首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Aquaculture fish diets usually contain an addition of fish oil to improve their nutritional value. The effect of the replacement of dietary fish oil (FO) by sunflower oil (SfO) on growth, fatty acid composition and expression of genes implicated in somatic growth, feed intake and fatty acid metabolism was studied in pejerrey fry. Fry were fed per 45 days with diets containing FO/SfO ratios of 100% FO; 50% FO:50% SfO; 20% FO:80% SfO; and 100% SfO. No differences were detected in growth and in the total per cent of saturated and monounsaturated fatty acids. Gh, ghr‐I and ghr‐II showed a higher mRNA expression in head and trunk of fry fed with 100% SfO diet. Expression of igf‐II was higher in trunk of fry fed with 100% SfO diet compared with 100% FO diet. The Δ6‐desaturase gene expression was upregulated in head and trunk of fry fed with 100% SfO diet. The nucb2/nesfatin‐1 gene expression decreased in the trunk of fry with increasing dietary SfO. We conclude that the replacement of fish oil by sunflower oil in pejerrey fry feed does not affect growth and is a viable strategy to reduce production costs of this fish.  相似文献   

3.
Traditional Chinese medicine and Bacillus species (TCMBS) mixture is an immunostimulant with considerable promise as an alternative in improving fish health. However, nothing is known on its effects on the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes and production of reactive oxygen species (ROS) in the neutrophils of fish. The full lengths of tilapia phagocytic NADPH oxidase genes gp91phox, p22phox, p40phox, p47phox, and p67phox were cloned and their expression profiles after TCMBS stimulus investigated. The cDNAs of tilapia gp91phox, p22phox, p40phox, p47phox, and p67phox contained open reading frames of 1698 bp, 561 bp, 1053 bp, 1584 bp, and 1470 bp respectively, encoding 561, 186, 350, 527, and 489 amino acids respectively. Comparison of the deduced amino acid sequences showed that tilapia NADPH oxidase genes shared 58%–91% and 21%–67% identity with those of other teleost and mammals respectively. Besides, tilapia NADPH oxidase genes contain conserved domains and motifs required for ROS generation. Phylogenetic analysis suggested tilapia NADPH oxidase genes were close to those of Fundulus heteroclitus. After 2 weeks of TCMBS application showed significant upregulation in expression of NADPH oxidase genes, antioxidant genes (i.e., superoxide dismutase, catalase, and glutathione‐disulphide reductase), and an increase in the production of ROS compared to the control in splenic neutrophils of tilapia. Collectively, our study provides evidence of the structure of tilapia NADPH oxidase genes and demonstrate that TCMBS application could modulate their activity in neutrophils to improve immunity in tilapia.  相似文献   

4.
为探讨急性操作胁迫对银鲳生长的影响,首次克隆了3种生长调控相关基因-生长激素受体1(ghr1)、生长激素受体2(ghr2)和胰岛素样受体1(igfbp1),并对3种基因在银鲳肝脏、心脏、性腺、肌肉和肾脏等不同组织中的表达进行了比较。定量表达结果表明3种基因均广泛分布于所研究的各个组织中,而其中肾脏、性腺和心脏中的表达量较其它组织低。在银鲳受到外界操作胁迫刺激后,3种基因呈现不同的表达模式:其中ghr2和igfbp1的表达下调,而ghr2的表达量与对照组无显著性差异。结果表明,ghr2和igfbp1在银鲳生长调节中起到重要的作用;在胁迫环境中,外界刺激可通过下调生长相关基因表达以影响鱼体的生长。  相似文献   

5.
6.
This study investigated the effects of nursing duration on the subsequent performance of rohu (R) Labeo rohita and mrigal (M) Cirrhina mrigala in polyculture with monosex male Nile tilapia (T) Oreochromis niloticus at four levels of pond fertilization. Nile tilapia, rohu and mrigal were stocked at a ratio of 4:1:1 in a 90‐day trial based on 40 20‐m2 pens fixed in four 400‐m2 earthen ponds. Growth of carp fingerlings during prolonged nursing (5 or 12 months) was stunted compared with fish nursed over a conventional duration of 3 months (3) but showed superior growth subsequently. Mean daily weight gain of stunted rohu (12) ranged from 2.2 to 2.8 g per fish day?1 compared with 1.1–1.6 g per fish day?1 for younger fish (3). The comparable ranges for mrigal were 1.9–2.8 and 1.4–2.1 g per fish day?1. Growth of Nile tilapia was inversely related to duration of carp nursing at the four levels of fertilization. Nile tilapia showed more response to increasing levels of fertilizer input (Y=?1.421+1.716X, where Y is the daily weight gain of Nile tilapia and X is the fertilizer level, r2=0.98, P<0.01, n=12). At a high level of fertilization (3.0 kg N:1.5 kg P ha?1 day?1), performance of stunted fingerlings (5 and 12) of both rohu and mrigal was similar (range 2.3–2.8 g per fish day?1, P>0.05), but younger mrigal (M3) grew faster than rohu (2.1 g per fish day?1 and 1.6 g per fish day?1 respectively). Older rohu (12) appeared to perform particularly well, and Nile tilapia poorly at the lowest level of fertilization (1.5 N:0.75 kg P ha?1 day?1), suggesting the impact of age of seed on competition within polycultures. The net fish yield (NFY) of tilapia was not affected significantly (P>0.05) by differential stocking age of carps; therefore, combined NFY of the three experimental fish species was not affected by the age of carp, as tilapia was the dominant species in polyculture. The highest combined NFY of all species in the most intensively fertilized pond (3.0 N:1.5 P kg ha?1 day?1) was calculated at 4.06±0.08 g·m?2 day?1, which was significantly higher (P<0.001) than the yield (1.82±0.12 g·m?2 day?1) from the pond with the lowest fertilization. At the highest fertilizer level, tilapia, rohu and mrigal contributed 72%, 14% and 14%, respectively, to the NFY, whereas the ratio was 60%, 20% and 20% at the lowest fertilization level. The study indicated that yields from tilapia in polyculture with the two carp species in more eutrophic water can be optimized if advanced nursing of carps is practised. Moreover, higher inputs of inorganic fertilizer and advanced nursing of carp are economically attractive under Bangladeshi conditions. Advanced nursing of rohu also improves its performance in more extensive systems when tilapia densities are high.  相似文献   

7.
In fish, spermatogenesis and somatic growth are mainly regulated by hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatic (HPS) axes, respectively. Xenoestrogens have been reported to impair spermatogenesis in some fishes, and arrest somatic growth in some others, whereas, whether xenoestrogens are capable of disrupting spermatogenesis and somatic growth simultaneously in fish that exhibits sexual dimorphic growth is little known, and the underlying mechanisms remain poorly understood. In this study, male juveniles of yellow catfish (Pelteobagrus fulvidraco), which exhibits a sexual dimorphic growth that favors males, were exposed to diethylstilbestrol (DES) for 28 days. After exposure, DES significantly disrupted the spermatogenesis (decreased gonadal-somatic index (GSI) and germ cell number) and arrested the somatic growth (declined body weight) of the catfish juveniles. Gene expression and plasma steroid analyses demonstrated the suppressed mRNA levels of genes in HPG axis (gnrh-II, fshβ, and lhβ in the brain and dmrt1, sf1, fshr, cyp17a1, cyp19a1a, and cyp11b2 in the testis) and decreased 17β-estrodial (E2) and 11-ketotestosterone (11-KT) levels in plasma. Further analysis revealed the arrested germ cell proliferation (cyclin d1), meiosis (dmc1, sycp3), and enhanced apoptosis (decreased bcl-2 and elevated bax/bcl-2 ratio) in the testis. Besides, DES also suppressed the mRNA levels of genes in HPS axis (ghrh, gh, and prl in the brain and ghr, igf1, igf2a, and igf2b in the liver). The suppressed HPG and HPS axes were thus supposed to disturb spermatogenesis and arrest somatic growth in yellow catfish. The present study greatly extended our understanding on the mechanisms underlying the toxicity of DES on spermatogenesis and somatic growth of fish.  相似文献   

8.
A 10‐week feeding trial was conducted to determine the effects of dietary yucca meal supplementation on growth, haematology, non‐specific immune responses and disease resistance in juvenile Nile tilapia, Oreochromis niloticus. Six isonitrogenous and isoenergetic experimental diets were formulated to contain 0% (YMS0), 0.1% (YMS0.1), 0.3% (YMS0.3), 0.5% (YMS0.5), 1% (YMS1.0) and 2% (YMS2.0) dietary yucca meal on the dry weight basis. Results of this study showed a higher growth performance for YMS0.1 group with significant differences with YMS0.5, YMS1.0 and YMS2.0 groups. In addition, whole‐body protein content of fish fed the YMS0.1 diet was significantly higher as compared to YMS0. Plasma lysozyme activity significantly increased in YMS0.1 group comparing to YMS0 and YMS0.5 groups. Respiratory burst activity of phagocytic blood cells was significantly enhanced when fish were fed the YMS0.1 diet. Results also showed that yucca meal supplementation had moderate effects on glutamic oxaloacetic transaminase and cholesterol levels. After the 14‐day challenge test with Aeromonas hydrophila, cumulative survival of fish fed YMS0.1 diet was significantly higher than that of fish fed diet YMS0, YMS1.0 and YMS2.0. These results suggest that the optimum dietary yucca meal inclusion level in the diet of juvenile Nile tilapia could be between 0.1% and 0.14% (23.9~33.4 mg kg?1 saponin) as a feed additive to promote growth, enhance the non‐specific immune responses and increase disease resistance.  相似文献   

9.
In this study we examined the endocrine mediation between environmental factors (temperature and photoperiod) and the brain–pituitary–gonadal axis in females of pejerrey Odontesthes bonariensis. Changes in the expression of brain gonadotropin-releasing hormones (GnRHs) and gonadotropin (GtH) subunit [follicle stimulating-β (FSH-β), luteinizing hormone-β (LH-β), glycoprotein hormone-α (GPH-α)] genes, plasma gonadal steroids [estradiol (E2) and testosterone (T)], gonadal histology, and gonadosomatic index (GSI) in adult females exposed to combinations of short-day (8 h) or long-day (16 h) photoperiods and low (12°C) or high (20°C) temperatures after winter conditions (8 h light, 12°C) were analyzed. Pejerrey females kept under the short photoperiod had low GSIs, and their ovaries contained only previtellogenic oocytes regardless of the experimental temperature. In contrast, females exposed to the long photoperiod had high GSIs and ovaries with vitellogenic oocytes at both temperatures. These fish also showed a significantly higher expression of sGnRH, pjGnRH, cGnRH-II (the three different GnRH variants found to date in the pejerrey brain), FSH-β, LH-β and GPH-α genes and plasma E2 levels than those at the shorter photoperiod. No significant changes were observed in plasma T levels. Based on these results, we concluded that the increase in day length but not that of temperature triggers the maturation of pejerrey females after the winter period of gonadal rest and that this occurs by an integrated stimulation of the various components of the brain–pituitary–gonad axis.  相似文献   

10.
应用引物退火控制技术(ACP)筛选尼罗罗非鱼雌雄鱼肌肉组织差异表达基因,寻找与雌雄鱼肌肉生长发育相关的候选基因。本实验从同等条件下养殖的尼罗罗非鱼群体中随机选取雌、雄鱼各5尾组成RNA池,采用引物退火控制技术,分析了两组个体肌肉组织差异表达基因。利用20对随机引物差异显示扩增,共获得8条ESTs,其中5个已知的ESTs分别为转录变体3(LOC100691543)、60S核糖体蛋白(RL3)、小白蛋白β样蛋白、肌型肌酸激酶M2-CK和转录因子Sox4,其余3个为未知的ESTs。实时定量PCR分析各差异表达基因在尼罗罗非鱼雌雄肌肉组织中的表达发现,8个差异表达基因中转录变体3与ACP6-Y在尼罗罗非鱼雄鱼肌肉组织中的表达均极显著高于雌鱼(P0.01),ACP3-X、60S核糖体蛋白(RL3)、小白蛋白β样蛋白、ACP15-X、肌型肌酸激酶M2-CK与转录因子Sox4在尼罗罗非鱼雌鱼肌肉组织中的表达均极显著高于雄鱼(P0.01)。结果表明,应用引物退火控制技术筛选获得了8个可能参与了雌雄鱼肌肉生长发育调控的ESTs,为进一步筛选雌雄鱼肌肉生长发育相关候选基因奠定了基础。  相似文献   

11.
A major problem in tilapia aquaculture is the frequent reproduction of female fish, leading to increased competition for supplemented food and stunted somatic growth. The feasibility of using photoperiod manipulation to arrest the reproductive performance of tilapia Oreochromis niloticus was therefore examined. Newly hatched O. niloticus were reared in the laboratory under 12L:12D photoperiod at 28 °C. Fish (230–340 g) were maintained under 6L:6D, 12L:12D and 14L:10D photoperiod at 28 °C during the course of this study. Effect of photoperiod manipulation on reproductive parameters of fecundity, gamete quality, offspring viability and overall reproductive success were evaluated. Steroid levels (estradiol-17β, E2; testosterone, T) during the spawning cycles of fish were analyzed on days 1 and 3 postspawning and at 3-day intervals thereafter. A total of 72 female fish from each photoperiod treatment were investigated the changing pattern of E2, T and GSI with fish that have spawned once, twice and three times. Fish exposed to 12L:12D and 14L:10D photoperiod spawned successfully throughout the study. Whereas the spawning of fish exposed to 6L:6D photoperiod was arrested after three to four spawning cycles. The arrestment of spawning in fish exposed to 6L:6D photoperiod was paralleled by a significant decrease in plasma levels of E2 (P<0.05). By contrast, there was no major difference in T levels among the treatments. These findings suggest that photoperiod manipulation can be used to arrest the spawning in tilapia O. niloticus. The utility of this in controlling the problem of overcrowding due to excess offspring in tilapia aquaculture is applicable.  相似文献   

12.
A 45‐day feeding trial was conducted to study the effect of replacing dietary fish meal (FM) with a tuna by‐product meal (TBM) on the growth, feed efficiency, carcass composition and stress oxidative status of juvenile Nile tilapia, Oreochromis niloticus L.). Triplicate groups of fish (2.21 ± 0.01 g) were fed on four iso‐nitrogenous and iso‐energetic diets. The control diet (A0) used FM as the sole source of animal protein. In the other three diets (A10–A30), 33%–100% of FM was substituted by TBM at 10% increments. There were no significant differences (P>0.05) in growth performance among fish fed on diets A0, A10 and A20. Fish fed these experimental diets (i.e., A0, A10 and A20) showed significantly (P<0.05) better daily mass gain, specific growth rate and protein efficiency ratio than those fed on diet A30. Feed conversion ratio increased with increasing TBM content, but only the value found in fish fed on diet A30 differed significantly (P<0.05) from the other treatments. The fish accumulated increasing quantities of lipids and decreasing levels of ash in their carcasses with increasing levels of dietary TBM. At the end of the experimental period, a significant increase (P<0.001) in catalase and glutathione S‐transferase activities was seen only in groups fed on diet A30. Similarly, a significant enhancement in glutathione peroxidase and superoxide dismutase activities was observed in groups fed on diets A20 and A30 compared with the other groups. The results show that this product can be included up to 20% in practical Nile tilapia diets without any detrimental effects.  相似文献   

13.
14.
A growth trial was conducted to feed juvenile tilapia (initial weight, 9.1±0.1 g), Oreochromis niloticus×O. aureus, isonitrogenous diets for 8 weeks. Six diets were formulated containing 29% crude protein from casein and gelatin, 10% crude fat from soybean oil and refined soybean lecithin and varying levels of corn starch ranging from 6% to 46% at increments of 8%, with corresponding energy to protein (E/P) ratios of 35.6, 37.9, 40.2, 42.5, 44.8 and 47.1 kJ g?1. Weight gain (WG), specific growth rate, feed efficiency ratio and protein efficiency ratio were significantly higher in fish fed diets with starch ≥22% (or E/P ratio ≥40.2 kJ g?1) than in fish fed diets with 6% or 14% starch (or E/P ratio of 35.6 or 37.9 kJ g?1). No further improvement was measured when dietary starch content increased beyond 22%. Body protein retention showed the same general pattern as WG, and was highest in fish fed the 22% starch diet. Body composition was significantly affected by dietary starch level. Fish fed diets with starch ≥30% had significantly higher lipid content than fish fed diets with 6% or 14% starch. Ash content was negatively correlated with starch inclusion level, but moisture and protein contents did not show discernible trends among treatments. Results indicate that hybrid tilapia can utilize 46% dietary starch without growth retardation, while 22% starch in feed for juvenile tilapia containing 29% protein and 10% lipid, or an E/P ratio of 37.9 kJ g?1 is optimal.  相似文献   

15.
Growth hormone plays important roles in various physiological processes such as growth, metabolism, and reproduction. In this study, two cDNAs encoding growth hormone receptor (GHR) were isolated from the liver of zanzibar tilapia (Oreochromis hornornum). The two cDNAs were 2,831 and 2,044 bp in length and named GHR1 and GHR2, respectively. GHR1 and GHR2 shared 57.4% similarity in nucleotide sequences and 33.5% similarity in deduced amino acid sequences. Consequently, it was presumed that they were two different genes. Conserved regions of GHR1 and GHR2 in zanzibar tilapia were different from those of other vertebrates. For example, conserved box2 regions of GHR1 and GHR2 in zanzibar tilapia were, respectively, WVELM and WVEFT, while it was WVEFI for GHRs in other vertebrates. Similar to other fish species, GHR1 and GHR2 were expressed in brain, gill, liver, muscle, spleen, gonad, stomach, kidney, and pituitary in zanzibar tilapia. The expression levels were the highest in liver. Unlike fathead minnow (Pimephales promelas) and mossambique tilapia (O. mossambicus), the expression levels of GHR1 in most female fish tissues were higher than those in male fish. No significant difference in GHR2 expression was found in all the tissues in male and female of zanzibar tilapia. Under fasting condition, the expressions of GHRs and IGF-II were significantly up-regulated (P < 0.05) in liver, while the expression of IGF-I remained stable. This observation would contribute to understanding the evolution of the GHR family in further investigation of growth regulation of zanzibar tilapia.  相似文献   

16.
Ocean acidification, resulted from high level of carbon dioxide (CO2) dissolved in seawater, may disturb the physiology of fish in many ways. However, it is unclear how acidification may impact the growth rate and/or growth hormones of marine fish. In this study, we exposed juvenile orange‐spotted groupers (Epinephelus coioides) to seawater of different levels of acidification: a condition predicted by the Intergovernmental Panel on Climate Change (pH 7.8–8.0), and a more extreme condition (pH 7.4–7.6) that may occur in coastal waters in the near future. After 6 weeks of exposure, the growth rates of fish in pH 7.4–7.6 were less than those raised in control water (pH 8.1–8.3). Furthermore, exposure at pH 7.4–7.6 increased blood pCO2 and HCO3? significantly; exposure at pH 7.8–8.0, meanwhile, did not affect acid–base chemistry. Moreover, exposure to pH 7.4–7.6 resulted in lower levels of hepatic igf1 (insulin‐like growth factor I) mRNA, but did not affect levels of pituitary gh (growth hormone) or hypothalamus psst2 and psst3 (prepro‐somatostatin II and III). The results show that highly acidified seawater suppresses growth of juvenile grouper, which may be a consequence of reduced levels of IGF‐1, but not due to diminished growth hormone release.  相似文献   

17.
The sex differentiation period of the Siberian sturgeon was investigated through expression profiling of two testicular markers (dmrt1 and sox9). At the molecular level, a clear sexual dimorphism of dmrt1 and sox9 was observed in 3-year-old fish with immature gonads, in which males showed higher expression of these genes. Among 16-month-old sturgeons cultured in Uruguay, gonad morphology analyses showed one group of fish with undifferentiated gonads and a second group which had started their histological differentiation into ovaries or testes. dmrt1 showed a significantly higher expression in testes of recently differentiated fish, but this was not the case for sox9. In undifferentiated fish, we observed two clearly different groups in terms of expression: one group of fish over-expressing male markers (dmrt1, sox9) and another group of fish showing very low expression of these genes. This suggests that fish undergoing male differentiation can be identified by their profiles of gene expression before they undergo morphological differentiation.  相似文献   

18.
The tilapia, Oreochromis mossambicus, exhibits a sexually dimorphic pattern of growth, males growing larger than females. We examined the effects of E2 and DHT on the GH/IGF-I axis and on VTG production in the tilapia. Sexually mature tilapia were injected with 5 μg g body weight of E2 (males) or DHT (females) every 5 days for a total of 3 injections. Female tilapia had significantly higher plasma GH levels than males. However, plasma and liver mRNA levels of IGF-I were significantly lower in females than in males, whereas VTG levels in both the plasma and liver mRNA were significantly higher in females than in males. Although significant amounts of VTG were detected in control males (8 ± 0.3 μg ml), the levels in control females (3000 ± 500 μg ml) were about 400 times higher than in males. Males treated with E2 exhibited a female-like GH/IGF-I profile. That is, they had significantly elevated levels of plasma GH with lower plasma IGF-I and liver IGF-I mRNA levels. Estradiol treatment significantly elevated both plasma and liver mRNA VTG levels. Dihydrotestosterone treatment in females induced a male-like GH/IGF-I profile: plasma GH levels were significantly reduced, whereas plasma and liver IGF-I mRNA levels were significantly elevated. Both plasma and liver mRNA levels of VTG were not altered by DHT treatment. Pituitary GH mRNA levels were similar in all treatment groups. These results clearly indicate that estrogens and androgens feminize and masculinize the GH/IGF-I axis, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The relationship between plasma and ovarian levels of gonadal steroids was examined in two New Zealand fish species with multiple spawning cycles of differing length. Snapper (Pagrus auratus) have a daily cycle of oocyte development, ovulation and spawning, whereas demoiselles (Chromis dispilus) spawn over 2–3 days during a repeat spawning cycle of 7–9 days. Ovarian and plasma levels of the gonadal steroids 17β-estradiol (E2), testosterone (T), 17-hydroxyprogesterone (17P) and 17,20β-dihydroxy-4-pregnen-3-one (17,20βP) were measured in reproductively active fish captured from the wild. Ovarian levels of E2, T and 17P changed in relation to spawning cycle and gonad stage in both snapper and demoiselles. E2 and T levels were detectable at all times, but highest during vitellogenesis in both species. Cyclic changes of 17P occurred in both species, and levels appeared to depend on the rate of conversion of 17P to other hormones. No changes in ovarian levels of 17,20βP were detected in relation to stage of the spawning cycle in snapper; however, ovarian levels of 17,20βP were highest in demoiselles before spawning when fish undergoing final oocyte maturation predominated. Plasma levels of E2 and T were strongly correlated with ovarian concentrations (r=0.850 and r=0.819 for E2 and T respectively) in demoiselles but there was poor correlation between ovarian and plasma levels of 17P and 17,20βP (r=0.004 and 0.273 respectively), or between ovarian and plasma levels of E2, T, 17P or 17,20βP of snapper (r=0.135, 0.277, 0.131 and 0.279). The poor correlation between plasma and ovarian levels of some steroid hormones suggests that plasma concentrations of steroids may not adequately reflect the reproductive status of the fish during short-term cyclic ovarian changes. It is suggested that this disparity is likely to be most marked in species with ovulatory periodicity of short duration.  相似文献   

20.
The present study investigated the effects of argan oil, obtained from Argania spinosa, on pre‐ and post‐challenge immuno‐haematological and biochemical responses of Nile tilapia, Oreochromis niloticus. For this purpose, the fish were fed diets containing 0, 0.5%, 1% or 2% argan oil for 45 days. Following 45 days of feeding, fish were challenged with Lactococcus garvieae and mortality was recorded for 15 days. During the pre‐challenge period, significantly higher respiratory burst activity, total white blood cell (WBC), serum lysozyme activity and myeloperoxidase activity were determined in the argan oil‐fed groups. The serum glucose and cholesterol levels decreased whilst total protein and albumin did not change in the groups fed with argan oil‐supplemented diets. After challenge with Lactococcus garvieae, the percentage survival (%) was found to be the highest in the 1% and 2% argan oil‐supplemented feeding groups. Also, there was a significant increase in weight gain, specific growth rate and feed conversion ratio in those fish fed argan oil. The results of this study indicated that after the supplementation of fish diets with argan oil, especially at 1% and 2% concentrations, the immunological, haematological and biochemical values remained similar in both the pre‐ and post‐challenge periods and the immune response against L. garvieae in Nile tilapia was modulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号