietary CO level. Direct relationships were found between dietary and whole body concentrations of: 18:2n-6 (R2 = 0.94; slope = 0.72), 18:3n-3 (R2 = 0.99; slope = 0.58), 20:4n-6 (R2 = 0.84; slope = 0.42), 20:5n-3 (R2 = 0.99; slope = 0.43) and 22:6n-3 (R2 = 0.82; slope = 1.25). High dietary levels of 18:3n-3, 18:2n-6, and 20:5n-3 may have been utilized for energy or converted to more unsaturated derivatives. Overall development of ionoregulatory ability, as assessed by 24-h seawater challenge tests, was unaffected by diet. However, whole body chloride content was generally inversely related to dietary CO level during early development. Our findings suggest that there is excellent potential for long-term replacement of fish oil with canola oil in the diet of pre-smolt spring chinook salmon, provided that some marine oil is present to ensure that the essential fatty acid needs of the fish are met.  相似文献   

17.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

18.
Three isonitrogenous (320 g kg?1 crude protein, casein and gelatine) semi‐purified diets with 80 (L8), 130 (L13) and 180 (L18) g kg?1 lipid (sunflower oil at increasing levels and cod liver oil fixed at 50 g kg?1) at three digestible energy levels (12 096, 13 986 and 15 876 kJ kg?1 dry weight) and were tested, in triplicate, on rohu fingerlings (3.2 ± 0.08 g) at two different temperatures (21 and 32 °C). Fish were fed to apparent satiation, twice daily, at 09.00 and 15.00 h, 7 days a week for 56 days. Maximum growth was obtained at a lipid level of 80 g kg?1 (L8) at 21 °C (439.37%) and 130 g kg?1 (L13) at 32 °C (481.8%). In general growth rate was higher at 32 °C than at 21 °C at all lipid levels. Tissue monounsaturated fatty acid (MUFA) contents decreased with increasing lipid level at 32 °C, but the reverse occurred at 21 °C. At 21 °C, Polyunsaturated fatty acid (PUFA) level increased significantly (P > 0.05) over initial values, but was affected insignificantly by dietary lipid level. At 32 °C, fish fed diet L13 had more n‐3 fatty acid (FA) in liver and muscle than the other two dietary groups while at 21 °C, both liver and muscle FA profiles exhibited significant change (P > 0.05) in n‐3 and n‐6 FA content which corresponded to variation in percent addition of dietary lipid. However, n‐3/n‐6 ratio was higher for fish fed diet L13 at 32 °C and diet L8 at 21 °C and may be correlated with fish growth.  相似文献   

19.
Present study aimed to determine the optimum dietary lipid level in snakehead murrel channa striatus broodstocks. Triplicate groups of fish were fed for 240 days with isonitrogenous experimental diets with increasing lipid levels (100, 140, and 180 g kg?1), using fish oil and soybean oil as the lipid sources with the ratio of (1:1). Weight gain, GSI, fecundity, oocyte diameter and number of mature oocyte were found to be significantly higher in the group fed with diet containing 180 g kg?1 lipid level. Muscle fatty acid profile showed a significant increase in LA (18:2n‐6), LNA (18:3n3), total PUFA, n‐6 and ArA (20:4n‐6) in fish fed with diet containing 180 g kg?1 lipid. Increasing lipid level up to 180 g kg?1 resulted in significant increase in PUFA (LA & LNA), lc‐PUFA (EPA, DHA, ArA), total PUFA, n‐3 and n‐6 series in ovary and liver of female C. striatus.  相似文献   

20.
Effects of the ratio of dietary fatty acids, namely n‐3 (mainly long chain polyunsaturated – LC‐PUFA) to n‐6 PUFA on the fecundity of Macrobrachium amazonicum were evaluated. In T1, the diet had equal and low levels of dietary n‐3 and n‐6 fatty acids (6 mg g?1). In T2, the concentration of n‐3 (6 mg g?1) was a half of the concentration of the n‐6 (12 mg g?1), and in T3, the diet had equal and high concentrations of n‐3 and n‐6 (12 mg g?1). Females with ovaries in stages I, III and V were collected. Higher gonadosomatic index (GSI) (6.89%) was observed in females in ovarian stage V than at other ovarian stages; however, the hepatosomatic index (HIS) showed high values in all females with ovaries in the stage III. A ratio of 1:2 n‐3:n‐6 fatty acids increased the GSI of mature females and the number of eggs spawned. Raising the level of both n‐3 and n‐6 fatty acids from ~0.6% to ~1.2% of the diet did not produce any effect on the GSI or on fecundity, suggesting that the ratio is more important than the absolute value of these two families of fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号