首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The co‐culture of juvenile sea cucumber Holothuria scabra (Jaeger), or ‘sandfish’, with juvenile blue shrimp Litopenaeus stylirostris (Stimpson) was tested by growing groups in co‐culture and monoculture for 3 weeks in tanks with enriched sand substratum. Feed was supplied on trays, accessible only to shrimp. Survival of shrimp and sandfish was high in all treatments (73–100%). Growth of shrimp did not differ between monoculture and co‐culture, but sandfish grew significantly slower in co‐culture (P=0.03), although their sand burying and surface foraging were apparently unaffected by shrimp (P=0.76). However, shrimp increased the levels of total ammonia‐N in tanks, which related inversely with sandfish growth (P=0.04). Conversely, sandfish did not appear to lower the water quality for shrimp culture. While sandfish bioturbate sediments and eat organic deposits, the juveniles did not significantly reduce the organic content of sand in tanks. Co‐culturing juveniles of the two species in earthen ponds appears feasible, with no detriment to shrimp production, presenting a cost‐effective method for growing sandfish to larger sizes for restocking. These findings underpin further studies to test the viability of commercial co‐culture of sandfish with blue shrimp at later stages in the production cycle of shrimp.  相似文献   

2.
Zooplankton, macrozoobenthos and feeding habits of Litopenaeus stylirostris and L. vannamei in monoculture and polyculture semi‐intensive experimental ponds were evaluated. Zooplankton was more abundant in monoculture of L. stylirostris (1002±670 organisms (org.) L?1) than in monoculture of L. vannamei (470±37 org. L?1), and polyculture (321±188 org. L?1). The main zooplanktonic groups were polychaeta larvae, nauplii, copepods and polychaeta. Macrozoobenthos was more abundant in polyculture (6898±11 137 org. m?2) compared with monoculture of L. stylirostris (3201±350 org. m?2) and L. vannamei (2384±3752 org. m?2). The main benthic groups were copepods, polychaeta, ostracods, nematodes and insects. Differences in feeding habits were found between species and regimes. Litopenaeus vannamei showed to be a more voracious species and fed mostly on organic detritus and benthos in both culture regimes. Litopenaeus stylirostris had a more restricted sources of feed in the ponds. The major component in the stomach content of both species was detritus. Macroalgae, sand, exuvia, formulated feed, prey and microalgae were minor components for both species (<7%). Ingestion of formulated feed was <4% for L. stylirostris and was not detected for L. vannamei. The stomach repletion rates were larger for L. vannamei (55.6% and 48.8%) than for L. stylirostris (43.75% and 44.89%). Litopenaeus stylirostris grew better in polyculture (10.3±3.4 g) that in monoculture (9.0±3.8 g). Litopenaeus vannamei grew better in monoculture (16.1±4.8 g) than in polyculture (13.4±4.5 g). For both species, feed conversion ratio was lower in polyculture.  相似文献   

3.
We examined the potential for producing the large numbers of sandfish (Holothuria scabra) needed for restocking programmes by co-culturing juveniles with the shrimp Litopenaeus stylirostris in earthen ponds. Our experiments in hapas within shrimp ponds were designed to detect any deleterious effects of sandfish on shrimp, and vice versa. These experiments showed that a high stocking density of juvenile sandfish had no significant effects on growth and survival of shrimp. However, survival and growth of sandfish reared with shrimp for 3 weeks were significantly lower than for sandfish reared alone. Increased stocking density of shrimp also had a significant negative effect on survival and/or growth of sandfish. A grow-out trial of juvenile sandfish in 0.2-ha earthen ponds stocked with 20 shrimp post-larvae m− 2, and densities of sandfish between 0.8 and 1.6 individuals m− 2, confirmed that co-culture is not viable. All sandfish reared in co-culture were dead or moribund after a month. However, sandfish stocked alone into 0.2-ha earthen ponds survived well and grew to mean weights of ∼ 400 g within 12 months without addition of food. The grow-out trial demonstrated that there is potential for profitable pond farming of sandfish in monoculture. Further research is now needed to identify the optimal size of juveniles, stocking densities and pond management regimes.  相似文献   

4.
This study investigated monthly changes of sedimentation and sediment properties in three different culture systems (ponds) – i.e. jellyfish Rhopilema esculenta monoculture (J), sea cucumber Apostichopus japonicus and jellyfish co‐culture (SJ) and sea cucumber monoculture (S) – to verify the feasibility of co‐culturing jellyfish and sea cucumbers. Results showed that jellyfish culture accelerated the settling velocity of total particulate matter (TPM). Average TPM settling velocities in the SJ (75.6 g m?2 day?1) and J (71.1 g m?2 day?1) ponds were significantly higher than that in the S pond (21.7 g m?2 day?1) from June to September during the jellyfish culture period. Average settling velocities of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in the SJ pond increased significantly by 3.0, 2.9, 3.3 and 3.8 times, respectively, compared with those in the S pond. Sediment contents of OM, TOC, TN and TP in the SJ and J ponds were significantly higher than those in the S pond during the jellyfish culture season. The specific growth rate of sea cucumbers feeding on SJ sediment was significantly higher than that of those feeding on S sediment. Co‐culturing sea cucumbers with jellyfish may help alleviate benthic nutrient loading due to the jellyfish and provide a secondary cash crop.  相似文献   

5.
Commercially valuable sea cucumbers are potential co‐culture species in tropical lagoon environments, where they may be integrated into established aquaculture areas used for seaweed farming. In the current study, wild‐caught juvenile sea cucumbers, Holothuria scabra, and red seaweed Kappaphycus striatum were co‐cultured on Zanzibar, United Republic of Tanzania. Sea cucumbers (97 g ± 31 SD,= 52) were cultured in mesh enclosures at initial cage stocking densities of 124 ± 21 SD and 218 ± 16 SD g m?2 under seaweed culture lines. Over 83 days, individual growth rate (1.6 g d?1 ± 0.2 SD) of sea cucumbers at low stocking density was significantly higher (χ2 = 8.292, d.f. 1, P = 0.004) than at high‐stocking density (0.9 g d?1 ± 0.1 SD). Seaweed individual growth rates [6.27 (±0.3 SE) g d?1] were highest in co‐culture with sea cucumber at low density but did not differ significantly from high sea cucumber density or seaweed monoculture treatments (χ2 = 3.0885, d.f. = 2, = 0.2135). Seaweed growth varied significantly (χ2 = 35.6, d.f. = 2, < 0.0001) with sampling period, with the final sampling period resulting in the highest growth rate. Growth performance for seaweed and sea cucumbers (χ2 = 3.089, d.f. = 2, = 0.21 and χ2 = 0.08, d.f. = 1, = 0.777 respectively), did not differ significantly between monoculture and co‐culture treatments, yet growth in co‐culture was comparable with that reported for existing commercial monoculture. Results indicate H. scabra is a highly viable candidate species for lagoon co‐culture with seaweed. Co‐culture offers a more efficient use of limited coastal space over monoculture and is recommended as a potential coastal livelihood option for lagoon farmers in tropical regions.  相似文献   

6.
The effects and commercial implications of aquatic plant addition, and variable prawn stocking density and supply of commercial aquafeed on water quality, prawn production and economic benefit, are investigated in a prawn (Macrobrachium rosenbergii) + plant (Hydrilla verticillata) co‐culture system. Our experimental design includes a control (PM, prawn monoculture without H. verticillata, with 30 prawns/m2) and four treatments with 15% plant cover of total pond area in each replicate. Dissolved oxygen, pH, N, P, total ammoniacal nitrogen, nitrite and nitrate in this co‐culture system were significantly lower than those of PM. Prawn survival (96.2 ± 14.9%), average final weight (68.5 ± 4.9 g) and yield (879.1 ± 102.4 kg/ha) in treatment 20W80%A (20 prawns/m2, 80% of control aquafeed) were obviously greater than in PM and other treatments. Despite small males (SM) and immature females (IF) being predominant in prawn + plant cultures, more than 77.2% of prawns reached or exceeded 40 g on completion of trials, and by six months were of appropriate size for market. We report culture of M. rosenbergii with H. verticillata to be both feasible and profitable. The optimal treatment, a stocking density of 20 prawns/m2 with these plants, enabled reduction of commercial aquafeed to 20% conventional culture levels. For this optimal treatment, we estimate total gross revenue, profit and internal rate of return to be US$ 6,593.3 ± 103.3 ha?1, US$ 3,095.5 ± 42.6 ha?1 and 127.5 ± 20.7% for 20W80%A respectively; we estimate U.S. Dollar (US$) invested generates 3.87 times conventional culture revenue. Co‐culture of M. rosenbergii and plants renders prawn production ecologically and economically feasible on larger farms.  相似文献   

7.
This study was conducted to determine the feasibility of growing out hatchery‐reared spotted babylon juvenile (Babylonia areolata) in earthen ponds. The growth, survival and water quality for monoculture of spotted babylon were compared with the two polyculture trials with sea bass (Lates calcarifer) or milkfish (Chanos chanos). This study provided good results for growth and survival of spotted babylon in earthen ponds. The mean body weight gain of snails held in the monoculture was 5.39±0.08 g, and 4.07±0.16 and 4.25±0.11 g for those held in the polyculture with sea bass or milkfish respectively. Food conversion ratios (FCR) were 2.69, 2.96 and 2.71 for snails held in the monoculture and polyculture with sea bass and milkfish, respectively, and the final survival rates were 84.94%, 74.30% and 81.20% respectively. There were no significant differences in each parameter of water quality among the treatments but significant differences among the culture period were present (P<0.05). Salinity and total alkalinity showed the greatest changes during the culture period for all treatments. Seawater temperature, pH, dissolved oxygen, nitrite–nitrogen and ammonia–nitrogen gradually changed over the culture period for all the treatments. The present study indicated the technical feasibility for monoculture and polyculture of B. areolata to marketable sizes in earthen ponds.  相似文献   

8.
Seahorse aquaculture is challenged by insufficient feeding supply and lack of biological and nutritional knowledge, resulting in low survival rate and poor economical profitability. We report here an integrated eco‐aquaculture system in which the yellow seahorse and its natural prey were co‐cultured with fertilized water and seaweed in cement ponds. In the first stage, urea (10 g m?3) and chicken manure (50 g m?3) were used to fertilize the cultured water, 5–7 days later, rotifer and micro‐crustaceans were flourishing. Then, seahorse juveniles were stocked at 200 ind m?3. After 2 weeks, seaweed Gracilaria lichevoides was transplanted into the ponds to regulate water quality, light and to provide holdfast attachment for seahorses. The optimal density of G. lichevoides was controlled between 0.5 and 2 kg m?3. The introduction of seaweed provides the habitat for natural food of seahorse. Within the cluster of the seaweed, small crustacean density was over 450 individuals per 100 g of fresh weight. Initial size of seahorse juvenile was 1.03 ± 0.091 cm, After the 146‐day rearing period, seahorse survival rates were 70.8%, 57.7% and 42.5%, and body standard lengths were 11.33 cm, 10.84 cm and 10.04 cm in the integrated eco‐aquaculture system (GFA) and in monoculture systems of FA (fertilized + feeding) and BA (only feeding) respectively. This system incorporated traditional Chinese aquaculture technique in which feedings nature food organisms were cultivated by fertilization and ecological regulation. Results from these preliminary experiments suggest that the integrated system could be technically feasible, suitable and exemplary.  相似文献   

9.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

10.
The effects of different densities of caged Nile tilapia, Oreochromis niloticus, on water quality, phytoplankton populations, prawn, and total pond production were evaluated in freshwater prawn, Macrobrachium rosenbergii, production ponds. The experiment consisted of three treatments with three 0.04‐ha replicates each. All ponds were stocked with graded, nursed juvenile prawn (0.9 ± 0.6 g) at 69,000/ha. Control (CTL) ponds contained only prawns. Low‐density polyculture (LDP) ponds also contained two cages (1 m3; 100 fish/cage) of monosex male tilapia (115.6 ± 22 g), and high‐density polyculture (HDP) ponds had four cages. Total culture period was 106 d for tilapia and 114 d for prawn. Overall mean afternoon pH level was significantly lower (P ≤ 0.05) in polyculture ponds than in CTL ponds but did not differ (P > 0.05) between LDP and HDP. Phytoplankton biovolume was reduced in polyculture treatments. Tilapia in the LDP treatment had significantly higher (P ≤ 0.05) harvest weights than in the HDP treatment. Prawn weights were higher (P ≤ 0.05) in polyculture than prawn monoculture. These data indicate that a caged tilapia/freshwater prawn polyculture system may provide pH control while maximizing pond resources in temperate areas.  相似文献   

11.
Scaling up the hatchery production of juvenile sandfish Holothuria scabra is constrained by limited hatchery space and the associated high operational costs. To shorten the hatchery rearing phase, ocean nursery systems like floating hapa nets have been used with good prospects but with limitations during rough sea conditions. In this study, the potential of bottom‐set trays (0.14 m2) as an alternative ocean nursery system for early sandfish juveniles (0.5 ± 0.1 cm) was evaluated. The effects of stocking density and presence of artificial substrates (AS) on the growth and survival were determined in a 60‐day field experiment. Average length and growth rates at lower stocking density treatment (100 individuals tray?1) were significantly higher (1.45 ± 0.22 cm; 0.03 ± 0.01 cm day?1) than at higher stocking density treatments (400 and 500 individuals tray?1) 0.95 ± 0.06 cm; 0.03 ± 0.004 cm day?1) with or without AS (< .05) respectively. The coefficient of variation in length (CV) at high stocking densities were significantly higher than at low densities (< .05) and growth rate was strongly negatively correlated with density. Survival was significantly higher (55% ± 9%) in trays with AS across all stocking density treatments than in trays without AS (34% ± 2%). Results suggest that AS may have reduced intra‐ and interspecific interactions, resulting to significantly lower growth variations and higher survival. The bottom‐set tray with AS can be a practical alternative ocean nursery unit for rearing early sandfish juveniles particularly when the sea surface condition is rough. With improved design and density management, survival and growth may be further enhanced.  相似文献   

12.
This work determined the nitrogen inputs, outputs and accumulation in compartments of stagnant earthen ponds for the monoculture and integrated multi‐trophic aquaculture (IMTA) of the Amazon river prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum), using recycled hypereutrophic water. A completely randomized experiment was designed with four treatments and three replications: PM–monoculture with 30 prawns/m2, FM ‐ monoculture with 3 fish/m2, IMTA ‐ polyculture with 30 prawns/m2 and 30 fish/m2 free, POLY‐CAGE ‐ polyculture with 30 prawns/m2 free and 40 fish/m3 in net‐cages. Animals, rain, water, feed, soil, gas, accumulated sludge, and suspended sediments were collected throughout the experiment to determine their nitrogen contents and to calculate the nitrogen budget. Results showed that much of the nitrogen available escapes to atmosphere as N2 (~40%–56%) after denitrification or accumulated within bottom sludge (~14%–42%). The remaining nitrogen was converted in animal biomass (~5%–21%) or was discharged to receiving waterbodies in the outlet water (~11%–13%). Feed management appeared to influence the major biological processes in the aquatic nitrogen cycle, such as photosynthesis and denitrification. The fish‐prawn IMTA systems converted approximately 53%–75% of feed nitrogen into harvestable products, which is more efficient than the 19%–46% of feed nitrogen converted in the monocultures. However, a large amount of nitrogen is accumulated in the pond bottom in all systems. An increased prawn density or the addition of a mud‐feeder species to the culture may enhance the incorporation of this material in harvested biomass, improving the efficiency of the systems.  相似文献   

13.
Sprinkling, an agricultural irrigation technique, has been tested for the intensive culture of Manila clams up to marketable size (35-50 mm) in coastal ponds 400 m2 in area. The sprinkling system is used for the distribution of seawater and live algal food Skeletonema costatum (Grev.) Clev. Sprinkling is a simple, low cost and efficient method of food distribution which resolves the major problem of decreasing bivalve growth associated with single point water entry in small-scale raceways. Uniform growth obtained with sprinkling is principally due to an even scattering of food over the whole surface area of large-scale ponds.  相似文献   

14.
This work evaluated the performance of Litopenaeus vannamei to low fish meal diets supplemented with 2‐hydroxy‐4‐(methylthio)butanoic acid (HMTBa). A basal diet with 150.0 g kg?1 of anchovy fish meal was designed. Two positive control diets were formulated to reduce fish meal at 50% and 100% with 1.0 and 2.0 g kg?1 of MERA? MetCa (calcium salt with 84% HMTBa activity), respectively. Two nearly equivalent diets acted as negative controls, without HMTBa supplementation. A total of 50 clear‐water tanks of 500 L were stocked with 2.22 ± 0.19 g shrimp under 70 animals m?2. Shrimp survival (92.3 ± 5.1% and 81.4 ± 8.0%), yield (808 ± 12 and 946 ± 17 g m?2) and FCR (2.17 ± 0.19 and 3.12 ± 0.37) showed no differences among diets after 72 or 96 days, respectively. A significantly higher shrimp body weight and weekly growth were observed for those fed with the basal diet or diets supplemented with HMTBa compared with non‐supplemented ones. This study has shown that L. vannamei growth, body weight, survival, yield and FCR were supported by HMTBa supplementation when 150.0 g kg?1 of fish meal was replaced by soybean meal and other ingredients, at 50% and 100%.  相似文献   

15.
Worldwide, most sea‐urchin populations are in decline. Future market demands will likely be met through aquaculture, which may consist of gonad enhancement of wild‐caught sea urchins. In this context, we examined three land‐based containment systems for suitability in maintaining commercial‐size green sea urchins (Strongylocentrotus droebachiensis). Mortality rate, gonad quantity, gonad quality (colour, brightness, firmness, texture) and cleaning efficiency associated with each containment system were the criteria for comparing the effectiveness of the systems (large raceways, small raceways and washtub tanks). After 6 weeks, urchins maintained in large raceways displayed significantly higher mortality rates than urchins maintained in either the small raceways or washtub tanks (mean±SD: 24.3±10.4%, 8.0±3.5% and 4.3±1.5% respectively). Significant differences in cleaning time were detected among the three systems with washtub tanks requiring significantly more cleaning time (0.11±0.02 min urchin?1) than the other two systems and large raceways requiring significantly less cleaning time (0.06±0.02 min urchin?1) than the other two systems. No significant differences in gonad characteristics were detected among the three containment systems. Because of the higher mortality rate in the large raceways and the increased cleaning time required for the washtub tanks, the small raceways were considered to be the best of the three systems tested.  相似文献   

16.
Experiments were conducted to identify suitable methods for broodstock rearing, induced breeding and grow‐out culture of Holothuria scabra in Sri Lanka. Two hundred and seventy‐two brooders (500–600 g) collected from off Mannar were individually packed in oxygen‐filled polythene bags with and without sea water and transported to a sea cucumber hatchery at Kalpitiya. Lagoon pens, sand‐filled fibreglass tanks and bare tanks were used in triplicates to maintain brooders. Spawning was initiated using air dry, water jet and thermal‐stimulation methods. Hatchery produced juveniles with an average weight of 11 ± 5 g were reared (2 individuals m?2) in lagoon pens, mud ponds and fibreglass tanks in triplicates. The significantly high evisceration rate was observed when brooders were transported without sea water (t‐test, P < 0.05). Brooders maintained in bare tanks showed a significant weight reduction than the brooders in sand‐filled tanks and lagoon pens (anova , P < 0.05, d.f. = 2). Thermal stimulation (ambient temperature ± 3–5°C) was found to be the most successful method of spawning initiation of H. scabra. The mean (±SD) percentage males and females participated for spawning per trial was 9.2 (±10) and 4.6 (±5.6) respectively. On an average, 1.16 millions of eggs (±1.03 SD, n = 5) were obtained per spawning trial. H. scabra juveniles reared in tanks showed significantly lower growth rate than the juveniles in pens and ponds (anova , P < 0.05). Lagoon pens and sand‐filled tanks are suitable to maintain brooders and lagoon pens can be successfully used for mass rearing of juveniles.  相似文献   

17.
The production performance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton‐based systems were studied in farmers' ponds at Mymensingh, Bangladesh. Fifteen ponds (200–300 m2 area and 1.0–1.5 m in depth) were used to compare five stocking ratios in triplicate: 100% GIFT, 75% GIFT plus 25% prawn, 50% GIFT plus 50% prawn, 25% GIFT plus 75% prawn and 100% prawn. Ponds were stocked at a total density of 20 000 GIFT and/or prawn ha?1. Bamboo poles (mean diameter 6.2 cm and 5.5 pole m?2) were posted in pond bottoms vertically as periphyton substrate. Periphyton biomass in terms of dry matter (DM), ash‐free DM and chlorophyll a were significantly higher in ponds stocked with prawn alone than in ponds with different combinations of GIFT and prawn. Survival of GIFT was significantly lower in ponds stocked with 100% GIFT (monoculture) whereas, that of prawn was significantly higher in its monoculture ponds indicating detrimental effects of GIFT on prawn's survival. Individual weight gains for both species were significantly higher in polyculture than in monoculture. The highest total fish and prawn yield (1623 kg GIFT and 30 kg prawn ha?1) over 125–140 days culture period was recorded in ponds with 75% GIFT and 25% prawn followed by 100% GIFT alone (1549 kg ha?1), 50% GIFT plus 50% prawn (1114 kg GIFT and 68 kg prawn ha?1), 25% GIFT plus 75% prawn (574 kg GIFT and 129 kg prawn ha?1) and 100% prawn alone (157 kg ha?1). This combination also gave the highest economic return. Therefore, a stocking ratio of 75% GIFT plus 25% prawn at a total density of 20 000 ha?1 appeared to be the best stocking ratio in terms of fish production as well as economics for a periphyton‐based polyculture system.  相似文献   

18.
To address the preference of mud crab farmers for larger size Scylla serrata juveniles (5.0–10 g body weight or BW; 3.0–5.0 cm internal carapace width or ICW), a study was conducted to compare the growth and survival of crab juveniles (2.0–5.0 g BW; 1.0–3.0 cm ICW) produced a month after stocking of megalopae in net cages when reared further in net cages installed in earthen ponds or when stocked directly in earthen ponds. In a 3 × 2 factorial experiment, three stocking densities (1, 3 and 5 ind m−2), two types of rearing units (net cages or earthen pond) were used. Megalopae were grown to juvenile stage for 30 days in net cages set inside a 4000 m2 brackishwater pond and fed brown mussel (Modiolus metcalfei). Crab juveniles were then transferred to either net cages (mesh size of 1.0 mm) or earthen ponds at three stocking densities. After 1 month, no interaction between stocking density and rearing unit was detected so data were pooled for each stocking density and rearing unit. There were no significant differences in the growth or survival rate of crab juveniles across stocking density treatments. Regardless of stocking density, survival in net cages was higher (77.11±6.62%) than in ponds (40.41±3.59%). Growth, however, was significantly higher for crab juveniles reared in earthen ponds. The range of mean BW of 10.5–16.0 g and an ICW of 3.78–4.33 cm obtained are within the size range preferred by mud crab operators for stocking grow‐out ponds.  相似文献   

19.
The efficacy of a commercial microbial product was tested in commercial tiger shrimp, Penaeus monodon (Fabricius), ponds for one culture period in Kuala Selangor, Malaysia. Four ponds with replicates for treatment and control were used. The pond bottom was dried but the organic sludge was not removed as normally practised in pond preparation. The ponds were stocked with 15 post‐larvae at the rate of 31.m?2. Physical, chemical and biological parameters of the pond were analysed every 2 weeks during the culture period. Water quality parameters remained within the optimum range for shrimp culture except for ammonia‐nitrogen being significantly higher in control ponds and silica in treated ponds. Benthic organisms were not found in any of the ponds. The average counts of different bacteria were not significantly higher in treated ponds than control. Because of poor health, the shrimp were harvested earlier (72 days) than the usual 120 days. An average of 875.60 ± 67.00 kg shrimp ha?1 was obtained in treated ponds with a feed conversion ratio (FCR) of 1.57 ± 0.10 and survival rate of 42.35 ± 5.37% compared with 719.50 ± 130.94 kg shrimp ha?1, 2.99 ± 0.70 and 21.25 ± 3.26%, respectively, in control ponds. Neither the microbial product nor the frequent water exchange was effective in overcoming the problems caused by the poor pond bottom.  相似文献   

20.
《Aquaculture Research》2017,48(6):2803-2811
The brown shrimp Farfantepenaeus californiensis and the seaweed Ulva clathrata, both native to north‐west Mexico, were co‐cultured in lined ponds during 18 weeks. The aim of this study was to evaluate different stocking densities (10, 20, 30, 40 and 50 per m2) in terms of shrimp yield to see if the co‐culture method results in shrimp yields suitable for commercial production. The presence of Ulva results in good water quality and allows culture of brown shrimp with low water exchange (10% weekly) and with low nitrogen and phosphorus content in discharged water. The final weight and specific growth rate (SGR) in shrimp between 10 and 30 per m2 were significantly higher (12.5–12.0 g and 4.56–4.53% day−1 respectively) than 40 and 50 per m2 (9.1 and 8.6 g, and 4.31% and 4.26% day−1 respectively). Total shrimp biomass generated in 30 or more shrimp per m2 was significantly higher (2.7–3.1 t ha−1) compared with 10 and 20 shrimp per m2 (1.0 and 2.0 t ha−1 respectively). The lowest feed conversion ratio (FCR) (0.97) was shown in the 10 shrimp per m2 case, and the highest FCR was seen with 50 shrimp per m2 (1.37). Shrimp survival ranged between 71% and 81%, where the highest mortality was shown in 50 shrimp per m2. The results show that the co‐culture method can result in commercially interesting yields, suggesting that 30 shrimp per m2 is the best stocking density for co‐culturing F. californiensis with U. clathrata, based on the shrimp performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号