首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three oilseed protein concentrates (soybean, canola, and sunflower) were evaluated to determine their potential, when supplemented with deficient essential amino acids, to partially or completely replace fish meal in diets fed to rainbow trout Oncorhynchus mykiss . Triplicate aquaria of juvenile trout (average weight of 12 g) were fed the experimental diets for 10 wk, at which time the average weight of the fish was approximately sixfold higher than the initial weight. Average fish weight gains on diets in which the protein component was 100% fish meal; 75% fish meal, 25% soybean protein concentrate; 50% fish meal, 50% soybean protein concentrate; and 75% fish meal, 25% sunflowerseed protein concentrate were not significantly different ( P < 0.05). The average weight of fish fed a commercial feed was significantly lower than that of fish fed the 100% fish meal diet, but not significantly different from fish fed the three other formulations mentioned above. Fish fed diets containing 50% fish meal, 50% canola protein concentrate; and 25% fish meal, 75% sunflowerseed protein concentrate had significantly lower average final weights than those of fish fed the other diets. Feed conversion ratio patterns among the dietary treatment groups reflected those of weight gain. Fish survival exceeded 95% on all diets. Apparent protein digestibility coefficients ranged from 79.5% (75% soybean protein concentrate, 25% canola protein concentrate) to 90.6% (100% soybean protein concentrate). The results of this study demonstrated that certain oilseed protein concentrates have good potential as protein sources in rainbow trout feeds when properly supplemented with essential amino acids.  相似文献   

2.
The effects of protein source and nutrient density on growth efficiency, nutrient digestibility and plasma amino acid concentrations of rainbow trout were evaluated. A 3 by 2 factorial treatment design with three protein sources, fish meal–barley (F–B), plant concentrates (PC) and plant meals (PM), and two nutrient densities were used. A commercial reference diet was also fed. Triplicate tanks of 30 fish (initial wt. 28 g) were fed each diet, and the final weight averaged 240 g fish−1. Protein source and nutrient density affected feed intake, weight gain and feed conversion ratio. Weight gain of trout fed the PC and PM diets was approximately 10% less than fish fed the F–B diets. Protein retention was affected by protein source, but not nutrient density, and was the highest for the fish fed diets containing fish meal and the lowest for the fish fed PM diets. Apparent digestibility coefficients and apparent amino acid availabilities of the diets corresponded with differences in weight gain. This study provides further evidence that growth rates of trout fed fish meal‐free diets, using conventional and concentrated plant protein ingredients, are good but some limitation to growth exists in the fish meal‐free diets.  相似文献   

3.
A feeding trial was conducted to investigate the effects of the replacement of dietary fish meal and fish oil with oilseed meals (soybean or canola) and canola oil on growth, nutrient utilization, body composition, diet digestibility and hematological parameters of rainbow trout Oncorhynchus mykiss. Seven diets were used; the control diet (designated FM) contained fish meal and fish oil as the main protein and lipid sources. For the experimental diets, 40% of fish meal protein was substituted with soybean meal, canola meal or a soybean/canola meal mixture, and these diets (designated SM, CM and SCM, respectively) contained fish oil as the lipid source. Three additional diets (SM?+?CO, CM?+?CO and SCM?+?CO) were formulated with the same vegetable protein meals but with fish oil replaced by canola oil. Fish were fed twice daily to apparent satiation for 11?weeks. The growth of fish fed the CM?+?CO diet was significantly lower than that of fish fed the FM, SCM, SM?+?CO and SCM?+?CO diets. The feed conversion ratio (FCR) was significantly better in fish fed the FM and SCM?+?CO diets than in fish fed the CM and CM?+?CO diets. Furthermore, feed intake was significantly lower for fish fed the CM?+?CO diet than in fish fed the SCM diet, and lipid digestibility of the CM?+?CO diet was significantly lower than that of all other diets. No significant differences of body composition were observed. Circulating leukocyte levels, leukocyte ratios and serum lysozyme activity remained unaffected by dietary treatment. However, it was observed that fish fed the CM?+?CO diet displayed hematocrit levels significantly lower (P?<?0.05) than that of fish fed the other diets. The results indicate that when diets contain either fish oil or canola oil, canola meal and soybean meal can be incorporated into rainbow trout feeds at a combined 32% inclusion level (replacing 40% of fish meal protein) without inducing significant negative effects on growth, nutrient utilization or health.  相似文献   

4.
Apparent digestibility coefficients (ADCs) of nutrients (crude protein, amino acids, crude lipid, fatty acids, and minerals) were determined for fish meals derived from menhaden, Asian carp (combination of silver and bighead carps), and common carp in feeds for hybrid striped bass and rainbow trout. Extruded test diets were formulated to contain a 70 : 30 mixture of reference diet and test ingredient with yttrium oxide (1 g kg?1) serving as the inert marker. Diets were randomly assigned to triplicate tanks and fish were fed once per day at 2% body weight. Fecal samples were collected by manual stripping. The ADCs were calculated according to standard procedures. The composition and digestibility of Asian carp and common carp meals was broadly similar to menhaden meal. Protein digestibility ranged from 86.5% (Asian carp meal) to 93.1% (common carp meal). Lipid was highly digestible with ADCs >100% for all ingredients. Although the Asian carp meal was less digestible than the other two fish meals, it was still a highly digestible ingredient. Our data suggest that fish meals derived from Asian or common carp would be valuable feedstuffs in diets for hybrid striped bass, rainbow trout, and possibly other cultured fishes.  相似文献   

5.
The effect of replacing fish meal with soybean meal (SBM) pretreated with phytase on feeds of juvenile rainbow trout was evaluated in a 90-day feeding trial. The rainbow trout (initial body weight, 4.01 ± 0.02 g) were fed five isonitrogenous (crude protein, 44.97%) and isolipidic (crude lipid, 13.42%) feeds. Diets were formulated to contain phytase-pretreated SBM replacing 0, 20, 40, 60 and 80% of fish meal protein, respectively. The results showed that there was no significant difference in weight gain (WG) among fish fed S0, S20, S40 and S60 diets; however, a significant reduction of this variable occurred when 80% of fish meal protein was replaced by phytase-treated SBM (P < 0.05). Similarly, specific growth rate and protein efficiency ratio had a similar trend with WG. Apparent digestibility coefficient (ADC) of protein and lipid in the S80 diet was significantly lower than that of the other diets, and the ADC of phosphorus significantly increased with the increase of dietary phytase-treated SBM level. No significant differences among treatments were detected for moisture, protein, lipid and ash content in whole body and muscle samples. Nitrogen and phosphorus excretion indicated that fish meal replacement by phytase-treated SBM led to an increase in nitrogen excretion, but led to a reduction in total phosphorus excretion. The results of the present study show that 60% of fish meal could be replaced by phytase-treated SBM in diets of juvenile rainbow trout without compromising weight gain or feed efficiency. A quadratic equation according to regression analysis of weight gain against dietary phytase-treated SBM level indicated that the optimal level of dietary phytase-treated SBM replacement for maximum growth was 26.90%.  相似文献   

6.
Recent studies with rainbow trout, Oncorhynchus mykiss, demonstrated that grain distiller's dried yeast (GDDY) at up to 12% inclusion was an effective dietary protein source when replacing fish meal. To examine the effectiveness of GDDY when replacing an increased variety of dietary protein sources, two feeding trials were conducted. In the first trial, six commercial‐type diets were formulated to contain 42% digestible protein and 20% crude lipid with GDDY included at 0, 6, 9, 12, 15, and 18% to replace all dietary protein sources except fish meal. In the second trial, four plant‐based diets with GDDY at 0, 9, 12, and 15% were examined. Experimental diets were fed twice daily, to apparent satiation, to three replicate tanks of fish/diet (initial weight = 22.3 ± 0.7 g) for 10 wk in a 15 C recirculating system. Results demonstrated excellent fish growth and the inclusion rate of GDDY did not negatively affect growth or feed conversion. No significant negative effects of GDDY on body indices or whole‐body proximate composition were observed. Based on these results, GDDY can be included in both commercial‐type diets and plant‐based diets for rainbow trout at up to 18 or 15%, respectively, without decreasing growth performance.  相似文献   

7.
The aim of this trial was to compare the performance of rainbow trout fed diets including local or imported fish meal as the main protein sources, and to test the effect of reducing the fish meal content or including a fish protein hydrolysate in the diets. Two experimental diets were formulated to include 35% (diet 2) or 20% (diet 3) of a local processed whole fish meal; two other diets were formulated similar to diets 2 and 3 but with 5% fish protein hydrolysate replacing the same amount of fish meal (diets 4 and 5 respectively); a diet similar to diet 2, but including Norwegian fish meal, was used as a control (diet 1). The growth trial lasted 14 weeks and was carried out in floating net cages (325‐L capacity), with duplicate groups of 20 rainbow trout of an initial average weight of 58 g. The apparent digestibility coefficients (ADC) of the diets were evaluated in a separate laboratory trial. At the end of the growth trial, there were no significant differences in growth rate and protein efficiency ratio among groups. Feed conversion ratios were significantly better in groups fed diets 3, 4 and 5 than in the other groups. Nitrogen retention (% of N intake) was significantly higher in fish fed diets 4 and 5 than in those fed diet 2. There were no significant differences in energy retention (% of energy intake) among groups. At the end of the trial, there were no significant differences among groups in proximate composition of whole fish. The ADC of protein, energy and phosphorus of diets 1 and 2 were significantly lower than those of diets 3 and 5. It was concluded that, under the experimental conditions tested, performance of rainbow trout fed practical diets including good quality local processed fish meal is similar to that of fish fed diets including Norwegian fish meal. A reduction in the fish meal from 35% to 20% of the diet or the inclusion of a fish protein hydrolysate had no negative effects on growth performance and improved feed utilization.  相似文献   

8.
Abstract— Fisheries by-catch and by-product meals are portrayed as ingredients having a great potential as ingredients in aquaculture feeds. The present study was designed to evaluate the nutritional value of shrimp by-catch meal, shrimp processing waste meal, and two fish meals made from Pacific whiting (meal with and without solubles) for rainbow trout by determining apparent digestibilityof these ingredients and conducting a 12-wk feeding trial with juvenile fish (average initial weight 20 g/fish). Apparent digestibility coefficients (ADCs) for protein in diets containing by-catch and processing by-products were 76% for shrimp by-catch meal, 79% for shrimp processing waste meal, 88% for Pacific whiting meal without solubles, and 92% for Pacific whiting meal with solubles. ADCs for lipid were higher than 94% for all the diets. ADCs for energy were 57% for shrimp by-catch meal, 73% for shrimp processing waste meal, 70% for Pacific whiting meal without solubles, and 73% for Pacific whiting meal with solubles. Growth performance was significantly affected by dietary protein source. Fish fed the shrimp by-catch meal diet had weight gain and feed conversion ratios similar to that of fish fed the control diet with anchovy fish meal. Fish fed diets containing shrimp processing waste and Pacific whiting meal with solubles had significantly lower weight gain and higher feed conversion ratios than the control diet. Growth was significantly lower in fish fed the Pacific whiting meal diet compared to fish fed the anchovy fish meal. The lower growth of fish fed diets containing Pacific whiting meal appeared to be a result of lower feed intake, indicating perhaps a lower palatability of this ingredient. Additional research addressing processing methods, nutritional manipulations, and palatability enhancement is needed to improve potential of some fisheries byproduct meals as ingredients in the diets of rainbow trout.  相似文献   

9.
A 65-day study was undertaken to evaluate the utilization of lysine-supplemented wheat gluten meal as a protein source for rainbow trout, Oncorhynchus mykiss (Walbaum). The performance of the trout fed wheat gluten was compared to that of trout where protein was principally supplied using fish meal and full-fat soyabean meal. Six isonitrogenous diets (approximately 45% crude protein) were formulated. Thus, the reference diet (FS) was based on fish meal and full-fat soya bean meal while a further five diets were formulated with a mixture of wheat gluten and wheat middlings used to isonitrogenously replace approximately 75% and 57% of the full-fat soya and fish meal respectively. Crystalline l -lysine representing 0.00%, 0.29%, 0.58%, 0.87% and 1.16% of the complete diet was then added to the wheat-gluten-based diets. Optimal performance in terms of weight gain and apparent net protein utilization was achieved by the fish fed a wheat-gluten-based diet supplemented with lysine (0.58%) yielding a digestible lysine level of 1.9% of the complete feed. Within the range of supplements provided, lysine digestibility was high. However, at the highest levels of supplemental lysine the relationship between uptake and supplement level was not linear. Additionally, arginine digestibility was not affected by the level of lysine supplementation. However, amongst the wheat-gluten-based diets, optimal performance was associated with a lysine: arginine ratio of 1.1: 1. Despite a lysine: arginine ratio of approximately 1.1: 1, the overall performance of the fish fed the fish-meal-soya-based reference diet was poorer than expected. The results are discussed with respect to optimal patterns of gross and digestible amino acids, lysine-arginine antagonism and the possible relationship between antinutritional factors and the poor performance of the fish fed the fish-meal-soya-based reference diet.  相似文献   

10.
Triplicate groups of rainbow trout with initial weight 361 g were fed either a fish meal based control diet or diets containing 9, 18 or 27% bacterial protein meal (BPM) or 9% of an autolysate (AU) of the BPM. No significant treatment effects were found on specific growth rates (SGR), feed intake, feed efficiency ratio (FER), or retention of nitrogen, amino acids or energy. The apparent digestibility coefficients (ADC) of nitrogen, energy and most indispensable amino acids decreased when BPM was included in the diet. The ADC of lipid, sum of amino acids, arginine, lysine, threonine and most of the dispensable amino acids were reduced at 27% BPM inclusion compared to the control, 9% and 18% BPM diets. None of the ADC estimated was different in the 9% AU diet compared to the 9% BPM diet. The loss of nitrogen and energy in faeces per kg gain increased as the dietary BPM or AU levels increased, and the energy used for activity and maintenance was higher in fish fed the 27% BPM diet than in fish fed the other diets (P < 0.05). There were no significant differences in the urea concentrations in plasma, liver and muscle, whereas the uric acid level in plasma was elevated in trout fed the 27% BPM diet. Histological evaluation of tissue from the stomach, pyloric caeca, mid-intestine and distal intestine did not reveal any diet-related morphological changes.In conclusion, no significant differences in growth and feed efficiency were found in the rainbow trout fed diets containing up to 27% BPM, and the AU did not increase fish performance compared to the BPM. Based on the data from this study, at levels up to 27% dietary inclusion, BPM is a good replacement for fish meal in diets for rainbow trout.  相似文献   

11.
Nutritional strategies to reduce both phosphorus (P) and nitrogen (N) excretion relative to growth of rainbow trout were tested in a 2 × 3 factorial experiment. The two factors were `dietary P level' and `dietary lipid level.' Reduction in dietary P from 14 to 8 g kg–1 dry diet was achieved by partial substitution of dietary fish meal with a combination of full-fat soyabean meal, corn gluten and spray-dried blood meal. Triplicate tanks of 35 rainbow trout per tank were fed experimental diets for 16 weeks and grew from approximately 40 to 250 g, in 15 °C spring water. All tanks were fed the same percent biomass per day. Diets were isonitrogenous, and dietary energy varied with dietary lipid. Diet digestibility data and results of the experiment were used to construct N and P budgets for the fish fed the various diets. A reduction in dietary fish meal from 500 to 200 g kg–1 dry diet, corresponding to a reduction in dietary P from 14 to 8 g kg–1 dry diet, resulted in >50% reductions in both solid and dissolved P waste, but did not affect growth, feed efficiency ratio (FER) or sensory characteristics of rainbow trout. Increasing dietary lipid from 170 to 310 g kg–1 dry diet led to higher growth rate and FER, and lower total N waste relative to weight gain, but did not change protein retention. Increasing dietary lipid level increased deposition of lipid in whole bodies of rainbow trout, and resulted in discernible differences in sensory characteristics of trout fillets.  相似文献   

12.
In this study, feeding experiment and subsequent digestibility trial were performed to investigate the utilization of extruded soybean meal (SBM) and corn gluten meal (CGM) as feed ingredients for juvenile rainbow trout. Plant ingredients have undergone extrusion at low temperature (100°C, LT) or high temperature (150°C, HT) for 30 s. Four isonitrogenous (44%, crude protein) and isolipidic (14%, crude lipid) diets were formulated. Control diet is fishmeal based while a combined (1:1) non‐extruded SBM and CGM for NE diet, LT SBM and LT CGM for LT diet and HT SBM and HT CGM for HT diet. Two hundred forty rainbow trout juveniles (7.8 g average body weight) were randomly divided into 12 rectangular 60 L glass aquaria and offered four different diets in triplicate. Fish were fed at satiation twice a day, six days a week for 12 weeks. Phosphorus in phytic acid level of extruded ingredients decreased through extrusion cooking. Final weight, weight gain, SGR and PER of fish fed HT diet were significantly (p < .05) higher than those fed with NE diet. Apparent digestibility coefficient for protein of LT and HT diets is significantly higher than of NE diet. The results of this study demonstrated that HT extruded SBM and CGM are suitable feed ingredients for rainbow trout diet without compromising fish growth, feed utilization and fish body composition.  相似文献   

13.
This study investigated the effects of dietary protein source and feeding regime (apparent satiation and rationed) on growth performance, nutrient digestibility, fatty acid (FA) profile, and fillet quality traits in rainbow trout. A stock of 1200 juvenile trout (mean weight 114.6 ± 0.2 g) were randomly distributed into 24 fiberglass tanks (four diets × three replications × two feeding regimes). The experimental diets were formulated to be isoproteic and isoenergetic based on bacterial protein meal (BPM), pea protein concentrate (PPC), mixture thereof (MIX), and fish meal (FM), respectively. The feeding trial lasted 77 d with water temperature of 13 C. Statistical differences appeared among the diets only in terms of crude protein digestibility. Growth performance and somatic indexes were significantly affected by the diet, while only the condition factor was influenced by the feeding regime. None of the parameters appeared to be affected by the interaction effects. Differences appeared between the FA profiles of the dorsal muscle. Oleic, linoleic, α‐linolenic, and docosahexaenoic acid contents were influenced by diet, while only minor FAs were influenced by feeding regime. In conclusion, growth performance and nutrient digestibility resulted lower in fish fed BPM diet than other groups, while PPC group was similar to FM group.  相似文献   

14.
The nutritional value of the kernel meals of three species of lupin (Lupinus albus, L. angustifolius and L. luteus) was compared against each other and solvent extracted soya bean meal and wheat gluten, when fed to either rainbow trout or red seabream. The digestible nutrient and energy values were determined for each ingredient, based on the diet substitution digestibility method. Each test ingredient was included in test diets at 300 g kg?1. As different faecal collection methods were used on each species, only ingredient comparisons within each fish species study are valid. Protein digestibility for all lupin kernel meals was significantly better than for soya bean meal when fed to red seabream, although only numerically so when fed to rainbow trout. The highest protein digestibility in both fish species was that from the wheat gluten (100.0% for both rainbow trout and red seabream). Energy digestibility for each of the lupin kernel meals (range 62.4%–64.9% in rainbow trout and 60.9%–69.5% in red seabream) was less than that obtained from soya bean meal (75.1% and 81.0% for rainbow trout and red seabream, respectively). However, the higher gross energy content of the lupin kernel meals still resulted in both L. albus and L. luteus providing equivalent levels of digestible energy as that of soya bean meal. Organic matter digestibility was generally poorer for each of the lupin kernel meals relative to that for the soya bean meal and particularly compared with the wheat gluten. Phosphorus digestibility was significantly better in all lupin kernel meals than that from both the soya bean meal and wheat gluten. Highest phosphorus digestibility was that obtained from L. albus kernel meal (100.0% for both rainbow trout and red seabream) although notably the phosphorus digestibility of all lupin kernel meals when fed to rainbow trout was determined at 100%. Similarly the digestibility of phosphorus from lupin kernel meals fed to red seabream was also very high. This study supported the good nutritional value to both rainbow trout and red seabream of kernel meals of all three species of lupin, although the digestible nutrient attributes of kernel meal from L. luteus were particularly favourable.  相似文献   

15.
Three experiments were conducted with rainbow trout to determine if Geotrichum candidum GC single cell protein could replace 100, 75 or 50% of fish meal in a pelleted diet. When the fish meal was completely replaced by GC the fish growth was retarded after 3 weeks of the experiment. With the larger fish (individual weight 47–54 g) in the short trial there were significant differences between fish fed the control diet (fish meal) and those fed the 75% substitution of GC diet. The most remarkable differences in fish growth appeared in a 42-day trial with small fish (5 g individual weight) when fish groups fed diets with 0.50 and 75% replacement gave significantly different results (P < 0.05), being 93,9, 46.6 and 34.2% gain, with feed coefficients of 1.49, 2.77 and 3.67, respectively. With large fish fed diets with 0,50 and 75% GC replacement, apparent digestibility of protein was 64.7, 68.2 and 37.5%, but fat digestibility was 79.5, 91.1 and 81.0%, respectively. No significant differences in amounts of free plasma amino acid (PAA) were found between rainbow trout fed diets with 0 or 50% substitution, but there was a marked decrease in PAA in the group fed the diet with 75% GC substitution. Analysis of chosen heavy metals was made on diets, fish and faeces, and Cu in particular was found not to be accumulated in the fish body.  相似文献   

16.
A feeding trial was conducted to evaluate the effect of nucleotides supplementation to low‐fish meal feed on growth and fatty acid composition of rainbow trout. Six isonitrogenous (42% crude protein) and isolipidic (18% crude lipid) diets were formulated containing fish meal and plant ingredients as main protein sources. The control diet was a basal diet without supplementation of nucleotides, and five experimental diets were prepared by supplementing one of the five different nucleotides in the form of 5′‐monophosphate (0.15%), that is inosine (IMP), adenosine (AMP), guanosine (GMP), uridine (UMP) and cytidine (CMP) onto basal diet. Two hundred forty juvenile rainbow trout with an initial average body weight 9.8 g were randomly distributed into twelve aquaria. After 15 weeks of feeding period, growth performance and feed utilization of rainbow trout were not significantly different among dietary treatments. Dietary GMP, UMP and CMP tended to accumulate crude lipid in the muscle and whole fish body. Moreover, dietary GMP, UMP and CMP significantly increased hepatic 18:3n‐3 and long‐chain homologue 18:4n‐3 and 20:4n‐3 contents. Hepatic 18:2n‐6 content showed also increase in fish fed GMP, UMP and CMP diets, but decreased in long‐chain homologue 20:3n‐6 and 20:4n‐6 contents. Decrease in 20:4n‐6, 20:5n‐3 and 22:6n‐3 contents was also found in the muscle of fish fed IMP, GMP and CMP diets. The present study clearly showed that there was no positive effect of dietary nucleotides on growth of fish, but dietary nucleotides particularly GMP, UMP and CMP altered polyunsaturated fatty acid composition of rainbow trout.  相似文献   

17.
Three experiments were conducted to evaluate the effects of microbial phytase (Ronozyme P(L) and dosage on apparent digestibility coefficients of dry matter, crude protein, amino acids, and minerals in soybean product-based diets for rainbow trout Oncorhynchus mykiss. In experiments 1 and 2, fish were fed soy protein concentrate and soybean meal-based semi-purified diets, respectively. In experiment 3, fish were fed soybean meal-based practical diets. A total of 900 fish (average body weight 100.1 ± 7.4 g) were stocked into 30 150-L fiberglass tanks with 30 fish per tank and two tanks per diet. Phytase was supplemented into soybean product-based diets at 0, 500, 1,000, 2,000, and 4,000 FTU/kg diet. Yttrium oxide (0.01%) was used as inert marker. Feces were collected by hand stripping three times at 3-d intervals. Results of experiments 1 and 2 showed that phytase supplementation significantly increased apparent digestibility coefficients of minerals (except copper and iron), but not dry matter. Experiment 3 showed that phytase supplementation significantly increased apparent digestibility coefficients of dry matter, crude protein, amino acids (except tryptophan and tyrosine), and minerals (except copper and iron). The optimum level of phytase supplementation in rainbow trout diets was approximately 500 FTU/kg diet.  相似文献   

18.
The effect of solvent‐extracted cottonseed meal (SCSM) as a partial or total replacement of fishmeal was studied in juvenile rainbow trout (Oncorhynchus mykiss). Six experimental diets SCSM0, SCSM25, SCSM50, SCSM75, SCSM75A and SCSMT, containing a gradient of SCSM 0, 152, 305, 465, 460 and 610 g kg?1 to replace 0, 112.5, 225, 337.5, 337.5 and 450 g kg?1 fishmeal protein were fed to triplicate groups (initial body weight of 39.2 ± 0.1 g) for 8 weeks. The diet SCSM75A was supplemented with lysine and methionine, to be similar to SCSM0 for juvenile rainbow trout. Faeces were colleted after 4 weeks of normal feeding for apparent digestibility coefficients (ADC) of dry matter, crude protein and gross energy determination. Total replacement of fishmeal adversely affected growth performance. Fish fed with diet SCSMT had significantly (P < 0.05) lower weight gain, specific growth ratio, feed conversion efficiency (FCE) and protein efficiency ratio than fish fed with other diets. The FCE of SCSM75 and SCSM75A were significantly lower (P < 0.05) than those of fish fed with SCSM0 diets. The ADC of the dry matter of SCSM75 and SCSMT were significantly lower than the SCSM0 diet, and the ADC of crude protein and the energy of SCSMT were the lowest (P < 0.05). The ADC of threonine, proline, alanine, valine, isoleucine, leucine, lysine and methionine of fish fed with diet SCSMT were lower. Lysine and methionine supplement positively affected the ADC of SCS75A diet. There were no significant differences in the fish body composition. It is shown that SCSM can be utilized in the juvenile rainbow trout diet up to 305 g kg?1, to replace about 50% of fishmeal protein in this experiment.  相似文献   

19.
《水生生物资源》1998,11(4):239-246
High energy extruded diets were formulated to contain the same level of protein supplied either by soy protein concentrate (SPC) or fish meal. Three experiments were performed in order to measure voluntary feed intake and feed waste, faecal losses and soluble losses of nitrogen and phosphorus in rainbow trout (average body weight: 100 g). Voluntary feed intake and growth performance of fish fed with demand feeders were not different when diets contained 0, 50 or 75 % SPC instead of fish meal. Total replacement of fish meal by SPC led to a significant decrease in feed intake and resulted in poor growth. This was partly due to methionine deficiency in the SPC based diet. With the addition of crystalline DL-methionine in the diets, an improvement of feed intake and growth performance was apparent. Protein digestibility was high, regardless of the protein source. Excretion of ammonia and urea increased with the level of SPC in the diet. Nitrogen losses decreased when methionine was added to the diet containing only SPC as a protein source. Availability of phosphorus increased with the level of SPC in the diets. Daily soluble losses were not affected by the dietary treatments but the pattern of phosphorus excretion after feed intake was modified. The rise in soluble phosphorus in water occurred later when fish were fed diets with soy protein whatever the dietary level of soy protein concentrate.  相似文献   

20.
There are several estimates of the optimal dietary crude protein concentration for juvenile tilapia fed high quality animal proteins or mixtures of animal and plant derived feedstuffs. In the present study, the optimal dietary crude protein concentration for hybrid tilapia Oreochromis niloticus × O. aureus reared in glass aquaria was determined using diets free of fish meal. Further, initial weight of fish was approximately 21 g, which is the beginning of the growout phase of many commercial operations. The diets contained primarily corn co-products and soybean meal as the sources of amino acids, and were formulated to provide 24, 26, 28, 30, 32 or 34% crude protein. The diets were fed to quadruplicate groups of tilapia for 10 wk. Increasing concentrations of dietary crude protein resulted in proportional improvements in weight gain and feed efficiency up to 30% dietary crude protein. Fish fed 24% dietary crude protein exhibited significantly reduced weight gain compared to fish fed 28–34% dietary crude protein. Protein efficiency ratio (PER) of tilapia was unaffected by dietary crude protein concentration. However, fish fed 28% crude protein exhibited numerically higher PER (2.58) than fish fed other levels of crude protein. Muscle crude protein levels were lower in fish fed diets containing 24–28% crude protein than in fish fed 30% and higher concentrations. Quadratic regression analyses of weight gain and feed efficiency data indicated the optimal dietary crude protein concentration to be 29.65% and 28.33%, respectively, while broken line analyses indicated 27.5 and 27.3%, respectively. Based on weight gain, feed efficiency, PER, and proximate composition data, the authors recommend 28% dietary crude protein as the minimum for hybrid tilapia fed all-plant diets and reared in tanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号