首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
Resistant starch (RS) is considered to be a good alternative to antibiotics. A 56‐day feeding trial was followed by induction of acute ammonia stress to evaluate the effects of dietary RS on growth, digestion, metabolism, immunity and resistance to ammonia stress in Litopenaeus vannamei. The four diets used differed only in RS content: 0 g/kg (Control), 10 g/kg (RS1), 30 g/kg (RS2) and 50 g/kg (RS3). The results showed that dietary RS improved the growth and the survival rates of shrimp exposed to ammonia stress. At 56 days, the activity of digestive and metabolic enzymes (amylase, lipase, pepsin, hexokinase and pyruvate kinase) was increased in the three RS groups, while trypsin activity only increased in the RS1 and RS2 groups; immune‐related parameters (the total antioxidant capacity; the activity of superoxide dismutase, total nitric oxide synthase and phenoloxidase; and the expression of heat‐shock protein 70, thioredoxin, prophenoloxidase, lysozyme and toll gene) were increased in the three RS groups. After exposure to ammonia stress, all the selected immune parameters of the three RS groups were higher than those of the control group at 24 hr. Therefore, dietary RS improved the growth, digestion, metabolism, immunity and resistance to ammonia stress in L. vannamei.  相似文献   

2.
3.
Blunt snout bream (Megalobrama amblycephala) is an herbivorous freshwater fish species native to China and has been recognized as a main aquaculture species in the Chinese freshwater polyculture system with high economic value. The genetic parameter estimates for important economic traits are needed for its selective breeding. The aim of this study was to estimate the heritabilities for its growth‐related traits and explore the genetic and phenotypic correlations among the traits using microsatellite‐based pedigree approach. Offspring from a mass‐spawning of 92 broodstocks (42 sires and 50 dams) were reared in a communal pond and nine microsatellites were used to identify the parents of each sampled offspring. Of 749 offspring randomly selected, 708 (94.53%) could be assigned directly to a single parental pair, which was used for heritability estimates. Data were analysed using the method of restricted maximum likelihood (REML) using animal model and the results showed that the heritabilities of body weight, body length, total length and body height were 0.65, 0.53, 0.53 and 0.50, respectively. High genetic correlations were found among these four traits. According to these results, selection for growth seems to be feasible in M. amblycephala and the other growth traits will be heightened accordingly with the selection based on body length.  相似文献   

4.
Six diets were designed to investigate the effects of dietary docosahexaenoic acid (22:6n‐3; DHA) levels (0.5, 1.3, 2.3, 4.2, 8.1 and 15.9 g/kg diets) on growth performance, fatty acid profile and expression of some lipogenesis‐related genes of blunt snout bream (Megalobrama amblycephala). Fish (average weight: 26.40 ± 0.11 g) were randomly fed one of six diets for 8 weeks. Results indicated that the final body weight (FBW) and specific growth rate (SGR) of fish fed 1.3 g/kg DHA were significantly higher than other groups except for the 2.3 g/kg DHA (p < .05). Compared with other groups, the number of lipid droplet clusters of the liver stained with oil red O in the 2.3 g/kg DHA group was the highest, which was consistent with the lipid contents of whole body and liver. The DHA proportion in liver and muscle significantly increased with the increasing dietary DHA levels (p < .05), which reflected fatty acid profiles of diets. The highest mRNA expressions of acetyl‐CoA carboxylase α (ACCα), fatty acid synthase (FAS) and sterol regulatory element‐binding protein‐1 (SREBP‐1) occurred in the 1.3 g/kg DHA group, followed by 2.3 g/kg DHA. In summary, the supplementation of 1.3–2.3 g/kg DHA could improve growth performance and lipogenesis, and the dietary DHA could improve DHA and PUFA proportion in liver and muscle.  相似文献   

5.
A 12‐week feeding trial was conducted to determine dietary choline requirement for juvenile Megalobrama amblycephala. The basal diet was formulated to contain 310 g kg?1 diet from vitamin‐free casein and gelatine. Choline chloride was supplemented to the basal diet to formulate six purified diets containing 0, 250, 500, 1000, 2000 and 4000 mg kg?1, respectively. Each diet was randomly fed to quadrupled groups of Megalobrama amblycephala with initial average weight 1.84 ± 0.04 g in a flow‐through system. Results showed weight gain was increased significantly with increasing dietary choline levels (< 0.01). Lipid content of liver decreased significantly as dietary choline concentration increased (< 0.01), whereas lipid content of dressed carcass showed opposite trend (< 0.01), and lipid content of whole‐body was unaffected by dietary choline supplementation. Broken‐ line regression of weight gain, liver and muscle choline concentration showed choline requirements of Megalobrama amblycephala of 1198, 1525 and 1365 mg kg?1, respectively. In addition, dietary choline supplementation significantly improved lipid content of dressed carcass but not the content of whole body of blunt snout bream.  相似文献   

6.
A 60‐day experiment was carried out to investigate dietary starch levels on growth performance, hepatic glucose metabolism and liver histology of largemouth bass, Micropterus salmoides. Fish (initial weight 22.00 ± 0.02 g) were fed five graded levels of dietary corn starch (0, 50, 100, 150 and 200 g/kg). Fish fed low (0 and 50 g/kg) dietary starch showed significantly higher weight gain than other groups (p < .05). Liver lipid and glycogen accumulations were induced when dietary starch higher than 100 g/kg. After 20 days of feeding, hexokinase activity and mRNA expression were decreased in fish fed dietary starch higher than 150 g/kg (p < .05) and the pyruvate kinase showed the opposite tendency. Insulin receptor 1 (irs1), glucagon‐like peptide‐1 receptor and glucose transport protein 2 (glut2) mRNA expression were decreased with the increasing dietary starch after 10 days of feeding (p < .05). These results indicated gluconeogenesis was depressed and β‐oxidation was enhanced in response to high dietary starch, while the glycolysis was inhibited and endocrine system was impaired when fish fed high dietary starch; then, glucose homeostasis was disturbed and finally led to the glucose intolerance of largemouth bass.  相似文献   

7.
Interploid hybrids were produced by mating allo‐tetraploid males, an interspecific tetraploidy induced by blunt snout bream (Megalobrama amblycephala) ♀× black bream (Megalobrama terminalis) ♂, with blunt snout bream females. The fertilization rate was high in the interploid hybrids. Although significant (P<0.05) mortalities were observed at hatching, swim‐up and 30‐day stages, respectively, the survival percentage of the interploid hybrids became stabilized after the 60‐day stage. In different interploid hybridization batches, 64–97% of juveniles were identified as 3n and 1–36% as 2n. Less than 2% of tetraploids were obtained in these interploid hybridization batches. The daily growth rate of the interploid 3n increased 7.5%, compared with that of diploid blunt snout breams during the 180‐day culture. Moreover, a method using seven morphological parameter ratios was set up with a relatively high classification accuracy of 93.8% to harmlessly discriminate interploid 3n from allo‐tetraploids, black bream and blunt snout bream.  相似文献   

8.
This study aimed to investigate the effects of dietary choline supplementation on growth, lipid deposition and intestinal enzyme activities of Megalobrama amblycephala. Fish were fed four diets with two lipid levels (50 and 150 g kg?1) and two choline supplementations (600 and 1600 mg kg?1) for 8 weeks. Feed conversion ratio (FCR), viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, whole‐body and muscle lipid contents, intestinal lipase activities and lipoprotein lipase (LPL) activities all increased significantly (< 0.05) as lipid levels increased, whereas the opposite was true for whole‐body and muscle moisture contents and intestinal amylase activities. VSI, IPF ratio and whole‐body lipid contents all decreased significantly (< 0.05) with increasing dietary choline supplementations. Weight gain, muscle moisture content all increased significantly (< 0.05) with increasing dietary choline supplementations when dietary lipid levels reached 150 g kg?1, whereas the opposite was true for FCR, IPF ratio, IPF and liver LPL activities. In addition, abnormal hepatocytes were found in the liver of fish fed 150 g kg?1 lipid with 600 mg kg?1 choline supplementation. The result of this study indicated that extra choline supplementation can improve growth performance, intestinal enzymes activities and reduce excessive lipid deposition of M. amblycephala fed high lipid.  相似文献   

9.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

10.
Five diets (D1, D2, D3, D4 and D5) containing 0, 50, 100, 150 and 200 g starch per kg diet were formulated to investigate the effects of starch level on largemouth bass, Micropterus salmoides. Fish (initial weight: 22.00 ± 0.02 g) were fed the five diets for 90 days. Results indicated that weight gain, specific growth rate and survival of fish fed higher dietary starch level (200 g/kg) were lower than those of fish fed the lower dietary starch levels (0–50 g/kg). Higher dietary starch levels (150–200 g/kg) have a negative effect on antioxidant ability (total superoxide dismutase: T‐SOD; malonyldialdehyde: MDA; total antioxidant capacity: T‐AOC; glutathione peroxidase: GSH‐Px) and liver health (cellular contents leaked, nucleus deformed, endoplasmic reticulum and golgi body disappeared) of largemouth bass. Lower dietary starch levels (0–50 g/kg) modified intestinal microbiota of largemouth bass represented by increasing the relative abundance of beneficial bacterial such as Bacilli, Lactobacillales and Bacteroidales. These results indicated that dietary starch level above 50 g/kg had a negative effect on growth performance and antioxidant status of largemouth bass. Moreover, high dietary starch levels are potentially associated with negative alterations in liver structure and function, and decrease of beneficial gut microbes.  相似文献   

11.
A feeding trial was conducted to investigate the effects of dietary fructooligosaccharide (FOS) on growth performance, body composition, intestinal enzymes activities and histology of fingerling Megalobrama amblycephala. A total of 1200 fish (1.42 ± 0.01 g) were fed diets containing graded levels of FOS (0, 0.5, 1, 2, 4 and 8 g kg−1 diet) for 8 weeks in a recirculating system indoor. The weight gain, specific growth rate (SGR) and survival rate were all improved in dietary supplementation of FOS fed fish. Increasing FOS levels resulted in both higher whole‐body lipid and lower moisture contents, whereas ash and protein contents showed no significant differences among all the treatments. Intestinal amylase, protease, Na+, K+‐ATPase, alkaline phosphatase, γ‐glutamyl transpeptidase and creatine kinase activities all increased with dietary FOS levels up to 4 g kg−1 (< 0.05). Transmission electron microscopy analysis indicated that microvilli length in the mid‐intestine was significantly increased with increased dietary FOS levels (< 0.05). In conclusion, dietary supplementation of FOS could confer benefits on growth performance, intestinal digestive and absorptive ability, histology of fingerling Megalobrama amblycephala.  相似文献   

12.
13.
14.
Four microalgal species [Dunaliella tertiolecta, Phaeodactylum tricornutum, Tetraselmis suecica, Thalassiosira pseudonana], previously identified as poor single‐algal diets for juvenile geoduck clams, Panopea generosa, were selected to mix with two comparatively better food‐value microalgae [Isochrysis sp. (TISO), Chaetoceros muelleri (CM)] to estimate synergistic or non‐additive effects of mixed microalgae on the growth/survival of young juveniles of P. generosa. In addition, the effects of different TISO/CM proportions [75/25, 50/50, 25/75; ash‐free dry weight (AFDW) basis] on growth/survival were assessed. Shell length, wet weight, dry weight, AFDW and organic matter content were significantly increased when using mixed TISO diets compared with TISO alone. In contrast, there were no significant differences with these variables when comparing mixed CM diets with CM alone. Ultimately, the best diet in terms of length and weight enhancement was a previously identified optimal one of TISO/CM (50/50). Survival on day 23 (60.7–79.3%) was not significantly different among any of the 11 diets tested. There were no significant differences in shell length, wet weight, dry weight, AFDW and organic matter content among the three TISO/CM ratios tested, but these diets gave superior results to TISO and CM fed alone. Survival (60.7–74.7%) on day 23 in the three TISO/CM ratios tested did not vary significantly.  相似文献   

15.
Jatropha curcas seed meal was fermented with Bacillus licheniformis (LFJSM) and Bacillus pumilus (PFJSM) separately using the solid‐state fermentation. After fermentation, the crude protein and the total hydrolysed amino acid contents were increased in LFJSM and PFJSM, while fibre content, phytic acid, trypsin inhibitor and saponins were decreased. An 84‐day feeding experiment was designed for the nutritional evaluation of LFJSM and PFJSM in Nile tilapia. Seven isonitrogenous (305.47 g kg?1 crude protein) and isocaloric (18.21 MJ kg?1 gross energy) diets were formulated by replacing 0% (control diet), 25% (LFJSM‐25), 50% (LFJSM‐50), 75% (LFJSM‐75) and 25% (PFJSM‐25), 50% (PFJSM‐50) and 75% (PFJSM‐75) of protein from fish meal with LFJSM and PFJSM. The higher weight gain and the best feed conversion ratio were found in fish fed control diet, PFJSM‐25 and PFJSM‐50, which were insignificantly different. Apparent digestibility coefficient values of dry matter, crude protein, lipid and digestible energy reached a plateau in fish fed PFJSM‐25 and PFJSM‐50. No significant differences were found in haematocrit, haemoglobin, serum alternative complement pathway components, alanine aminotransferase and aspartate aminotransferase and triglycerides between the control diet, LFJSM‐25, LFJSM‐50, PFJSM‐25 and PFJSM‐50 treatment groups. Therefore, these findings suggest that up 50% of fish meal can be replaced by PFJSM in Nile tilapia diets.  相似文献   

16.
A 60‐d feeding trial was conducted to evaluate the effects of different dietary oil sources on growth, fatty acid composition, peroxisome proliferator‐activated receptor (PPAR) gene expression levels, and antioxidant responses of blunt snout bream, Megalobrama amblycephala, fingerlings. Fish (average initial weight, 0.35 ± 0.01 g) were fed five experimental diets respectively containing fish oil (FO), soybean oil, canola oil, peanut oil, and palm oil (PaO). Results showed that body weight gain, specific growth rate, and feed conversion ratio did not significantly differ among treatments. Fish fed PaO diet showed significantly higher hepatosomatic index value and liver lipid content than those fed FO diet. The FO group showed significantly higher liver eicosapentaenoic acid (20:5n‐3) + docosahexaenoic acid (22:6n‐3) concentrations than other groups in both neutral lipid and polar lipid fractions. The mRNA expression levels of PPAR‐α and PPAR‐γ in the liver were significantly increased by feeding vegetable oil diets compared to FO. The activities of catalase, superoxide dismutase, and glutathione peroxidase in livers of fish fed PaO diet were lower than those fed FO diet. Meanwhile, PaO group had significantly lower malondialdehyde value than other groups. In conclusion, we suggested that a combination of FO and vegetable oil diet should be used in feed formulations for blunt snout bream fingerlings.  相似文献   

17.
This study was conducted to illustrate the effect of dietary gelatinized starch (GS) on the growth performance, enzyme activities and expression of MyoD and Myf5 in magur, Clarias batrachus fingerlings. Four iso‐nitrogenous (37%) and iso‐lipidic (6%) diets containing 15% (D‐1), 25% (D‐2), 35% (D‐3) or 45% (D‐4) GS were fed to 240 fingerlings (2.5 ± 0.5 g) in triplicates groups for 8 weeks. The maximum weight gain %, specific growth rate, protein efficiency ratio, lower FCR and higher mRNA expression of MyoD or Myf5 were found in the D‐3 group fed with 35% GS. Higher hepatosomatic index, viscerosomatic index, body lipid and lower moisture content were found in the D‐4 group. Aspartate transaminase and alanine transaminase activities were found to be higher in the D‐1 group. Amylase, glucose‐6‐phosphate dehydrogenase and blood glucose were higher in the D‐4 group. Superoxide dismutase, catalase and hexokinase activities remain unaffected by the dietary GS levels. Hence, the overall results indicate that 35% GS can improve growth performance and upregulate myogenic regulatory factors, but 45% GS level will favor lipogenesis and compromise growth. Furthermore, Myf5 gene showed more immediate response than the MyoD to the dietary carbohydrate in magur.  相似文献   

18.
Four semi‐moist formulated feeds were supplied to Octopus vulgaris subadults (664 ± 70 g; 18.4 ± 0.7°C) in two different experiments. In the experiment #1, two diets were prepared with a new mixture of binders (gelatine 150 g kg?1, starch 100 g kg?1 and gum 50 g kg?1). The GEL15‐Squid and GEL15‐Hake feeds included 100 g kg?1 freeze‐dried squid (Todarodes sagittatus) or hake (Merluccius sp.) respectively. Both feeds showed low water disintegration rates at 24 h (13.6–15.0% dry weight). The specific feeding rate was higher in animals fed GEL15‐Hake (2.7%BW day?1), but the growth and feed efficiency were significantly better in animals fed GEL15‐Squid (1.4%BW day?1 and 61.2% respectively; P < 0.05). The proximate composition of the digestive gland, carcass and whole animals was similar. In the experiment #2, the GEL15‐Squid amino acid profile was improved by replacing 50 g kg?1 gelatine by 50 g kg?1 freeze‐dried squid (GEL10‐Squid) or freeze‐dried fish (GEL10‐Fish). These feeds showed higher water disintegration rates (31.7–36.3% dry weight). The feeding rates (2.2–2.3%BW day?1), growth (1.5%BW day?1) and feed efficiency were similar for both diets. Total lipids were higher in the digestive gland and whole animals fed GEL10‐Fish diet (P < 0.05). Future effort could be directed towards alternative binders that allow improve amino acid balance with a minimum gelatine content or even supplementation trials including essential amino acids.  相似文献   

19.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

20.
A 10‐week feeding trial was conducted to evaluate the growth performance, glucose transport and metabolism of Chinese soft‐shelled turtles (Pelodiscus sinensis) exposure to graded levels of dietary starch (0.52%, 7.43%, 14.74%, 22.99% and 31.38%). The 360 turtles (initial body weight, 12.94 ± 0.50 g) with 12 replicates were randomly assigned to five experimental diets. The highest weight gain and specific growth rate (SGR) were observed in 7.43% group and the lowest in 31.38% group. The protein efficiency ratio, whole‐body lipid contents, hepatic glycogen contents and the 4‐hr postprandial plasma glucose levels were significantly increased with the increment of starch levels (p < .05). In contrast, the daily feed intake and feed conversion ration were significantly declined (p < .05). The mRNA levels of glucose transporter 2, glucokinase, pyruvate kinase, malic enzyme and acetyl‐CoA carboxylase alpha genes in the liver significantly increased as the increase in starch levels at 4‐hr and 24‐hr post feeding (p < .05). No significant differences were observed in the expression of gluconeogenesis genes at each time point (p > .05). These results suggested that dietary addition of starch up‐regulated hepatic glycolysis, glycogenesis and lipogenesis genes expression, but the deficient response of gluconeogenesis to dietary starch might be part of the causes limited the starch utilization. Based on the secondary polynomial regression of SGR, y = ?0.0011x2 + 0.028x + 1.63 (R2 = 0.9292), the 12.73% inclusion level of dietary starch was recommended in juvenile turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号