首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
This study evaluated the effect of an abrupt increase in easily biodegradable carbon (acetate) on bacterial activity and abundance in the water of recirculating aquaculture systems (RAS). The study included a batch experiment with RAS water only, and an experiment at system level where twelve pilot scale RAS were used. The batch experiment was made to test how acetate concentration would influence the microbial state in RAS water. Further, we wanted to observe if the selected microbial analysis tools would be able to detect these changes. The second experiment was carried out in twelve identical and independent RAS that had been operated under constant loading conditions (1.6 kg/m3 make-up water) for five months prior to the trial. The twelve RAS were divided into four treatment groups in triplicates: i) control with submerged biofilter (Ctrl + bf); ii) control without submerged biofilter (Ctrl-bf); iii) acetate addition in RAS with submerged biofilter (Ac + bf); and iv) acetate addition in RAS without submerged biofilter (Ac-bf). The biofilter media from the groups without submerged biofilter (Ac-bf and Ctrl-bf) was removed just 5 h prior to the start of the trial. The two acetate treatment groups (Ac + bf and Ac-bf) were spiked with 40 mg/L of acetate three consecutive times (0, 24 and 48 h). Consumption of acetate, bacterial abundance and bacterial activity were followed for 72 h after the first acetate spike for both experiments. Bacterial activity was quantified by BactiQuant® and hydrogen peroxide (HP) degradation assay. Bacterial abundance was assessed by quantifying micro-particles and free-living bacteria. In the batch experiment we observed a significant increase in bacterial activity proportional to the amount of acetate added, and a corresponding significant increase in microparticles (1–3 μm). In the pilot scale RAS experiment, the acetate addition in RAS with submerged biofilter did not cause an increase in bacterial activity, or in the number of microparticles in the water phase but a significant increase in bacterial activity and number of microparticles were observed in the RAS without submerged biofilter (Ac-bf). These changes were particularly pronounced shortly after each acetate spike.In RAS with submerged biofilters, the acetate was presumably consumed primarily by the bacterial community within the biofilm, and consequently, only minor changes were observed in densities of free-living bacteria in the water phase. The results of the study suggest that heterotrophic bacteria in the submerged biofilter have a high capacity to handle fluctuation of organic matter loading in RAS, thereby stabilizing the abundance and activity of bacteria in the water column.  相似文献   

2.
Foam fractionation is often considered an ineffective way of removing organic matter from freshwater due to the low surface tension of the water. There is, however, a lack of studies testing foam fractionation efficiency in replicated freshwater recirculating aquaculture systems (RAS). Foam fractionation can be applied with or without ozone. Ozone is a strong oxidiser previously shown to improve water quality and protein skimmer efficiency. To test the efficiency of foam fractionation and ozonation (20 g O3 kg-1 feed) separately and in combination in freshwater RAS, a two-by-two factorial trial was conducted with each main factor at two levels (applied or not applied). Each treatment combination was carried out in triplicates using 12 replicated pilot scale RAS stocked with juvenile rainbow trout (Oncorhynchus mykiss) and operated at a feed loading of 1.66 kg feed m-3 make-up water. The trial lasted 8 weeks and samples were obtained once a week. Ozone applied by itself significantly reduced the number of particles (83%), bacterial activity (48%) and particulate BOD5 (5-days biochemical oxygen demand; 54%), and increased ultra violet transmittance (UVT; 43%) compared to the untreated control group. Foam fractionation by itself lead to significant reductions in particle numbers and volume (58% and 62%, respectively), turbidity (62%), bacterial activity (54%) and total BOD5 (51%). A combination of both treatments resulted in a significant additional improvement of important water quality variables, including a 75% reduction in total BOD5, 79% reduction in turbidity, 89% reduction in particle numbers and 90% reduction in bacterial activity compared to the control. The removal efficiencies were within the same range as those observed in previous studies conducted with foam fractionators in saltwater systems (with or without ozone), corroborating that foam fractionation may become a useful tool for controlling organic matter build-up and bacterial loads in freshwater RAS.  相似文献   

3.
This study aims to develop a hybrid zero water discharge (ZWD) - recirculating aquaculture system (RAS) system to improve water quality, as well as the growth, survival, and productivity, of the super-intensive white shrimp culture under low salinity conditions at semi-mass and the industrial level. The study consisted of two parts: (1) a semi-mass trial for the optimization of shrimp production using a hybrid ZWD-RAS system with a total volume of 2.7 m3 at the different shrimp stocking densities of 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 and (2) an industrial trial at a commercial shrimp urban farming facility in Gresik, East Java, with total volume of 110 m3 at the optimum shrimp stocking density from the semi-mass trial. Both the semi-mass and industrial trials were performed in five steps: (1) preparation and installation of the RAS and ZWD system components; (2) preparation of microbial components including nitrifying bacteria, the microalgae Chaetoceros muelleri, and the probiotic heterotrophic bacteria Bacillus megaterium; (3) acclimatization of white shrimp post larvae from the salinity level of 32 ppt to 5 ppt; (4) conditioning of the biofilter used in the RAS and shrimp tank (microbial loop manipulation in ZWD); and (5) shrimp grow-out rearing for 84 days and 60 days for the semi-mass trial and the industrial trial, respectively. The hybrid system combined a ZWD system and an RAS. Shrimp tanks were conditioned with the addition of microbial components for ZWD at the beginning of the culture period. The RAS was operated when NH4+ and NO2-N levels in shrimp culture reached above 1 ppm until the levels decreased to 0–0.5 ppm. The culture performance in the semi-mass trial at 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 stocking densities was not significantly different for final mean body weight (12.06 ± 5.72, 11.84 ± 3.58, 12.04 ± 3.71 g/ind, respectively) and productivity (4.205 ± 0.071, 4.691 ± 0.025, 4.816 ± 0.129 kg/m3, respectively). Significant differences in survival (70 ± 7%, 53 ± 3%, 40 ± 4%, respectively) and feed conversion ratios (1.54 ± 0.01, 1.82 ± 0.00, 2.16 ± 0.03, respectively) were observed between the three different stocking densities. Water quality parameters and microbial loads during the semi-mass trial were similar for all stocking densities and were within the tolerance levels for white shrimp grow-out production. The results of the semi-mass trial showed that the hybrid ZWD-RAS system can maintain water quality and a microbial load up to a 1,000 PL/m3 stocking density; however, the optimum performance based on survival, feed conversion ratio, and productivity was reached at the 500 PL/m3 stocking density. The industrial trial of the application of the hybrid ZWD-RAS system using the optimal stocking density of 500 PL/m3 resulted in a comparable shrimp survival of 78% with a total production of 298 kg shrimp biomass (equal to a productivity level of 2.7 kg/m3). The overall results of both the semi-mass and industrial trials showed that the application of a hybrid ZWD-RAS system allows optimal shrimp survival and growth at the stocking density of 500 PL/m3 and has high potential for application in commercial shrimp grow-out production at low salinity levels.  相似文献   

4.
Two studies were conducted to evaluate rainbow trout Oncorhynchus mykiss health and welfare within replicated water recirculating aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and with relatively high feed loading rates. During the first study, rainbow trout cultured within WRAS operated with low water exchange (system hydraulic retention time (HRT) = 6.7 days; feed loading rate = 4.1 kg feed/m3 daily makeup flow) exhibited increased swimming speeds as well as a greater incidence of “side swimming” behavior as compared to trout cultured in high exchange WRAS (HRT = 0.67 days; feed loading rate = 0.41 kg feed/m3 daily makeup flow). During the second study, when the WRAS were operated at near-zero water exchange, an increased percentage of rainbow trout deformities, as well as increased mortality and a variety of unusual swimming behaviors were observed within WRAS with the highest feed loading rates and least water exchange (HRT ≥ 103 days; feed loading rate ≥ 71 kg feed/m3 daily makeup flow). A wide range of water quality variables were measured. Although the causative agent could not be conclusively identified, several water quality parameters, including nitrate nitrogen and dissolved potassium, were identified as being potentially associated with the observed fish health problems.  相似文献   

5.
Increasing intensities of water reuse in recirculating aquaculture systems (RAS) lead to a build-up of micro particles (< 20 μm) in the water. This build-up may have consequences for other water quality parameters and for the fish. This baseline study was carried out to determine the variation in micro particle levels (numbers, volume and surface area) and accompanying bacterial activity in commercially operated outdoor RAS, as well as the effects of different components in the recirculation loop on micro particle dynamics. Water samples were obtained during spring 2017 from 7 Danish Model Trout Farms (MTFs) producing rainbow trout (Oncorhynchus mykiss) in a total of 20 separate RAS units. Micro particle numbers and size distribution, bacterial activity, and inorganic and organic nutrient concentrations were analysed. Micro particle numbers ranged between 6.0·104 – 7.4·105 ml−1 and large variations were found between seemingly similarly operated RAS units within the same farm. There was a strong, positive correlation (p < 0.001) between micro particle levels and bacterial activity in the systems. Although not significant, biofilters generally seemed to trap particles whereas drum filters seemed to reduce particle volume while increasing particle numbers and surface area. The study sustains that bacterial activity in RAS is strongly associated with fine particle loading, and demonstrates for the first time the overall magnitude and level of variation in particle levels and bacterial activity that exists in commercially operated MTFs.  相似文献   

6.
为了评估全封闭循环水养殖系统中养殖密度对钝吻黄盖鲽生长的影响及水质变化情况,将体质量为(250.00±50.83)g的钝吻黄盖鲽分成8个试验组(放养密度分别为18、22、26、30、34、38、42、46 kg/m3),进行了3个月的饲养试验,检测不同养殖密度下鱼的成活率、体质量增长率及饲料系数,同时对试验期间氨氮、亚硝酸盐和溶解氧等各项水质指标的动态变化进行监测。试验结果显示,各试验组鱼的成活率均达到96%以上,但随着养殖密度的增加,钝吻黄盖鲽的成活率总体呈现降低的趋势;低密度组(18 kg/m3)的体质量增长率最高,为36.1%,高密度组(46 kg/m3)的体质量增长率最低,为24.8%,且体质量增长率随着养殖密度的增加而逐渐降低;随着养殖密度的增加,饲料系数呈逐渐升高的趋势;养殖期间各项水质指标均保持在适宜钝吻黄盖鲽生长的范围内。结果表明,在本试验的循环水养殖系统中,综合考量养殖生长指标及单位面积产量,钝吻黄盖鲽规模化生产的最适养殖密度为42~46 kg/m3。  相似文献   

7.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

8.
The objective of this study was to determine the solids separation efficiency of the four swirl separators and the drum filter within one of the water recirculation systems (RAS) of a salmon-smolt hatchery. Water flowrates and concentrations of total suspended solids (TSS) within the RAS were measured weekly over 5 weeks in 2004 and 4 weeks in 2005. During the study, the hydraulic retention time in the tanks was 2.8 h and the feed rate ranged between 0.16 and 0.84 kg/m3 of make-up water. The system volume replacement rate and the water flow recycle rate were respectively 21%/day and 96% in 2004, and 50%/day and 91% in 2005. A mathematical model was developed to determine the transient concentration of fine particles in the recirculation loop. By fitting the predictions of the model to the measured TSS concentrations, it was determined that about 15% of the waste generated within the RAS (assumed equal to 20% of daily feed rate) was removed by the system overflow water. Using this information and TSS data from the backwash water of the drum filter, it was calculated that the swirl separators and drum filter removed respectively 63% and 22% of the waste solids rejected by the fish.  相似文献   

9.
Refreshment (make-up) water is used in recirculating aquaculture systems (RAS) mainly to purge off-flavors, to add alkalinity and sometimes for temperature control. Alternatively, alkalinity may be added by means of a chemical base and heat may be supplied by a heating system. The objective of this study is to show how the optimal (minimizing cost) mix of the three controls: water, base and heat, can be found for given temperatures and water prices.The optimal solution varies over the temperature space and also depends on the price of water. For conditions at Eilat, Israel (on the Red Sea), using supplementary heating to maintain a constant temperature may become prohibitively expensive. If heating is given up, the remaining choice is between the supply of alkalinity via the refreshment water and adding a base. The supply of alkalinity with the water requires 2.0 m3[water]/kg[feed], much more than the minimum refreshment rate required to purge off-flavors, which is thought to be 0.3 m3[water]/kg[feed]. If the price of water is more than 0.03 USD/m3, the use of sodium bicarbonate for alkalinity control is justified.  相似文献   

10.
Culture density in excess of a critical threshold can result in a negative relationship between stocking density and fish production. This study was conducted to evaluate production characteristics of juvenile cobia, Rachycentron canadum, reared to market size in production‐scale recirculating aquaculture systems (RAS) at three different densities. Cobia (322 ± 69 g initial weight) were reared for 119 d at densities to attain a final in‐tank biomass of 10, 20, or 30 kg/m3. The specific objective was to determine the effects of in‐tank crowding resulting from higher biomass per unit rearing volume independent of system loading rates. Survival was ≥96% among all treatments. Mean final weight ranged from 2.13 to 2.15 kg with feed conversion efficiencies of 65–66%. No significant differences were detected in growth rate, survival, feed efficiency, or body composition. This study demonstrates that cobia can be reared to >2 kg final weight at densities ≤30 kg/m3 under suitable environmental conditions without detrimental effects on production.  相似文献   

11.
Turbot, Psetta maxima, represent a valuable and growing subsector of global finfish aquaculture, although bacterial infections such as edwardsiellosis have adversely affected the industry in recent years. During an experiment designed to investigate the effect of direct ozonation on fish performance in RAS, a bacterial disease outbreak (Edwardsiella tarda) occurred, presenting an opportunity to record additional effects of experimental ozonation regimes on performance of turbot grown in RAS. This short note thus collates phenomenological information on survival, growth and water quality parameters recorded during a 91 day experiment with juvenile fish. Alongside antibiotic therapy, a high ozone treatment (360 mV) improved survival of stock compared to those in a non-ozonated control (200 mV) and significantly so compared to low ozone treatment (320 mV). Both experimental treatments reduced total heterotrophic and Vibrio sp. bacterial loading and nitrite concentration in culture water compared to the control. Experimental ozone treatment also suggested a trend for improved growth and feed intake. Although no confirmed link or mechanism between ozonation and reduced impacts of bacterial infection are proven in this study, the observations add further evidence to the body of work demonstrating beneficial effects of ozonation on water quality, survival and growth of farmed fish.  相似文献   

12.
为研究配合饲料条件下循环水养殖系统(RAS)中养殖密度对松江鲈生长的影响,选取体长为(2.97±0.12)cm、体质量为(0.26±0.03)g的松江鲈,分别按40尾/m2(A组)、80尾/m2(B组)和120尾/m2(C组)共3个养殖密度,在RAS中进行了为期240 d的养殖试验。试验结果显示:A组鱼的终末体质量、终末体长、体质量日增长量、存活率等均显著高于其他两组,A组鱼的体长日增长量显著高于C组(P<0.05);不同密度组间鱼体肥满度无显著性差异(P>0.05)。试验组单位面积产量由高到低依次为:C组(2.83 kg/m2)、B组(2.51 kg/m2)、A组(1.72 kg/m2)。试验组鱼体质量与体长均呈幂函数相关(m=aLb,a=0.007 6~0.008 9,b=3.123 6~3.209 4),体长、体质量生长均以三次函数拟合较好。各组间的鱼体长、体质量变异系数均差异显著(P<0.05),其中B组最小...  相似文献   

13.
The main aim of the study was to decide the effect of specific water consumption (L/kg/min) and feed load per water flow (g/m3) on the water quality parameters pH, CO2, total ammonia nitrogen (TAN) and suspended solids (SS) in two large semi-closed containment systems (S-CCS). The reported production parameters (range) in the two S-CCS were specific water consumption (q): 0.04–0.47 L/kg/min and feed load per water flow: 9.0–64 g/m3. The study period was split in two sub-periods; January–May (4.4–7.5 °C), and June–September (7.5–13.2 °C) before a regression model was used to determine the relationship between production intensity (q, feed load) and water quality (pH, CO2). With the acceptable level of CO2 defined as ≤10 mg/L, the model predicted a minimum specific water consumption (L/kg/min) between 0.07 (winter) and 0.2 (summer). The predicted maximum feed load per water flow (g/m3) was between 35 (summer) and 45 g/m3 (winter). These calculated limits for production intensity were close to the values earlier reported for smolt or post-smolt production in large, onshore tanks.  相似文献   

14.
Brook trout (Salvelinus fontinalis) are a commercially important coldwater species reared in Wisconsin and the Midwestern United States. Brook trout are raised by private, tribal, state, and federal fish hatchery facilities in Wisconsin. Approximately 10% of private coldwater aquaculture operations are presently raising brook trout of various strains for stocking uses and a limited amount for food markets. Growing brook trout to a larger size, if they can be reared in a shorter time span, may present a potential new sector for the aquaculture market in the Midwestern US. The present study reports hatchery production attributes, i.e., growth, survival, fin condition, feed efficiency, water chemistry requirements and general husbandry of Lake Superior strain (Nipigon) brook trout reared in a recirculating aquaculture system (RAS), operated at an average temperature of 13 °C. The recycle system at NADF reared 1379 kg of brook trout over a 10-month period from fingerling (9 g) to market size (340–454 g). The trout grew faster (0.84 g/day and 0.64 mm/day) in the RAS than fish cultured in traditional flow-through tank culture utilizing ground water at 7.6 °C (0.14 g/day and 0.35 mm/day). Final average weight of RAS fish was 260 g, while the flow-through fish averaged 65 g. Final tank densities for the RAS averaged 40.4 kg/m3 while flow-through tanks averaged 31.2 kg/m3. Throughout the project, feed conversions in the RAS ranged from 0.9 to 1.3. Water quality variables such as TAN, nitrite, DO, temperature, TSS, CO2, ph, etc. were within safe limits for brook trout and will be discussed. It does appear from this initial research project that market size brook trout can be raised successfully in a recycle system within a similar time frame as a rainbow trout produced in a Wisconsin typical flow-through facility.  相似文献   

15.
A six-month trial was conducted to compare the effects of high and low make-up water flushing rates on rainbow trout performance and water quality in replicated water reuse aquaculture systems (WRAS). Six identical 9.5 m3 WRAS, containing a single 5.3 m3 tank and operated at a total recirculating flow of 380 L/min were stocked with 1000 rainbow trout each (133 ± 1 g). Three WRAS were operated at high flushing rates (2.6% of total flow) and three were operated at low flushing rates (0.26% of total flow), providing system hydraulic retention times of 0.67 and 6.7 days, respectively. During a one-week period when fish were at maximum feeding (i.e., mean feed loadings of 0.53 and 5.3 kg/m3 make-up water flow high and low make-up conditions, respectively) and maximum densities (80 kg/m3), water samples were collected across all unit processes. All typical water quality parameters measured at the culture tank outlet during this week were significantly different between treatments, except for dissolved oxygen, carbon dioxide, and temperature, which were controlled. Within the low exchange WRAS, total suspended solids (TSS), carbonaceous biochemical oxygen demand, total ammonia nitrogen, un-ionized ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, dissolved organic carbon, particle counts, true color, and total heterotrophic plate counts were significantly greater, whereas UV transmittance (%) and alkalinity were significantly reduced. Of these parameters, TSS, fine particles, and heterotrophic bacteria counts were the only parameters of concern within the low exchange WRAS. The potential impacts of each water quality constituent are discussed. Element analysis indicated that concentrations of nine metals were significantly greater within the low exchange WRAS. The highest metal concentrations measured at low exchange were within safe recommended limits, with the exception of copper (0.037–0.056 mg/L), which could have reached chronically toxic levels. Although cumulative mortality was relatively low for all WRAS, a linear trend between copper concentration and mortality was evident. The highest mortality, which occurred within a low exchange WRAS, coincided with the highest copper (0.056 mg/L); and the lowest mortality, which occurred within a high exchange WRAS, coincided with non-detectable copper levels. A comparison of survival between treatments bordered significance, 99.5 ± 0.1 and 98.9 ± 0.4% for the high and low exchange WRAS, respectively. There was no significant difference in rainbow trout weight at the conclusion of the study, i.e., approximately one year post-hatch: 1401 ± 23 and 1366 ± 33 g for the high and low exchange WRAS, respectively. There were no differences in thermal growth coefficients or feed conversion ratios between the high and low exchange treatments. Rainbow trout condition factor was significantly greater within the low exchange WRAS.  相似文献   

16.
Slow growth and losses to bird predation and infectious diseases in winter can compromise the profitability of silver perch farming. To evaluate over‐wintering silver perch (Bidyanus bidyanus) in a recirculating aquaculture system (RAS), fingerlings (38 g) were stocked in either cages in a pond at ambient temperatures (10–21 °C) or tanks in the RAS at elevated temperatures (19–25 °C) and cultured for 125 days. Mean survival (96%), final weight (146 g), specific growth rate (1.07% day?1) and production rate (28.1 kg m?3) of fish in the RAS were significantly higher than for fish over‐wintered in cages (77%, 73 g, 0.53% day?1, 11.1 kg m?3). Fish from both treatments were then reared in cages for a further 129 days. Final mean weight of fish originally over‐wintered in the RAS was 426 g, while fish over‐wintered in cages were only 273 g. To determine optimal stocking densities, fingerlings (11.8 g) were stocked at 500, 1000 or 1500 fish m?3 in tanks in the RAS and cultured for 124 days. Survival was not affected, but growth was significantly slower and feed conversion ratio higher at 1500 fish m?3 compared with 500 or 1000 fish m?3. Results demonstrate that over‐wintering silver perch in an RAS can produce large fingerlings for grow‐out in early spring. This strategy could eliminate bird predation, reduce losses to diseases and shorten the overall culture period.  相似文献   

17.
A 30‐day experiment was conducted to evaluate the effect of three commercial microbial products, Novozymes Pond Plus, Zhongshui BIO‐AQUA and Effective Microorganisms on bacterial community in polyculture tanks stocked with grass carp (Ctenopharyngodon idellus), gibel carp (Carassius auratus) and silver carp (Hypophthalmichthys molitrix). Four treatments were tested. One treatment with no supplementation of the microbial products served as control. In the other three treatments, the microbial products were added at the intervals of 10 days respectively. During the experiment, grass carp and gibel carp were fed with a commercial formulated feed daily. Bacterial count and bacterial composition in water column of the tanks were monitored at the intervals of 3 days, and bacterial composition in sediment was determined at the end of the experiment. Bacterial composition in water column varied with progress of the experiment. Some bacteria from Novozymes Pond Plus and Effective Microorganisms could colonize in the tanks but did not dominate in bacterial community. This study reveals that the competition between the exogenous bacteria and native bacteria might be a factor determining the efficacy of the microbial products in improving water quality.  相似文献   

18.
An economic analysis of a hypothetical small‐scale marine recirculating aquaculture system (RAS) is conducted for ongrowing small, wild black sea bass Centropristis striata at the University of North Carolina Wilmington, Center for Marine Science (UNCW‐CMS) aquaculture facility in Wrightsville Beach, North Carolina (NC). The analysis is based on production data from field trials and marketing data from the sale of tank‐grown product. The growout facility consists of four 16.7‐m3 (dia. x ht. = 5.58 × 1 m) fiberglass tanks supported by state‐of‐the‐art RAS components, including particle traps and swirl separators, drum screen filter, trickling biological filter, UV sterilizer, heat pump, protein skimmer, and oxygen cone. Wild‐caught, above minimum legal size black sea bass (24.2 cm TL, 350 g, 0.77 lb) were purchased from a commercial fisherman for $3.14/ kg ($1.4011b), stocked at a density of 21.1 kg/m3, and grown to a final weight of 1 kg (2.24 lb) in 200 d at 23 C resulting in 1.8 production cycles per year. Fish were fed a commercial pelleted diet ($0.94/kg; $0.42/Ib) with a feed conversion ratio of 1.5. Final harvest density was 60 kg/m3 (0.50 lb/gal), and total harvestable weight was 3,982 kg (8,919 Ibs) of fish per cycle, or 6,760 kg (15,022 lb) per year. The economic analysis assumes that the facility owner manages and operates the system on coastal property zoned commercial/industrial, where full strength seawater is available on demand from natural sources. Under the base case scenario, initial investment in construction and equipment is $84,506 (10‐yr life), fish are grown to a harvestable weight of lkg/fish (2.24 lb/fish), product price (farm gate basis) is $10.10/kg ($4.50/lb), and breakeven price is $7.02/kg ($3.13/lb). Depreciation, fingerlings, interest paid, electricity, and feed, account for 19.6%,17.4%, 16.9%, 16.6%, and 12.3%, respectively, of total annual costs. Measures of financial performance for the base case, 10‐yr scenario are: annual return to management, $18,819; net present value (5% discount rate), $145,313; internal rate of return on initial investment, 37%; and discounted payback period on initial investment, 3.2 yr. Sensitivity analysis showed that product price changes have the largest impact on annual returns, while changes in daily growth rate, initial weight, and survival have a strong impact on financial performance. Moderate effects are seen with changes in fingerling costs, feed costs, feed conversion ratio (FCR), final weight, and interest rates.  相似文献   

19.
生态基对草鱼生长性能、肠道及水体微生物的影响   总被引:1,自引:1,他引:0  
将无纺布生态基应用于草鱼养殖生产中,研究生态基对草鱼生长、免疫和养殖水质的影响,并利用PCR-DGGE技术分析了草鱼肠道和养殖水体微生物群落结构的动态变化。结果显示,实验组草鱼的末重、增重率均显著高于对照组(P0.05),饲料系数显著低于对照组(P0.05);草鱼血清碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、超氧化物歧化酶(SOD)、溶菌酶(LSZ)活性水平均显著高于对照组(P0.05),诱导型一氧化氮合酶(iNos)和总一氧化氮合酶(tNos)均显著低于对照组(P0.05);除了在第30天时实验组TSS水平显著低于对照组(P0.05),整个过程挂设无纺布生态基对养殖水质参数影响不明显(P0.05)。PCR-DGGE检测结果显示:Cetobacterium somerae是对照组养殖水体和对照组草鱼肠道特异细菌;维氏气单胞菌是养殖水体和对照组草鱼肠道特异细菌,对照组养殖水体的分布明显比实验组丰富,在生态基中不存在;生态基的细菌群落构成和挂设生态基的实验组养殖水体相似性较高,最高时达到63%;绿弯菌占生态基细菌总量的10%左右,而在养殖水体中仅为5%。研究表明,生态基的应用有效促进了草鱼的生长,降低了饲料系数,提高了草鱼的非特异性免疫功能,降低养殖水体TSS浓度。生态基的应用改变了水体细菌群落组成,减少了养殖水体和草鱼肠道中一些条件致病菌的存在。  相似文献   

20.
A low‐head recirculating aquaculture system (RAS) for the production of Florida pompano, Trachinotus carolinus, from juvenile to market size was evaluated. The 32.4‐m3 RAS consisted of three dual‐drain, 3‐m diameter culture tanks of 7.8‐m3 volume each, two 0.71‐m3 moving bed bioreactors filled with media (67% fill with K1 Kaldness media) for biofiltration, two degassing towers for CO2 removal and aeration, a drum filter with a 40‐µm screen for solids removal, and a 1‐hp low‐head propeller pump for water circulation. Supplemental oxygenation was provided in each tank by ultrafine ceramic diffusers and system salinity was maintained at 7.0 g/L. Juvenile pompano (0.043 kg mean weight) were stocked into each of the three tanks at an initial density of 1.7 kg/m3 (300 fish/tank). After 306 d of culture, the mean weight of the fish harvested from each tank ranged from 0.589 to 0.655 kg with survival ranging from 57.7 to 81.7%. During the culture period, the average water use per kilogram of fish was 3.26 or 1.82 m3 per fish harvested. Energy consumption per kilogram of fish was 47.2 or 22.4 kwh per fish harvested. The mean volumetric total ammonia nitrogen (TAN) removal rate of the bioreactors was 127.6 ± 58.3 g TAN removed/m3 media‐d with an average of 33.0% removal per pass. Results of this evaluation suggest that system modifications are warranted to enhance production to commercial levels (>60 kg/m3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号