首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 90‐day feeding trial was carried out to examine the influence of fish oil (FO) substitution with blends of vegetable oils (VOs) on reproductive efficiency of female brooders and fluctuation in fatty acid (FA) profile of embryos in Oncorhynchus mykiss. A basal diet was formulated in which 20% (80FO/20VO), 50% (50FO/50VO), 75% (25FO/75VO) and 100% (100VO) of FO were replaced by mixture of VO. Reproductive performance of brooders was not affected by drastic alternations in FA profile of diets. The level of saturated and monounsaturated FAs (MUFAs) significantly increased, whereas the levels of long‐chain polyunsaturated FAs (LC‐PUFAs), mainly docosahexaenoic acid, profoundly decreased during embryogenesis. The concentrations of MUFA and n?6 PUFA increased in the eggs with increasing the incorporation of VO mixture in diets; however, the concentration of LC‐PUFA and n?3/n?6 PUFA ratio decreased. Haematological parameters and humoral immune responses including total immunoglobulin content, lysozyme and alternative complement pathway activities in brooders fed with the experimental diets did not statically different. In summary, incorporating mixture of various VO sources especially linseed and sunflower oils as good sources of α‐linolenic and linoleic acids, respectively, along with low levels of residual fat from fish meal in diet suggested a good strategy for providing the appropriate essential FA requirements of O. mykiss brooders for their successful reproduction.  相似文献   

2.
3.
This research aimed to evaluate the effects of two dietary fat levels [low fat (LF) (10%), high fat (HF) (20%)] and sources [fish oil (FO), vegetable oil (VO)] on the growth and some physiological parameters of Caspian brown trout fingerlings for 60 days. Tuna oil or blends of canola and soybean oils (85:15) were added to diets to design four feeds namely LFFO, HFFO, LFVO and HFVO according to the fat levels and sources. The fish fed the LFFO diet had lower weight gain than the other fish (P<0.05). The total n‐6 fatty acids increased in fish fed diets with the blends of VO, while the total n‐3 fatty acids decreased in these fish (P<0.05). Serum lysozyme activity was higher in fish fed the HFVO diet than the other fish (P<0.05). Serum glucose, total cholesterol, triglyceride and very low‐density lipoprotein were lower in fish fed LFFO than the other fish (P<0.05). The present study demonstrates that in terms of fish growth, VOs can be used as an alternate source of dietary fat, whereas fish health and nutritional value are improved with the LFFO diet. According to these results, a partial substitution of FO by VO in high‐level fat diets is suggested for long‐term feeding of Caspian brown trout.  相似文献   

4.
The recent decreasing worldwide supplies of marine oils have forced the aquaculture industry to investigate alternative lipid sources for use in marine fish feeds. The aim of this study was to determine the impact of dietary replacement of fish oil by vegetable oils on gilthead seabream (Sparus aurata) growth performance, nutritive utilization, body composition, and fatty acid profile as well as feed cost. Two dietary vegetable oil (VO) mix blends (VO1 and VO2) in which: sunflower (SO), cottonseed (CO) and linseed (LO) for VO1 or soybean oil (SBO) for VO2, were tested as 60% fish oil (FO) substitutes versus the 100% FO control or reference diet (FO). Three iso-proteic (46% CP) and iso-lipidic (18%) experimental diets were hand fed, twice a day, 6 days a week to apparent visual satiety to triplicate groups of seabream growers (average initial weight, 130.9 ± 3.44 g), until fish reached market size (300–400 g/fish) after 20 weeks at mean ambient temperature 27.0 ± 1.8°C. All experimental diets were well accepted by seabream growers regardless of the different lipid sources used, as overall mean feed intake (FI) and daily intake (DFI) were not significantly different (P > 0.05) among dietary treatments. In terms of growth performance, fish fed VO1 diet (with LO) exhibited a relatively lower, but significant (P < 0.05), total weight gain (WG) than fish fed all FO diet (FO). However, mean value of WG of fish fed either vegetable oil-tested diet was nonsignificantly different. Feeding seabream growers vegetable oil (VO) diets (VO1 or VO2) had no significant effect on specific growth rate (SGR), daily weight index (DWI), or feed conversion ratio (FCR) among dietary treatments. Consumption of VO for 20 weeks did not significantly alter the major nutrient composition of fish, but the muscle fatty acid (FA) profile was significantly altered compared to the reference FO diet. Comparatively reduced levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA), as well as elevated levels of linoleic and linolenic acids (LA and LNA) compared with fish fed the FO were noticed. In terms of economics, 17 or 20% reduction in Kg feed cost was obtained for diets VO1 or VO2, respectively. In terms of growth performance and cost, VO2 diet showed slight relative superiority over VO1 diet. However, in terms of liver structure morphology, VO1 diet (with LO) has resulted in less fat-infiltration and altered hepatic cells than VO2 (with SBO). As these traits do not affect yield or the price paid for the fish, VO2 diet has therefore been considered better than VO1 as complementary lipid sources for gilthead seabream grower diets.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate the effects of replacement of fish oil (FO) with blending vegetable oils (VOs) on growth performance, antioxidant enzyme activities and fatty acid composition in tissue of swimming crab Portunustrituberculatus. Five isonitrogenous and isolipidic diets were formulated to contain VOs (colza oil: palm oil: linseed oil = 4:2:1) to replace 0 (the control diet), 250, 500, 750 and 1000 g/kg of FO (defined D0, D25, D50, D75, D100). Three hundred juvenile swimming crabs (initial weight 2.34 ± 0.08 g) were randomly stocked and sorted into 300 individual rectangle plastic baskets in three cement pools. Each treatment has three replicates, one replicate has 20 swimming crabs, and each diet fed 60 crabs distributed in 60 baskets. The results indicated that crabs fed the control diet showed significantly higher survival, final body weight, per cent weight gain (PWG), specific growth rate and moulting frequency, crude protein and crude lipid contents in muscles than those fed the D75 and D100 VO diets (p < .05). Crabs fed the D25 VO diet showed significantly higher concentration of triglyceride, low‐density lipoprotein cholesterol and total protein, activities of superoxide dismutase, catalase and glutathione peroxidase (GSH‐Px) in haemolymph than those fed the control diet (p < .05). Fatty acid composition in hepatopancreas was positively correlated with dietary composition. In summary, based on the PWG, the optimal replacement of FO with VOs was estimated to be 250 g/kg. These findings demonstrated that swimming crabs make better use of FO than VOs.  相似文献   

6.
Fish oil (FO) substitution has been studied in many marine carnivorous fish, but seldom in marine herbivorous or omnivorous species. To evaluate the feasibility of using soybean oil (SO) as a dietary lipid and confirm its capability of converting C18 polyunsaturated fatty acid (PUFA) into long chain polyunsaturated fatty acid (LC‐PUFA) in the marine herbivorous teleost Siganus canaliculatus, juvenile fish were fed with four formulated diets differing in lipid composition, with SO accounting for 0.76% (SO0), 23% (SO23), 45% (SO45) and 67% (SO67) of total dietary lipid respectively. After feeding for 8 weeks, growth performance including weight gain, specific growth rate, feed conversion ratio and protein efficiency rate were better in the SO23 and, especially, SO45 groups than in the SO0 and SO67 groups (< 0.05). Tissue fatty acid compositions were affected by diet, with the liver contents of eicosapentaenoic (EPA), docosapentaenoic (DPA), docosahexaenoic (DHA) acids and total n‐3 PUFA displaying parallel changes with the corresponding dietary fatty acids. While the muscle contents of EPA, DPA and total n‐3 PUFA between SO0 and SO23 groups, and the liver contents of arachidonic acid (ARA) and 20:4n‐3, as well as the muscle content of 20:3n‐6 between SO0 and SO45 groups showed no difference, confirming the biosynthesis of LC‐PUFA from C18 precursors in vivo as the contents of corresponding fatty acids in diets SO23/SO45 were much lower than those in diet SO0 (< 0.05). The results indicate that SO may be a suitable dietary lipid source for S. canaliculatus, and can replace up to 67% or 45% of total dietary FO without negatively compromising growth performance or nutritional quality of fish respectively. Moreover, the study increases our knowledge of FO substitution in marine herbivorous fish.  相似文献   

7.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

8.
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable, environmentally-friendly and cost-effective aquaculture diets could have in the future. Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C 20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Copepod oil (CO) from the marine zooplankton, Calanus finmarchicus, is a potential alternative to fish oils (FOs) for inclusion in aquafeeds. The oil is composed mainly of wax esters (WE) containing high levels of saturated fatty acids (SFAs) and monounsaturated fatty alcohols that are poorly digested by fish at low temperatures. Consequently, tissue lipid compositions may be adversely affected in salmon‐fed CO at low temperatures. This study examined the lipid and FA compositions of muscle and liver of Atlantic salmon reared at two temperatures (3 and 12 °C) and fed diets containing either FO or CO, supplying 50% of dietary lipid as WE, at two fat levels (~330 g kg?1, high; ~180 g kg?1, low). Fish were acclimatized to rearing temperature for 1 month and then fed one of four diets: high‐fat fish oil (HFFO), high‐fat Calanus oil (HFCO), low‐fat fish oil (LFFO) and low‐fat Calanus oil (LFCO). The fish were grown to produce an approximate doubling of initial weight at harvest (220 days at 3 °C and 67 days at 12 °C), and lipid content, lipid class composition and FA composition of liver and muscle were determined. The differences in tissue lipid composition between dietary groups were relatively small. The majority of FA in triacylglycerols (TAG) in both tissues were monounsaturated, and their levels were generally higher at 3 °C than 12 °C. Polyunsaturated fatty acids (PUFA), particularly (n‐3) PUFA, predominated in the polar lipids, and their level was not significantly affected by temperature. The PUFA content of TAG was highest (~26%) in the muscle of fish fed the HFCO diet at both temperatures. Tissue levels of SFAs were lower in fish‐fed diets containing HFCO than those fed HFFO, LFFO or LFCO, particularly at 3 °C. The results are consistent with Atlantic salmon being able to incorporate both the FA and fatty alcohol components of WE into tissue lipids but, overall, the effects of environmental temperature on tissue lipids were more pronounced in fish fed the CO diets than FO diets.  相似文献   

10.
This study investigated effects of linseed or fish oil–enriched finishing diets on the polyunsaturated fatty acids (PUFA) composition in dorsal muscle tissues of pond‐cultured common carp (Cyprinus carpio). After 180 days of dietary exposure to cereal diet containing vegetable oil (1%), carp were exposed to 7% linseed (LO) or 7% fish oil–enriched (FO) finishing diets for 30 days. FO supplied 17 and 20 mg fish?1 day?1, respectively, of the long‐chain n‐3 fatty acids eicosapentaenoic and docosahexaenoic acid for 30 days and doubled long‐chain PUFA concentrations in carp of the FO pond. The increased supply of short‐chain PUFA in LO resulted in higher short chain, but not long‐chain PUFA, showing that there was very little PUFA conversion. Thus, dietary short‐chain PUFA could not compensate for the low levels of dietary long‐chain PUFA in LO. However, moderate supply of dietary long‐chain PUFA in finishing diets for 30 days is very efficient in increasing nutritionally important long‐chain PUFA concentrations in carp.  相似文献   

11.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

12.
This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154‐day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). Three isolipidic and isoenergetic meal‐based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n‐9) and apparent selective retention of long‐chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n‐3) and docosahexaenoic acid (DHA, C22:6n‐3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.  相似文献   

13.
Tilapia (Oreochromis niloticus) previously reared on a commercial feed were fed three experimental diets with added 60 g kg−1 of soybean (SO), linseed (LO) or fish oils (FO), for 6 weeks. The final bodyweight (week 6) of fish was significantly lower when feeding the vegetable oils. At 0, 2, 4 and 6 weeks, fillet, liver, visceral fat, testis and ovary triacylglycerols (TAG) and phospholipids (PL) were analysed for their fatty acid (FA) composition. The simple FA dilution model has been successfully applied to describe the incorporation of numerous dietary FAs into both tissue TAGs and PLs. Fillet PL FAs reacted more sensitively on the FAs of the SO and LO diets, when compared to the TAGs. Alterations of the hepatic TAG and PL fractions were minor and less predictable. Testicular PLs have been found to preferentially accumulate n3 FAs, in particular docosahexaenoic acid (DHA) (C22:6 n3). In contrast, ovarian TAGs showed a predominant accretion of oleic acid by the FO diet. The increased dietary unsaturation index (SO, FO) was found to augment hepatic in vivo lipid peroxidation, as assessed by the tissue malondialdehyde concentrations.  相似文献   

14.
The influence of dietary fish oil (FO) substitution with blends of vegetal oils (VO: canola, linseed, olive, sunflower, corn and coconut oils) in plant protein‐rich diets on reproductive performance and fatty acid dynamics of embryos was evaluated in female rainbow trout (Oncorhynchus mykiss) brooders (1.8 ± 0.1 kg). Four diets were formulated in which 20% (FO80/VO20), 50% (FO50/VO50), 75% (FO25/VO75) and 100% (VO100) of FO were replaced by mixture of VO. The above‐mentioned diets were administered for a short period prior to spawning (3 months). Fish fed the VO100 had the lowest fertilization rate (81.3 ± 2.3), whereas brooders fed the FO80/VO20 diet had the lowest survival rates at eyed embryo stage (83.7 ± 1.6%) and hatching rate (79.9 ± 3.1%). The fatty acid dynamics of embryos were not only affected by embryonic developmental stages, but also they were influenced by the dietary fatty acid profile. Our study confirmed that using blends of different VO sources and FM residual fat in the FO25/VO75 for the short‐term period prior to spawning seemed to be a good strategy in terms of successful reproduction for sparing high levels of FM and FO in diet of O. mykiss brooders.  相似文献   

15.
16.
This study was undertaken to evaluate the effect of dietary lipid source [linseed oil (LO, rich in 18:3 n?3); corn oil (CO, rich in 18:2 n?6); olive oil (OO, rich in 18:1n?9); and fish oil (FO, rich in LC‐PUFA)] and level (9% L and 18% L) on growth, body composition and selected plasma biochemistry parameters in hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus) juveniles. Moreover, liver histology (lipids, glycogen, cell vacuolization) and key metabolic enzyme activities were also evaluated. After 8 weeks of feeding, there were no differences in growth performance and whole‐body composition between groups. Plasma lipoprotein, muscle and liver composition, and G6PD and ME activity were affected by lipid level and source. No differences were observed between groups in hepatic ALT activity; however, AST activity was lower in fish fed the 9% L diets. Overall, liver and muscle fatty acid composition reflected that of diet FA composition, with increased n3/n6 ratio, high HUFA and low MUFA in fish fed FO compared with the VO diets. Higher liver glycogen content was observed in fish fed the 18% L than the 9% L diets, except for fish fed FO diet. Considering the experimental diets used, these results indicate that hybrid catfish can efficiently utilize VO supplementation as an energy source, without affecting growth performance and fillet composition.  相似文献   

17.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
A 20-week growth trial was conducted to investigate the effect of two dietary blended vegetable oils (VO) on liver lipogenic enzyme activity, liver and gonad lipid class composition and fatty acid profiles, serum sex hormones, and gonad morphohistology in gilthead seabream, Sparus aurata. Three groups of fish (BW i 130.9 ± 3.1 g) were fed, close to satiation, three experimental diets: a control (CTRL) contained fish oil (FO) as the sole lipid source (100% FO) and two VO-blended diets in each 60% of FO was substituted by an equal mixture of cottonseed oil (CO), sunflower oil (SFO) and either linseed oil (LO) or soybean oil (SBO), designated as LO or SBO diet, respectively. Each diet was assigned to triplicate groups of fish. Results showed that all dietary treatments presented no significant (P > 0.05) differences in growth rate and feed conversion ratio for sexes combined. Enzyme activities of liver lipogenic enzymes of LO-fed fish (glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme (ME) and fatty acid synthetase (FAS)) were not statistically (P > 0.05) different from those of CTRL fish. Only in the group of fish fed the SBO diet, G6PDH was slightly higher (P < 0.05) for both sexes, while ME showed a significant (P < 0.05) higher activity only in females relative to CTRL fish. Liver FAS enzyme activity remained unaltered among dietary groups. VO-fed fish recorded a significant (P < 0.05) increase in total lipid (TL) and triglyceride (TAG) contents in both liver and gonad, more pronounced in females than in males, concurrent with a significant (P < 0.05) decrease in cholesterol (CHL) and phospholipids (PL), more obvious for the SBO-fed fish, as compared to CTRL. The fatty acid (FA) composition of liver or gonad reflected that of the supplied diet and evidenced a significant (P < 0.01 or <0.05) alteration in the majority of individual FA in VO-fed fish compared to CTRL. There were decreased levels of ARA (20:4 n-6), EPA (20:5 n-3), and DHA (22:6 n-3) in VO-fed fish, more pronounced in females than in males, compared to CTRL. The liver and gonad FA profiles, for males and females, reflected the composition of the diet and showed sex variation in the output of multivariate principal component analysis (PCA). Feeding fish VO diets has also led to a significant (P < 0.05) reduction in serum estradiol level by 15.8 or 22.3% in LO- or SBO-fed fish, respectively, and in testosterone level by 7.7% in the latter dietary group only compared to the CTRL. Histomorphological examination of ovary and testis has indicated a relative retardation in oogenesis and spermatogenesis in VO-fed fish, less obvious in the LO-fed fish compared to CTRL. These results suggest a preference of LO over SBO blend diet in terms of liver lipogenic enzyme activity, liver and gonad lipid content, lipid class composition and fatty acid profile, serum sex hormones as well as gonad maturation. PCA analysis of gonads highlighted the importance of using a 100% marine FO diet for gilthead seabream broodstock for the recovery of a normal FA profile in gonads of fish, previously fed VO over the production cycle, to ensure successful spawning.  相似文献   

19.
A 70‐day experiment was conducted to examine the effects of different macroalgal meals and lipid sources on growth, body wall composition and fatty acid (FA) profile of sea cucumber Apostichopus japonicus. Two macroalgal meals including Sargassum muticum (SM) and Gracilaria lemaneiformis (GL) and two lipid sources including fish oil (FO) and vegetable oil (VO) were formulated into four diets, i.e., S. muticum and fish oil (SF), S. muticum and vegetable oil (SV), G. lemaneiformis and fish oil (GF) and G. lemaneiformis and vegetable oil (GV). The results showed that the specific growth rates (SGR) of A. japonicus fed diets containing SM were significantly higher than those fed diets containing GL. No significant differences in SGR between the FO‐based and VO‐based groups were observed. Similar results were observed in the body wall lipid content. Most body wall FAs changed to resemble the dietary FA proportions because of the dietary effect. Concentrations of 20:4n‐6 of the SF and GF groups were significantly lower than the SV and GV groups, while levels of 20:5n‐3 and 22:6n‐3 were significantly higher than the SV and GV groups. The n‐3/n‐6 polyunsaturated fatty acids (PUFA) ratios of the SF and GF groups were significantly higher than the SV and GV groups. Moreover, the SF group had significantly higher 20:5n‐3 and 22:6n‐3 contents and n‐3/n‐6 PUFAs ratio than the GF group. These findings reveal that the SF diet can show beneficial effects on both growth performance and body wall n‐3 PUFAs content of A. japonicus.  相似文献   

20.
Atlantic salmon post‐smolts of an average of 940 g were fed six diets including two marine‐based commercial diets one with partial inclusion of vegetable proteins (VPs) and oils (VOs) (2011/12 EU standards) (MB) and a second with partial inclusion of VPs, land animal‐by‐product (ABP) proteins and VOs (non‐EU standards) (MBABP), a fully vegetable protein (VP) diet; a fully algal and VOs (VO) diet; a fishery‐free vegetable‐based (VP/VO) diet; and a fishery‐free diet with a mix of VPs and ABP proteins and a mix of algal and vegetable oils (MFABP). Growth was assessed at Days 104 and 175, whereas fillet proximate composition, haematology and innate immune responses were assessed upon termination. Overall, MB salmon was the best performing group for the full period in terms of feed intake and overall weight gain. MB and VP salmon exhibited the highest FCRs compared to the other groups, while VP salmon exhibited the highest condition factor (K) and VO salmon the lowest K compared to the other groups. Fillet proximate composition did not present differences among the six groups. MB salmon demonstrated the highest plasma lysozyme activity compared to the other groups while MFABP, VP and VP/VO salmon demonstrated higher plasma anti‐protease activity in contrast to MB salmon. The dietary groups did not present differences in plasma protein, total IgM or natural haemolytic activity while unaltered head kidney macrophage respiratory burst activity was also observed. Overall, diets free from marine proteins or oils and/or both were satisfactorily utilized by salmon without compromising their immune capacity, although longer adaptation periods are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号