首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐week feeding trial was implemented to evaluate the effects of replacing fish meal (FM) with mussel (Cristaria plicata) meat (MM) on growth, digestive ability, antioxidant capacity and hepatic insulin‐like growth factor I (IGF‐I) gene expression of juvenile Ussuri catfish (Pseudobagrus ussuriensis). Three isonitrogenous and isolipidic diets were formulated to include 0, 177.5 and 355.1 g/kg of MM, accordingly, replacing 0% (M0, control), 50% (M1) and 100% (M2) of FM protein, respectively. The results showed that the final body weight, weight gain, specific growth rate and feed intake were gradually decreased with dietary MM protein levels increased, but there were no significant difference between M0 and M1 groups (p > 0.05). The protein efficiency ratio was increased significantly with dietary MM inclusion (p < 0.05). The apparent digestibility coefficient of dry matter, crude lipid and gross energy gradually increased with increasing dietary MM protein levels, but the apparent digestibility coefficient of crude protein was not significantly affected by MM protein supplementation (p > 0.05). Fish fed diet, M0 and M1 remained unaffected significantly on activities of alpha‐amylase and pepsin (> 0.05), but fish fed diet M2 had the highest activities of alpha‐amylase and pepsin. Fish fed diet M1 or M2 had significantly lower hepatic total antioxidant capacity, superoxide dismutase and the higher malondialdehyde level compared to fish fed diet M0. In addition, no significant difference was observed in hepatic IGF‐I gene expression level for fish fed diet M0 and diet M1, and fish fed diet M2 showed significantly lower hepatic IGF‐I gene expression level. Therefore, we can conclude that MM protein can successfully substitute 50% of FM protein without significantly negative effect on growth, nutrient utilization, and hepatic IGF‐I gene expression for juvenile Ussuri catfish, but the antioxidant capacity was negatively affected in the present study, what is more, the total replacement of FM by MM in diet may result in the inhibition of the growth and antioxidant capacity of fish.  相似文献   

2.
Seven isonitrogenous and isolipidic diets containing fish meal (FM) protein replaced by corn gluten meal (CGM) protein at 0% (the control, C0), 10% (C10), 20% (C20), 30% (C30), 40% (C40), 50% (C50) and 60% (C60) were fed to juvenile Pseudobagrus ussuriensis for 8‐weeks to evaluate the effects of FM protein replaced by CGM protein on growth, feed utilization, nitrogen (N) and phosphorus (P) excretion and IGF‐I gene expression of juvenile P. ussuriensis. The results showed that the replacement level up to 40% did not affect the weight gain, specific growth rate (SGR), feed intake and protein efficiency ratio, whereas these parameters were depressed by further replacement level. Apparent digestibility coefficients (ADC) of dry matter, crude protein significantly decreased, but ADC of phosphorus significantly increased with increasing dietary CGM levels (< .05). Fish fed diets with FM protein replaced by CGM protein led to an increase in nitrogen excretion, but led to a reduction in phosphorus excretion. No significant differences were observed in alpha‐amylase and lipase activities of intestine (> .05). The lowest pepsin activity was found in C60 group. Fish fed diet C40, C50 and C60 had significantly lower serum lysozyme activity compared with fish fed diet C0 (< .05). The lowest plasma alkaline phosphatase activity and the highest plasma alanine aminotransferase and aspartate aminotransferase activities were observed in C60 group. Fish fed diet C60 had significantly lower hepatic IGF‐I gene expression compared with fish fed diet C10 (< .05). Broken‐line model analysis based on SGR against the CGM substitution level indicated that the appropriate replacement level was 37.7%.  相似文献   

3.
A 11‐week growth trial was conducted in a flow‐through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg?1) and isoenergetic (gross energy: 18 kJ g?1) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg?1 and the available P was 5.0–6.6 g kg?1. The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.  相似文献   

4.
A feeding trial was conducted to determine the amount of soybean meal (SBM) that could replace fish meal (FM) without compromising growth and health of Asian red‐tailed catfish (Hemibagrus wyckioides). Five isonitrogenous and isoenergetic diets (S0, S15, S30, S45 and S60) were formulated with SBM to replace 0%, 15%, 30%, 45% and 60% of FM. The replacement level up to 30% improved daily growth coefficient, plasma adenosine monophosphate deaminase (AMPD) and alanine aminotransferase (ALT) activities and IgM content, and hepatic ALT, aspartate aminotransferase (AST) and glutathione reductase activities, whereas these were depressed by a further inclusion. The highest protein efficiency ratio and lowest feed conversion ratio were observed in fish fed the S15 diet. Replacement of FM with SBM generally decreased plasma insulin and insulin‐like growth factor 1 (IGF‐1) contents and hepatic catalase activity, whereas no significant differences were observed among fish fed the S0, S15 and S30 diets. In contrast, replacing FM with SBM generally increased blood urea nitrogen content, and that was higher in fish fed the S60 diet compared to fish fed the S0 diet. The highest growth hormone (GH) and glutamate dehydrogenase (GDH) activities were observed in fish fed the S30 diet. Fish fed the S30 and S45 diets exhibited the highest hepatic AMPD, GDH, IGF‐1 and target of rapamycin mRNA levels and muscle AMPD and GDH mRNA levels, whereas those were lowest in fish fed the S60 diet. These results indicate that under the reported conditions SBM may be included in the diet up to 222 g/kg as a substitute for FM, replacing about 30% of FM protein in juvenile H. wyckioides.  相似文献   

5.
A 9‐week study was conducted to evaluate the potential of processed animal protein (PAP) in comparison with soybean meal (SM) to replace fish meal (FM) in practical diets for European catfish, Silurus glanis, on growth performance, liver transaminase activities and expression of growth‐related genes. Seven isonitrogenous (440 g kg‐1 crude protein) and isoenergetic (16.70 MJ/kg) practical diets were formulated by replacing 0 (control), 30%, 60% and 100% FM with either SM or PAP. Each diet was randomly assigned to triplicate groups of 25 fish per cages fixed in the pond. Fish fed the diet substituted 100% FM from SM or PAP had lower (p < .05) growth performance, feed efficiency and protein retention compared to control and other groups. The decreased growth performance occurred concomitant with a decline in the expression level of liver GHR/IGF‐I axis genes. The gene expression and activity of liver protein metabolism enzymes also positively correlated with growth performance. Findings of this study indicated that both SM and PAP were equally effective in replacing FM up to 60% in the practical diet of Silurus glanis. Total replacement of FM either with SM or PAP induced negative influences on growth and feed utilization.  相似文献   

6.
This study was conducted to evaluate the effect of dietary taurine supplementation on growth, immunity and resistant to dry stress of rice field eel (Monopterus albus) fed low fish meal diets. Six isonitrogenous and isolipid diets (32% fish meal) supplemented with six taurine concentrations (0, 0.3, 0.6, 0.9, 1.2 and 1.5 g/kg; designated as T0, T0.03, T0.06, T0.09, T0.12 and T0.15 groups, respectively) were prepared. A diet including 42% fish meal (FM group) was also included as a reference. The results showed that specific growth rate (SGR) in FM group was significantly higher than that in lower fish meal treatments. SGR significantly increased and slowly decreased with the increase in taurine supplementation level. Lipase activity value in intestine of M. albus fed FM diet was maximum, and with the increase in taurine supplementation level, lipase activity significantly increased and slowly decreased. The FM group had relative higher total antioxidant capacity (T‐AOC) content, catalase (CAT), total superoxide dismutase (T‐SOD), and lyzozyme (LZM) activities in serum than the other groups. With the increase in dietary taurine supplementation level, the CAT, T‐SOD, T‐AOC and LZM activities in serum significantly increased and then decreased. In the dry stress experience, the adrenaline (AD), cortisol (COR), glucose (GLU), total cholesterol (CHOL), and malondialdehyde (MDA) concentrations, T‐AOC content, CAT and T‐SOD activities in serum of M. albus in the four groups first increased and reached the peak at 2 hr, and then decreased under air‐exposure stress. Compared to the FM group, T0.15 group had relative higher T‐AOC content, CAT and T‐SOD activities, and lower AD, COR GLU, TC and MDA concentrations.  相似文献   

7.
As an important feed ingredient, fermented soybean meal (FSM) has been widely used in aquatic animals due to its stable sources and reasonable price. Here, we evaluated the potential for replacement of fishmeal (FM) with FSM in diet of Litopenaeus vannamei. Five isonitrogenous (410 g/kg) and isolipidic (80 g/kg) diets were formulated: a control diet containing 320 g/kg FM and four experimental diets in which FM in control diet was replaced by FSM at 10 (FSM10%), 20 (FSM20%), 30 (FSM30%) and 40% (FSM40%). An 8‐week feeding trial was conducted in fifteen fibreglass tanks with 50 shrimps per tank. After 8 weeks trial, FSM20% had significantly enhanced growth performance (p < 0.05). No significant difference was found in body composition and digestive enzyme activities of all groups (p > 0.05). Through real‐time quantitative PCR analysis, tor and s6k expression levels of FSM20% were significantly up‐regulated (p < 0.05). Results of western blot showed that the phosphorylation of S6K was not significantly affected by different dietary treatments (p > 0.05), which suggested mTOR signalling pathway was not affected by FSM diets. Based on the above data, 20% replacement of FM with FSM was reasonable and advantageous for L. vannamei diet.  相似文献   

8.
A feeding trail was conducted to evaluate the effect of lowering dietary fishmeal (FM) levels while increasing levels of dehulled soybean meal (SBM) on growth, nutrient utilization and body composition of juvenile kuruma shrimp, Marsupenaeus japonicas. Five experimental diets were formulated to be isoenergetic, isolipidic and isonitrogenous with decreasing FM levels from 40 to 16% while increasing SBM from 0 to 33% respectively. Quadruplicate groups of shrimp (initial wt = 1.5 g) were fed the test diets for 56 days under the flow‐through system. There were no significant differences in final weight (g) and specific growth rate (SGR, % day) among shrimp fed FM40, FM34, FM28 and FM22 diets respectively. Growth parameters significantly decreased in shrimp when fed FM16 diet, which was the lowest level of FM. Feed intake was positively correlated with the SGR of shrimp, and the lowest one was found in shrimp fed FM16 diet. Protein gain and retention, whole body lipid, arginine and methionine significantly decreased in FM16 fed group. Thus, it is concluded that dietary FM could be reduced down to 22% with SBM without compromising growth, nutrient utilization and retention, and whole body composition of kuruma shrimp.  相似文献   

9.
An 8‐week feeding trial was performed to examine the potential of total replacement of fish meal with animal by‐products with or without enzymatic components in juvenile genetically improved farmed tilapia (GIFT) diets, Oreochromis niloticus, (mean initial weight, 19.71 ± 0.28 g), reared in RAS system. Five isonitrogenous and isoenergetic diets were formulated with fish meal for the diets with total replacement of the isonitrogenous amounts of enzymatic fish meal (E‐FM), chicken liver meal (CLM), enzymatic chicken liver meal (E‐CLM), dried porcine solubles (DPS) and enzymatic dried porcine solubles (E‐DPS) respectively. The results indicated that the weight gain rate (WGR) and specific growth rate (SGR) in the FM group were significantly higher than the E‐FM and E‐CLM groups (p < .05), but the specific growth rate (SGR) in the E‐CLM group lower than the E‐FM group. The feed conversion ratio (FCR) in FM and CLM was significantly lower than the E‐FM, E‐CLM and E‐DPS groups (p < .05), and no significant difference was observed among the FM, CLM and DPS groups (p > .05). The values of the protein retention efficiency (PRE) and protein efficiency ratio (PER) in FM, CLM and DPS groups were significantly higher than the E‐CLM group (p < .05). The values of feed intake ratio (FIR) in FM and CLM groups were significantly lower than the E‐FM, E‐CLM and E‐DPS groups (p < .05). There was no significant difference in the whole body contents of moisture, crude lipid and crude ash among the FM and E‐CLM groups (p > .05). The whole body contents of crude protein in the FM group were significantly higher than the E‐FM, CLM, E‐CLM DPS and E‐DPS groups (p < .05). The apparent digestibility coefficients (ADC) of dry matter, crude protein and crude lipid in the FM, E‐FM, E‐CLM and E‐DPS groups were not significantly different (p > .05). The serum glucose(GLU), total cholesterol (TCHO) and triglycerides (TG), or the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were not affected by the different treatments (p > .05). There was no significant difference in serum total protein (TP) or albumin (ALB) and between the FM group and other groups (p > .05). There was no significant difference in the serum urea nitrogen (BUN) content in the FM, CLM, E‐CLM and DPS groups (p > .05). Fish fed with the CLM and DPS diets had significantly lower hepatic GHR1, IGF1 and IGF2 gene mRNA expression levels than in fish fed the FM diet (p < .05). The present data showed that 6% of dietary fish meal can be totally replaced by the chicken liver meal and dried porcine solubles with no effect on the growth performance of GIFT strain tilapia.  相似文献   

10.
A 60‐day feeding experiment was conducted to evaluate the effects of fishmeal (FM) replacement with cottonseed meal protein hydrolysate (CPH) on growth, digestion and intestinal histology of juvenile Chinese soft‐shelled turtle (Pelodiscus sinensis). Five diets were formulated to replace 0, 50, 100, and 150 g/kg fishmeal protein by CPH (CPH0, CPH5, CPH10, CPH15) and CPH15L (CPH15 with micro capsule‐L‐lysine). Weight gain, feed conversion rate and protein efficiency ratio showed no significant differences compared to control group (> .05). The highest feed intake indicated in CPH15 (< .05). The composition of whole‐body varied slightly in each groups (> .05). The trypsin activity significantly elevated when dietary fishmeal protein was replaced by CPH at 30–90 g/kg (< .05). A significantly higher lipase activities in CPH5 than control group (< .05). The CPH5‐10 groups showed higher villus height than the other groups (< .05). The microvillus length in turtles with CPH showed a significant increasing length (< .05). The results indicated that replacing up to 90 g/kg of dietary fishmeal protein with CPH did not hamper growth or reduce feed intake of turtles. Moreover, CPH replaced 60 g/kg FMP can increase intestine digestive enzymes activities and improve intestinal development.  相似文献   

11.
Triplicate groups of gibel carp Carassius auratus gibelio (initial body weight: 5.25 ± 0.02 g) were fed for 8 weeks at 20–25 °C on five isonitrogenous (crude protein: 400 g kg?1) and isoenergetic diets (gross energy: 17 kJ g?1). Meat and bone meal (MBM) or poultry by‐product meal (PBM) were used to replace fish meal at different levels of protein. The control diet contained fish meal as the sole protein source. In the other four diets, 150 or 500 g kg?1 of fish meal protein was substituted by MBM (MBM15, MBM50) or PBM (PBM15, PBM50). The results showed that feeding rate for the MBM50 group was significantly higher than for other groups except the PBM50 group (P < 0.05). Growth rate in the MBM15 group was significantly higher than that in the control (P < 0.05), while there was no significant difference in growth between the control and other groups (P > 0.05). Feed efficiency and protein efficiency ratio in MBM50 was significantly lower while that in MBM15 was significantly higher (P < 0.05). Replacement of fish meal by MBM at 500 g kg?1 protein significantly decreased apparent dry matter digestibility (ADCD) and gross energy (ADCE) while apparent protein digestibility (ADCP) was significantly decreased by the replacement of MBM or PBM (P < 0.05). The results suggest that MBM and PBM could replace up to 500 g kg?1 of fish meal protein in diets for gibel carp without negative effects on growth while 150 g kg?1 replacement by MBM protein improved feed utilization.  相似文献   

12.
A 60‐day feeding trial was conducted to evaluate the effects of feeding Houttuynia cordata leaf meal and extract on the growth performance, nutrient utilization and expression of insulin‐like growth factor‐I (IGF‐I) in Labeo rohita fingerlings. Two hundred seventy fingerlings were randomly distributed in six experimental groups in triplicates. Six isonitrogenous (350 g/kg CP) and isocaloric (17 MJ/kg DE) diets were prepared with graded levels of leaf meal (LM) and leaf extract (LE), namely C (control, without LE and LM), LE‐0.25 (2.5 g/kg LE), LE‐0.5 (5 g/kg LE), LE‐1.0 (10 g/kg LE), LM‐1.0 (10 g/kg LM) and LM‐2.0 (20 g/kg LM). Significantly (p < 0.05) higher IGF‐I expression, weight gain %, specific growth rate and lower feed conversion ratio were observed in LM‐1.0 followed by LE‐1.0 group compared to control group. Higher protease activity was observed in LE‐1.0 compared to other experimental groups, while no significant changes were found for amylase and lipase activities. Compared to control, muscle alanine aminotransferase and aspartate aminotransferase activities were significantly higher in treatment groups except for LM‐2.0. These results suggest that either LE‐1.0 or LM‐1.0 can be supplemented in the diet to improve the growth of L. rohita. However, the supplementation of 10 g H. cordata leaf meal/kg feed can be the better option considering the cost of extraction.  相似文献   

13.
The potential of Bacillus subtilis E20‐fermented soybean meal (FSBM) as a partial alternative component of fish meal (FM) in fed diets of orange‐spotted grouper (Epinephelus coioides) was evaluated in this study. An FM‐based diet and seven diets containing 10%, 20% and 30% and 10%, 20%, 30% and 40% of FM replaced by soybean meal (SBM) and FSBM, respectively, were fed to grouper for 84 days to evaluate possible substitution levels of FM by tracking growth performance, digestive enzyme activity and morphological changes in the liver and distal intestine. No significant differences in survival and muscle composition of grouper were found between controls and treatments. Growth performance and feed efficiency of fish fed diets with FM replaced by FSBM up to 30% were not significantly different from controls, whereas significantly decreased growth performance and feed efficiency occurred with diets containing >20% of SBM. Based on the feed efficiency, the maximum substituted levels of FM by SBM and FSBM in grouper diets were 18.36% and 29.32%, respectively, based on broken‐line analyses. Histopathological changes in the liver and distal intestine, and significantly lower activity levels of digestive enzymes, including pepsin in the stomach and trypsin, chymotrypsin, amylase and lipase in the distal intestine, were found in fish fed a diet containing 30% of FM replaced by SBM. However, these parameters were improved by the substitution of FSBM. It is therefore believed that FSBM has great potential to be used as a protein source in grouper diets in partial replacement of FM.  相似文献   

14.
A 56‐day feeding trial was conducted to evaluate the effects on the growth performance, digestive enzyme activity, inflammatory genes expression and intestine histology of silver sillago, Sillago sihama (Forsskål 1775), by replacing fish meal (FM) with low‐gossypol cottonseed meal (LCSM). Five isonitrogenous and isolipidic diets were formulated, including R0 group (control, containing 550.0 g/kg FM), R16 group (88.5 g/kg LCSM and 461.5 g/kg FM), R32 group (177.0 g/kg LCSM and 373.0 g/kg FM), R48 group (265.5 g/kg LCSM and 284.5 g/kg FM) and R64 group (354.0 g/kg LCSM and 196.0 g/kg FM). Fish fed R0 and R16 groups had a significantly higher weight gain rate (WGR) and specific growth rate (SGR) than R48 and R64 groups (p < .05). In contrast to whole‐body crude protein, whole‐body moisture increased with the FM level of substitution (p < .05). With the increased amount of LCSM in the diet, the activity of intestinal amylase (AMS) increased significantly (p < .05), and intestinal trypsin (TRP) decreased (p < .05). Dietary LCSM substitution upregulated the expression of intestinal tumour necrosis factor‐α (TNF‐α), the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and interleukin one beta (IL‐1β), but downregulated tight junction proteins ZO‐1(ZO‐1), transforming growth factor beta‐3 (TGF‐β3) and interleukin 10 (IL‐10) expression. Histological analysis revealed progressive morphological damage to the mid‐intestine with higher levels of FM replacement. These results showed that 88.5 g/kg (16%) of FM replaced by LCSM with amino acids (methionine and lysine) supplementation did not significantly reduce growth compared with FM‐based control.  相似文献   

15.
The supplemental effect of Antarctic krill meal (KM) into a low fish meal (FM) diet was evaluated for olive flounder (Paralichthys olivaceus). A 56% FM‐based diet was regarded as a high FM inclusion diet (HFM), and a low‐FM diet (LFM) was prepared by replacing 50% FM from the HFM. Four other diets were prepared by supplementing 3%, 6%, 9% and 12% KM into the LFM diet gradually replacing soy protein concentrate and tankage meal (designated as KM3, KM6, KM9 and KM12 respectively). Quadruplicate groups of fish were fed one of the diets for 12 weeks. The growth performance and feed utilization efficiency were improved by the dietary KM supplementation. Digestibility of dietary protein and dry matter was increased by the KM3‐9 diets. Haematocrit and haemoglobin were increased by KM supplementation. The innate immunity and antioxidant capacity assessed by Ig, antiprotease, lysozyme, GPx and SOD and the condition factor of fish were significantly increased by KM3‐9 diets. Moreover, goblet cell counts, villi length and fillet yield of fish were significantly improved by all the KM‐containing diets (KM3‐12). A 25‐day‐long challenge test with the Edwardsiella tarda pathogen showed that the cumulative mortality was higher in fish fed the LFM diet than in fish fed the HFM or KM‐supplemented diets. The results indicate that dietary KM supplementation in a LFM diet can increase growth performance and feed utilization efficiency, diet digestibility, intestinal development and functions, innate immunity and disease resistance of olive flounder. The recommended level of KM inclusion in a LFM diet seems to be 6.6% according to quadratic regression analysis.  相似文献   

16.
A feeding trial was conducted to evaluate the effect of inclusion of Sesbania leaf meal in the diet of Cyprinus carpio as a replacer of de‐oiled rice bran (DORB). Bacillus subtilis was used to ferment the Sesbania leaf meal (SLM) to produce FSLM (fermented sesbania leaf meal). Fishes were fed with five isonitrogenous (30% CP) and isocaloric diets for 60 days and treatments were viz., C (30% DORB, 0% SLM), R15 (15% DORB, 15% SLM), R30 (0% DORB, 30% SLM), F15 (15% DORB, 15%FSLM) and F30 (0% DORB, 30% FSLM) by replacing DORB with SLM. A similar growth performance with control was observed in 15% FSLM group while there was a growth reduction in all the raw leaf meal fed groups. Similarly, the expression of insulin‐like growth factor‐1 (IGF‐1) was significantly (p < .05) higher in control and 15% FSLM fed groups. Growth and metabolic enzymes such as protease, amylase, ALT and AST activities were significantly higher in the fermented leaf meal fed groups compared to their non‐fermented counterparts. Antioxidant enzymes, serum transaminase enzymes (SGOT, SGPT) and total bilirubin (TBR) were found to be increased by enhanced level of RSLM, however, reduced by inclusion of FSLM. However, 30% inclusion level of FSLM even after fermentation showed detrimental effect on growth and metabolic response at cellular and molecular level. Thus, the results concluded that fermented Sesbania leaf meal (FSLM) using B. subtilis could replace 50% DORB (15% FSLM group) in the diet of C. carpio without affecting the growth and other physiological responses.  相似文献   

17.
The effect of rapeseed meal (RM) and Aspergillus oryzae fermented rapeseed meal (RM‐Koji) on red sea bream (Pagrus major) was examined. Three groups of fish (initial weight, 4.5 ± 0.02 g) were fed a basal diet (RM0) and two test diets where half of fishmeal was replaced by RM (RM50) and RM‐Koji (FRM50) for 56 days. The obtained results showed that fish fed RM0 and FRM50 exerted significantly higher growth performance, feed utilization and haemoglobin level but lower triglyceride and cholesterol than RM50 group (p < 0.05). Interestingly, except of antiprotease activity, all the immune parameters including lysozyme, respiratory burst (NBT) and bactericidal activities were significantly increased in fish fed RM0 and FRM50 diets compared to RM50 diet (p < 0.05). In addition, malondialdehyde and reactive oxygen metabolites were significantly reduced in RM0 and FRM50 groups over RM50 group (p < 0.05). The present results suggest that fermented RM induced better growth performance and immune responses than feeding red sea bream with non‐fermented RM and both RM and RM‐Koji improved the antioxidative status of fish, making RM‐Koji an interesting candidate as a functional feed for aquatic animals.  相似文献   

18.
Two 6‐week growth trials and a digestibility trial were conducted to evaluate the effects of brewer's yeast in practical shrimp feeds. In the first growth trial, graded levels (0, 60, 120, 180 and 240 g/kg) of a brewer's yeast (BY50) were used to replace fishmeal and soybean meal, referred to as Diet DBY0, DBY6, DBY12, DBY18, DBY24 and Diet LFM0, LFM6, LFM12, DBY18 and LFM24, respectively. The results showed that there were no significant differences in final biomass, survival, protein retention efficiency and feed conversion ratio; however, limited differences in final weight and weight gain were shown in the FM replacement series. There was no significant difference on the growth performance in the SBM replacement series. The second growth trial was conducted with Diet DBY0, DBY12, DBY18, DBY24, LFM0 and a low‐FM diet containing 20 g/kg of BY with 700g/kg (?) protein (Diet DBY70). Shrimp fed with Diet DBY0 exhibited significantly higher final mean weight and weight gain than those offered the Diet DBY24. Nutrient availability of BY50 and BY70 was similar to SBM and significantly higher than FM. Results indicated that 180–240 g/kg BY50 can be effectively used in shrimp diets as a replacement for FM, or up to 240 g/kg when replacing SBM.  相似文献   

19.
The effect of replacing fish meal (FM) with meat and bone meal (MBM) in diets for juvenile Pseudobagrus ussuriensis was evaluated in a 90‐day feeding trial. Six isonitrogenous (crude protein, 430 g/kg) and isolipidic (crude lipid, 74 g/kg) diets were formulated to contain MBM to replace FM at 0 (S0), 200 (S20), 400 (S40), 600 (S60), 800 (S80) and 1000 g/kg (S100), respectively. The results showed that there was no significant difference in weight gain (WG) among fish fed S0, S20 and S40 diets. However, a significant reduction in WG occurred when 600, 800 and 1000 g/kg FM protein was replaced by MBM (< .05). Similar trends were observed in specific growth rate and protein efficiency ratio. Apparent digestibility coefficients (ADC) of protein and dry matter of the diets S80 and S100 were significantly lower than those of the other diets. The ADC of phosphorus significantly reduced with the increase in dietary MBM level. Nitrogen and phosphorus excretion increased with the increasing dietary MBM level. Protease, lipase and amylase activities of the diets S80 and S100 were significantly lower than those of the other diets (< .05). The results of this study showed that the optimum dietary MBM replacement level was 34.3% according to broken‐line model based on WG against dietary MBM replacement level.  相似文献   

20.
Two feeding trials examined the replacement of fishmeal (FM) with poultry by‐product meal (PBM) in the diet of juvenile Sparus aurata. In Feeding trial I (100 days), three diets were formulated, where FM protein was replaced by 50% (PBM50) and 100% (PBM100) PBM, while in Feeding trial II (110 days), four diets were formulated using the same FM control diet, but FM was replaced at lower levels: 25% (PBM25), and 25% (PBM25 + ) and 50% (PBM50 + ) with the supplementation of lysine and methionine amino acids. PBM protein can successfully replace 50% of FM protein in the diet of Saurata without adverse effects on survival, feed intake, growth performance and feed utilization, given that the diet is balanced with lysine and methionine. The proximate composition of body and muscle was unaffected by the diet, but the total FM replacement resulted in reduced lipid and energy contents in fish. A fifty per cent FM replacement by PBM did not affect haematological parameters indicating a good fish health. Similarities in trypsin and chymotrypsin activities with FM‐fed fish suggest a high digestibility of PBM. High dietary levels of PBM reduced the liver gene expression of GH/IGF axis and of cathepsin D suppressing fish growth and modulating the protein turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号