首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐wk feeding trial was conducted to estimate the optimum dietary protein level and protein‐to‐energy (P/E) ratio in juvenile parrot fish, Oplegnathus fasciatus. Eight experimental diets were formulated with two energy levels and four protein levels for each energy level. Diets containing crude protein (CP) at 35, 40, 45, and 50% had either 12.5 or 14.6 kJ/g of energy. Fish averaging 7.1 ± 0.06 g (mean ± SD) were fed one of the experimental diets for 8 wk. At the end of the feeding trial, weight gain (WG) of fish fed 45 and 50% CP in the 12.5 kJ/g diet was significantly higher than fish fed the 35% CP diet (P < 0.05). WG of the fish fed 45 and 50% CP in the 14.6 kJ/g diet was significantly higher than fish fed the 35 and 40% CP diets (P < 0.05). Fish fed the 14.6 kJ/g diet had a higher WG compared with fish fed the 12.5 kJ/g diet at all CP levels. Feed efficiency (FE) and specific growth rate (SGR) showed a similar trend to the WG. WG, FE, and SGR improved with increasing dietary protein levels up to 45% and remained constant at 50% CP for both energy levels. However, protein efficiency ratio was negatively related to dietary protein levels. The results suggested that the optimum level of protein and the optimum P/E ratio for juvenile parrot fish should be 45% and 31.1 mg protein/kJ, respectively, in a diet containing 14.6 kJ/g energy.  相似文献   

2.
A 9‐wk feeding experiment was conducted to estimate the optimal dietary protein and lipid levels for tongue sole, Cynoglossus semilaevis Gunther (initial average weight of 43.8 ± 0.18 g). Six practical test diets were formulated to contain three protein levels (45, 50, and 55%, respectively) at two lipid levels (12 and 16%, respectively) with P/E ratios ranging from 87.1 to 110.5 mg protein/kcal. Each diet was randomly fed to triplicate groups of 20 fish per tank (1000 L). The results showed that fish fed the diet with 55% protein and 12% lipid (P/E ratio of 110.5 mg protein/kcal) had the highest thermal‐unit growth coefficient (TGC), feed efficiency ratio, protein productive value, and energy retention. TGC was significantly increased with increasing dietary protein levels irrespective of dietary lipid levels (P < 0.05). However, fish fed the diet with 16% lipid showed significant lower growth than fish fed the diet with 12% lipid. These results suggest that the diet containing 55% protein and 12% lipid with P/E of 110.5 mg protein/kcal is optimal for tongue sole and the increase of dietary lipid level has no effective protein‐sparing effect.  相似文献   

3.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

4.
A 120-day feeding trial was designed to determine the effects of different dietary protein and lipid levels and protein to energy ratio (P:E) on growth performance and feed utilization of hatchery-reared juvenile spotted babylon, Babylonia areolata, cultured under a flow-through seawater system. Six diets were formulated to contain three protein levels (18, 28, and 36%) and two lipid levels (10 and 15%) in a 3 × 2 factorial design with three replicates to provide six different dietary P:E ratios (50.17, 49.09, 68.50, 65.85, 88.66, and 85.36 mg protein/kcal). Each replicate was stocked with 50 snails (0.12 + 0.01 g, initial weight) and fed to satiation once daily. The results showed that survival was above 96% at the end of the feeding trial in all groups and was not affected by either dietary protein level or dietary lipid level. The highest significant (P < 0.05) growth and feed utilization were observed for juveniles fed diet with a P:E ratio of 88.66 kcal g−1 diet. With respect to dietary protein and lipid levels, the highest (P < 0.05) values for growth and feed efficiency were observed for snails fed a diet containing 36% protein level and the same trend was observed for snails fed a diet with 10% lipid level. This results indicated that the diet containing 36% protein and 10% lipid level with a dietary P:E ratio of 88.66 mg protein/kcal would be suitable for optimum growth and feed utilization of B. areolata juveniles.  相似文献   

5.
Effects of varying protein‐to‐energy (P/E) ratios on growth performance, nutrient retention, body composition, and digestive enzyme activities of Singhi, Heteropneustes fossilis (7.90 ± 0.40 g; 9.40 ± 0.20 cm) were evaluated. Six experimental diets (350Low, 350High, 400Low, 400High, 450Low, and 450High) in a 3 × 2 factorial design were formulated to contain three protein levels (350, 400, and 450 g/kg crude protein) and two energy levels (4.07 and 4.54 kcal/g gross energy [GE]) to provide six different dietary P/E ratios (86.1, 77, 98.3, 88, 110.6, and 99 mg protein/kcal GE). The diets were hand‐fed to triplicate groups of fish for 84 d to apparent satiation at two feeding frequencies. Live weight gain, feed conversion ratio, protein retention efficiency, energy retention efficiency, somatic indices, and digestive enzyme activities were maximized by the groups fed on 400 g/kg protein with 4.07 kcal/g GE in diet 400Low with a P/E ratio of 98.3 mg/kcal energy. The results indicate that 400 g/kg of dietary protein and 4.07 kcal/g of dietary GE with a P/E ratio of 98.3 mg protein/kcal energy is optimum for achieving efficient growth, feed conversion, and nutrient retention in H. fossilis.  相似文献   

6.
An 8‐week feeding trial was conducted to evaluate the optimum dietary protein to lipid ratio (P/L) for Starry flounder Platichthys stellatus (30.7 ± 0.7 g initial weight). Nine fishmeal‐based diets with three protein levels (40%, 45% and 50%) and three lipid levels (8%, 11% and 14%) were fed to 30 fish in triplicate. Results showed that the growth performance was affected by dietary P/L ratio significantly, and the best weight gain rate, specific growth rate and feed conversion ratio were appeared at fish fed P45L14 and P50L11 diets. Apparent digestibility coefficient of protein was increased with increasing dietary lipid, but lipid digestibility was decreased by dietary lipid. Lipid deposition in tissues was increased with increasing dietary lipid at each protein level and was higher for the lower protein diets. In liver, the per cent of both eicosapentaenoic acid and docosahexaenoic acid were increased by dietary protein. High dietary protein level (50%) at high lipid level (14%) increased arachidonic acid significantly. Aspartate aminotransferase and alanine aminotransferase were affected significantly by dietary P/L ratios. High density lipoprotein cholesterol and total cholesterol of 45% protein groups were significantly higher than others. The study revealed that the optimum dietary protein to lipid ratio for starry flounder was P45L14 or P50L11, or P/E ratios were 25.49 and 27.70 mg protein kJ?1 gross energy respectively.  相似文献   

7.
Three 9‐wk feeding trials were performed to assess the effects of dietary protein and lipid levels on the growth, feed utilization, and body composition of turbot, Scophthalmus maximus Linnaeus, at three different growth stages with initial average weight 4.5 ± 0.01, 59.1 ± 0.24, and 209.1 ± 0.21 g, respectively. Six practical test diets were formulated to contain three protein levels (45, 50, and 55%), each of which was supplemented with two lipid levels (12.0 and 16.0%), to produce a range of P : E ratios (from 87.4 to 110.0 mg protein/kcal). The results of three experiments suggested that growth performance generally improved with increasing dietary protein irrespective of dietary lipid. Fish fed diets with 55% protein (12 and 16% lipid, P : E ratio of 110.9 and 107.1 mg protein/kcal) had the highest specific growth rates (SGRs), feed efficiency ratios (FERs), and energy retention. At the same protein level, FER and protein efficiency ratio (PER) increased significantly with the increase of lipid except in large fish (initial average weight 209.1 ± 0.21 g). SGR of medium turbot (initial average weight 59.1 ± 0.24 g) was also improved by the lipid increase, indicating a protein‐sparing effect of lipid.  相似文献   

8.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

9.
This study aimed to determine the optimal protein to energy ratio (P/E ratio) and evaluate the effect of dietary protein and lipid levels on growth performance, body composition and digestive enzymes activities in Chinese mitten‐handed crab, Eriocheir sinensis. Nine practical diets containing three levels both for protein (DP 30%, 35% and 40%) and lipid (DL 2%, 7% and 12%) with P/E ratios ranging from 13.69 to 19.79 mg KJ?1 were fed to four replicates of crabs (3.39 ± 0.10 g) for 10 weeks. Weight gain increased significantly with the increase in DP level at each DL level. Moreover, weight gain increased in crabs fed with diets containing DL level from 2% to 12% and DP level from 30% to 35%. However, the diet containing 40% DP and 12% DL levels significantly decreased the growth performance and protein efficiency of the crabs. The whole crab and hepatopancreas lipid contents also increased as dietary lipid increased, but not dietary protein. The total protease activity increased significantly with the increase in dietary protein at each lipid level. The lipase activity was statistically comparable among different DL levels at each DP level. Taken together, the crab fed the diet containing 35% protein and 12% lipid levels with P/E 15.77 mg KJ?1 revealed optimal growth, feed utilization efficiency and digestive enzymes activities. Moreover, our study indicated that the higher dietary lipid level at a relatively lower dietary protein level could provide protein sparing effect in Eriocheir sinensis.  相似文献   

10.
Nine experimental diets at three protein (35%, 40% and 45% crude protein) and lipid (5%, 8% and 11% crude lipid) levels with variable digestible protein to digestible energy (DP/DE) ratios ranged from 21.9 to 27.8 g protein MJ?1 were fed to topmouth culter (Culter alburnus Basilewsky) fingerlings (initial weight 6.5 ± 0.9 g) in triplicated groups (30 fish per replicated) for a period of 10 week to assess the optimum dietary DP/DE ratio and the protein sparing effect by utilizing dietary lipid. 27 cages of 1.5 m3 capacity placed in a lake located in Wuhan were used for rearing the fish. At the end of the experiment, maximum weight gain and thermal‐unit growth coefficient was found in fish fed diet D4 with 45% protein, 8% lipid and P/E ratio of 26.2 g protein MJ?1, but without a significant difference compared to fish fed diet D5 with 40% protein, 8% lipid and DP/DE ratio of 25.3 g protein MJ?1. The best flesh quality evaluated by muscle collagen content was found in fish fed D5. High fat accumulation with increasing dietary lipid levels was observed in whole body but not in muscle tissue. Hence, it may be concluded that the optimum formulation for maximum growth and quality of topmouth culter is a diet containing 40% protein and 8% lipid with a resultant DP/DE ratio of 25.3 g protein MJ?1. In addition, the protein sparing effect by inclusion lipid was observed but limited.  相似文献   

11.
Optimum dietary protein and lipid levels for juvenile rockfish were determined. Eight hundred and ten juvenile fish averaging 3.22 g were randomly chosen and distributed into 27 flow‐through tanks of 50 L (30 fish per tank). Nine experimental diets were prepared according to a 3 × 3 factorial experimental design: three crude protein levels (45%, 50% and 55%) × three crude lipid levels (11%, 15% and 19%). Crude protein and crude lipid levels increased at the expense of dextrin and cellulose in the experimental diets. Survival of fish was not affected by either dietary protein or lipid level. Weight gain of fish was affected by dietary protein level, but not by dietary lipid level. Weight gain of fish fed the 50P‐15L (50% protein and 15% lipid) diet was higher than that of fish fed the 45% protein diets regardless of lipid level, but not different from that of fish fed the 50P‐11L (50% protein and 11% lipid), 50P‐19L (50% protein and 19% lipid), 55P‐11L (55% protein and 11% lipid), 55P‐15L (55% protein and 15% lipid) and 55P‐19L (55% protein and 19% lipid) diets. Feed consumption of fish was affected by dietary protein level, but not by dietary lipid levels. Feed efficiency ratio (FER) of fish was affected by dietary protein level, but not by dietary lipid level. Protein efficiency ratio (PER) of fish was affected by dietary protein level, but not by dietary lipid level. Nitrogen retention efficiency (NRE) of fish fed the 45P‐19L diet was higher than that of fish fed the 45P‐11L, 50P‐11L, 50P‐15L, 50P‐19L, 55P‐11L, 55P‐15L and 55P‐19L diets, but not different from that of fish fed the 45P‐15L diet. Moisture, crude protein and crude lipid contents of fish was affected by dietary protein and/or lipid level. Plasma triglyceride of fish was affected by dietary lipid level, but not by dietary protein level. In conclusion, optimum protein and lipid levels for growth and feed utilization (PER and NRE) for juvenile rockfish were 50% and 15%, and 45% and 19%, respectively, and the optimum dietary protein‐to‐energy ratio of 27.4 and 23.9 mg protein kJ?1.  相似文献   

12.
An 11‐week feeding trial was conducted to evaluate the effects of dietary protein and/or energy levels on growth, feed efficiency and proximate composition of juvenile (average weight: 21.5 g) common carp (Cyprinus carpio L.) fed various diets based on constant daily protein input. Five experimental diets were prepared. One group of diets (diets 1, 2 and 3) contained three crude protein (P) levels (35%, 40% and 45%) with a constant gross energy (GE) of 3.8 kcal g?1 diet. The second group of diets (diets 4 and 5) were formulated to contain a GE of 4.3 or 4.9 kcal g?1 diet and 40% or 45% protein levels, respectively, where GE/P was constant at 10.8 kcal g?1 protein. Fish receiving diet 1 served as the control; they were hand‐fed to visual satiety. Feed allowance for diets 2 and 4 was 87.5% of the control. Feed allowance for fish receiving diets 3 and 5 was 77.8% of the control. Thus, all tanks received the same daily protein input. When gross energy in the diets was constant, 3.8 kcal g?1 diet, weight gain of fish fed diet 2 at 87.5% satiation was significantly higher than that of fish fed diet 3 at 77.8% of satiation. When the GE/P in the diets was constant, 10.8 kcal g?1 protein, weight gain of fish fed diet 1 was significantly higher than that of fish fed diet 5 at 77.8% satiation. The feed efficiency ratio (FER) for diets 2–5 was significantly higher than for diet 1 at constant GE and GE/P, and this improved linearly as dietary protein levels increased. The protein efficiency ratio (PER) for diet 2 was significantly higher than for diet 3 at constant GE. However, PER was not significantly different at constant GE/P. Protein retention of fish fed diet 2 was significantly higher than that of fish fed diet 3 at constant GE. Protein retention of fish linearly decreased at constant GE/P. The energy efficiency ratios (EER) for diets 2 and 3 were significantly higher than for diet 1 at constant GE. Moisture and protein contents of the whole body of fish were not significantly different at constant GE, but they decreased linearly at constant GE/P. The lipid content of fish fed diet 1 was significantly lower than that of fish fed diet 2 at constant GE, and body lipid content linearly increased at constant GE/P. These results indicate that growth and feed efficiency for common carp fed a 40% protein diet with 3.8 kcal g?1 diet GE at 87.5% satiation rate was superior to those for the fish fed either a 35% protein diet with 3.8 kcal g?1 diet GE at 100% satiation rate or a 45% protein diet with either a 3.8 or 4.9 kcal g?1 diet GE at 77.8% satiation rate.  相似文献   

13.
A feeding trial was conducted to evaluate dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. A 4 × 2‐factorial layout included four protein (420, 450, 480, and 510 g/kg) and two lipid (80 and 120 g/kg) levels. Fish (initial weight 8.7 g) were fed the test diets for 8 wk. Weight gain, feed intake, feed conversion ratio, hepatosomatic index, and body composition were dependent on dietary protein level. Nitrogen retention efficiency was independent of dietary protein level, lipid level, and their interaction. Weight gain was higher in fish fed the diet containing 480–510 g/kg crude protein than in fish fed the diet containing 420–450 g/kg crude protein at two dietary lipid levels. The feed intake and weight gain were higher in fish fed the diet containing 484 g/kg crude protein and 115 g/kg crude lipid than in fish fed the diet containing 478 g/kg crude protein and 77 g/kg crude lipid. This study indicated that the suitable dietary protein and lipid levels for largemouth bass are 480–510 g/kg and 120 g/kg, respectively.  相似文献   

14.
Pikeperch Sander lucioperca fingerlings were fed nine practical diets containing three levels of protein (P=34%, 43% and 50%), lipid (L=10%, 16% and 22%) and carbohydrate (C=10%, 15% and 20%) for 10 weeks in a recirculating water system at 23°C. Dietary treatments were distributed by orthogonal design with dietary energy content ranging from 15.5 to 23.1 MJ kg?1 diet. Significant differences (P<0.05) in weight gain (%) and feed efficiency (FE) were observed after feeding trial. Relatively low growth and FE were found in fish fed diets containing 34% dietary protein level compared with that of fish fed diets with 43–50% protein levels, suggesting that 34% dietary protein probably is below the protein requirements of pikeperch fingerlings. Fish fed diets containing P43L10C15, P43L22C20 and P50L16C20 had significantly (P<0.05) higher weight gain and FE than fish fed the diets containing other dietary P/L/C ratios. There was no significant difference in weight gain and FE between fish fed diets of P43L10C15, P43L22C20 and P50L16C20. These results may indicate that pikeperch require at least 43% of dietary protein for adequate growth and FE, and considering the fish growth and feed ingredient cost P43L10C15 diet is more cost‐effective formulation for pikeperch fingerling. However, protein efficiency was not significantly affected by dietary P/L/C ratio.  相似文献   

15.
A feeding trial of three protein levels (30, 40 and 50%) and two energy levels (300 and 400 kcal/100-g diet) factorial design with three replications was carried out to investigate the proper dietary protein and energy levels for the growth of juvenile flounder Paralichthys olivaceus . Weight gain of fish tended to improve with increasing dietary protein level. Weight gain of fish fed either the 40% or 50% protein diet with 300 kcal/100-g diet was significantly higher ( P < 0.05) than with 400 kcal/100-g diet. The best weight gain was obtained from fish fed the 50% protein diet with 300 kcal/100-g diet. Feed efficiency tended to improve with increasing dietary protein level. However, dietary energy level had no significant effect on feed efficiency of fish fed the 30% or 50% protein diet, but that of fish fed the 40% protein diet with 300 kcal/100-g diet was significantly higher than with 400 kcal/100-g diet. Protein retention tended to increase as dietary protein level increased and energy level decreased. Lipid content of fish fed the diet containing 400 kcal/100-g diet was significantly higher than that of fish fed the diet containing 300 kcal/100-g diet at all protein levels. Fatty acid compositions such as linoleic acid, EPA (20:5n-3) and DHA (22:6n-3) offish were directly affected by dietary lipid (squid liver oil and/or soybean oil) used for energy source. Based on the above results, it can be concluded that the proper dietary protein and energy levels for the growth of juvenile flounder are 50% and 300 kcal/100-g diet, respectively.  相似文献   

16.
A feeding trial was conducted in aquaria with juvenile largemouth bass Micropterus salmoides to examine the effects of increasing dietary lipid levels on growth and body composition. Feed‐trained largemouth bass fingerlings were graded to a similar size (16.3 ± 2.4 g) and randomly stocked into 15 113.6‐L glass aquaria at 25 fish/aquarium. Fingerlings were fed twice daily to apparent satiation with one of five isonitrogenous extruded experimental diets based on practical ingredients. Diets contained approximately 40% crude protein and either 0, 5, 10, 15, or 20% added lipid. Due to background lipids in the ingredients, this equated to total lipid levels of 7, 10, 16, 20, and 23%, respectively. These diets had protein to energy ratios of 137, 120, 106, 95, and 86 mg/kcal, respectively. There were three replicate aquaria per dietary treatment. After 12 wk, there were no statistically significant differences (P > 0.05) in average weight (g), specific growth rate (% body weight/d), survival (%), or protein efficiency ratio (PER, %) among fish fed the five diets, which averaged 79.3 ± 5.6, 1.9 ± 0.1, 99.5 ± 1.5, and 2.11 ± 0.19, respectively. Juvenile largemouth bass fed diets containing 15 and 20% added lipid had significantly lower (P± 0.05) feed conversion ratios (FCR) (1.1 ± 0.0 and 1.1 ± 0. 1, respectively) than fish fed diets containing 0, 5, and 10% added lipid (1.4 ± 0.1, 1.3 ± 0. 1, and 1.3 ± 0.2, respectively). Proximate analysis of whole body samples indicated a significantly higher (P ± 0.05) lipid content in fish fed 15 and 20% added lipid compared to fish fed lower lipid levels. While FCR was lowest in fish fed the 15 and 20% added lipid diets, increased whole body lipid deposition may indicate that these levels are above optimal levels for juvenile largemouth bass. It appears that 7–16% total dietary lipid (P/E:137–106 mg/kcal) is sufficient to support efficient growth without impacting body composition in juvenile largemouth bass when fed a diet containing 40% crude protein.  相似文献   

17.
Seven isonitrogenous and isolipidic diets containing fish meal (FM) protein replaced by corn gluten meal (CGM) protein at 0% (the control, C0), 10% (C10), 20% (C20), 30% (C30), 40% (C40), 50% (C50) and 60% (C60) were fed to juvenile Pseudobagrus ussuriensis for 8‐weeks to evaluate the effects of FM protein replaced by CGM protein on growth, feed utilization, nitrogen (N) and phosphorus (P) excretion and IGF‐I gene expression of juvenile P. ussuriensis. The results showed that the replacement level up to 40% did not affect the weight gain, specific growth rate (SGR), feed intake and protein efficiency ratio, whereas these parameters were depressed by further replacement level. Apparent digestibility coefficients (ADC) of dry matter, crude protein significantly decreased, but ADC of phosphorus significantly increased with increasing dietary CGM levels (< .05). Fish fed diets with FM protein replaced by CGM protein led to an increase in nitrogen excretion, but led to a reduction in phosphorus excretion. No significant differences were observed in alpha‐amylase and lipase activities of intestine (> .05). The lowest pepsin activity was found in C60 group. Fish fed diet C40, C50 and C60 had significantly lower serum lysozyme activity compared with fish fed diet C0 (< .05). The lowest plasma alkaline phosphatase activity and the highest plasma alanine aminotransferase and aspartate aminotransferase activities were observed in C60 group. Fish fed diet C60 had significantly lower hepatic IGF‐I gene expression compared with fish fed diet C10 (< .05). Broken‐line model analysis based on SGR against the CGM substitution level indicated that the appropriate replacement level was 37.7%.  相似文献   

18.
An 8‐week feeding trial was conducted to compare the effects of different lysine isomers on growth, nutrient utilization and metabolic enzyme activity in common carp (Cyprinus carpio). A basic experimental diet (the control group) with 30% of dietary protein from fish meal and the remaining 70% from soybean meal was used either with or without supplementation of d‐ lysine, l‐ lysine or dl‐ lysine, respectively. The total feed intake was significantly improved by supplementation with lysine regardless of isomeric form (P < 0.05). Supplementation with d‐ lysine or l‐ lysine (but not dl‐ lysine) generally increased the weight gain, specific growth rate, feed efficiency ratio and protein efficiency ratio. Dietary lysine supplementation generally increased the apparent digestibility of dry matter, crude protein and crude lipid, but no statistically significant differences were observed between the control group and the lysine‐supplement groups (P > 0.05). The d‐ amino acid oxidase and d‐ aspartate oxidase activities were generally higher in the liver, kidney and intestine of fish fed diet containing d‐ lysine compared to fish fed diet containing l‐ lysine. The lysine, protein and lipid gains in fish were markedly increased by the supplementation with d‐ lysine or l‐ lysine, and the lysine (r = 0.618, P < 0.05) and protein gains (r = 0.671, P < 0.05) were linearly related to dietary lysine intake. Lysine retention efficiency linearly decreased with the increase of dietary lysine intake (r = ?0.579, P < 0.05). These results indicate that common carp are capable of utilizing the supplemental crystalline d‐ lysine·HCl (4 g kg?1 dry diet) for growth when the rest of dietary amino acids are protein‐bound forms.  相似文献   

19.
A laboratory feeding trial was conducted to evaluate the effects of reducing digestible energy to protein (DE:P) ratios of practical diets on body fat and weight gain of channel catfish. Five diets were formulated to contain 32, 28, or 24% crude protein with typical DE:P ratios of 8.5, 9.9, or 11.4 kcal/g protein, respectively, and 28% or 24% protein with a reduced DE:P ratio of 8.5 kcal/g protein. Cellulose was used to adjust the DE:P ratio. Juvenile channel catfish Ictalurus punctatus (initial weight: 5.2 g/fish) were fed the experimental diets twice daily to apparent satiation for 12 wk. Fish fed the 28% protein diet with a reduced DE:P ratio of 8.5 kcal/g protein gained less weight and converted feed less efficiently than those fed the 28% protein diet with a typical DE:P ratio of 9.9 kcal/g protein. Fish fed the 24% protein diet with a reduced DE:P ratio of 8.5 kcal/g protein had a similar weight gain but converted feed less efficiently than those fed the 24% protein diet with a typical DE:P ratio of 11.4 kcal/g protein. Weight gain and feed conversion efficiency of fish fed the 32% protein diet with a typical DE:P ratio of 8.5 kcal/g protein were higher than for fish fed other diets except those fed the 28% protein diet with a DE:P ratio of 9.9 kcal/g protein. There were no differences in feed consumption and survival among dietary treatments. Fillet fat of fish fed the 24% and 28% protein diets with a reduced DE:P ratio was lower than that of the fish fed diets containing the same protein concentrations with typical DE:P ratios. At a DE:P ratio of 8.5 kcal/g protein, there were no differences in fillet fat concentration among fish fed diets containing different protein concentrations. There were no differences in fillet protein, moisture, and ash between fish fed the 24% or 28% protein diets containing reduced and typical DE:P ratios. Results from this study show that reducing DE:P ratios in practical diets lowers body fat but also depresses weight gain of channel catfish; thus it would not be economical to use this strategy to reduce body fat of the fish.  相似文献   

20.
A study was conducted to determine the effect of increasing dietary levels of fish oil on vitamin E requirement and their effect on growth performance, liver vitamin E status, and tissue proximate and fatty acid compositions of channel catfish. Basal purified diets (42% protein and 3,800 kcal DE/kg) supplemented with 6, 10, and 14% menhaden fish oil were each supplemented with 50, 100, and 200 mg vitamin E/kg (3 × 3 factorial experiment). Each diet was fed to juvenile channel catfish in three random aquaria to apparent satiation twice daily for 12 weeks. Weight gain, feed intake, and feed efficiency ratio were not affected by dietary levels of fish oil, vitamin E, or their interaction. Survival rate at the end of week 12 was significantly lower for fish fed diets containing 14% fish oil, regardless of vitamin E content. Whole-body moisture significantly decreased and lipid increased when dietary lipid levels were increased to 10 or 14%. Dietary vitamin E levels had no effect on body proximate composition. Lipid content of liver was not influenced by dietary levels of fish oil and vitamin E or their interaction. Hepatosomatic index significantly decreased with increasing lipid levels but was not affected by dietary levels of vitamin E. Liver vitamin E increased with increasing dietary vitamin E but decreased with increasing fish oil levels. Fatty acid composition of whole body and liver reflected that of dietary lipid but was not influenced by dietary levels of vitamin E. Whole-body saturates increased, whereas MUFA decreased with increasing dietary levels of fish oil. Liver saturates were not affected by fish oil levels, but MUFA and n-6 decreased and increased, respectively, with increasing fish oil levels. Total n-3 and n-3 HUFA in both tissues increased with increasing fish oil levels in diets, but liver stored much higher levels of these fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号