首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of open‐water and caged fish density on growth, feed utilization, water quality and profitability were investigated to assess the feasibility of a small‐scale rotational system for production of Oreochromis niloticus (L.) in fertilized ponds. Hand‐sexed male fingerlings averaging 18.6 and 29.9 g were stocked in open water and cages, respectively in four treatments with open‐pond:caged tilapia ratios of 300:0 (control), 150:150 (L), 300:150 (H1) and 300:300 (H2). The ponds in L and H1 contained one cage, two cages in H2, and the control ponds had no cages. Each cage contained 150 fish, which were fed daily at 1.5% body weight for 125 days. All fish in the open water except the control fish were not fed. Growth of open water tilapia was significantly (P<0.05) higher in L than in control. Feed utilization, dawn DO and economic returns were significantly better (P<0.05) in caged than control ponds. Growth of tilapia in L was significantly lower (P<0.05) in cages than in open water. Fingerling production was significantly lower (P<0.05) in L than in other treatments. In conclusion, cage‐cum‐open‐pond integrated treatment (L) was optimal for O. niloticus production in fertilized ponds. However, the system could not rotate and needed further fine‐tuning to rotate.  相似文献   

2.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   

3.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

4.
The effects of different densities of caged Nile tilapia, Oreochromis niloticus, on water quality, phytoplankton populations, prawn, and total pond production were evaluated in freshwater prawn, Macrobrachium rosenbergii, production ponds. The experiment consisted of three treatments with three 0.04‐ha replicates each. All ponds were stocked with graded, nursed juvenile prawn (0.9 ± 0.6 g) at 69,000/ha. Control (CTL) ponds contained only prawns. Low‐density polyculture (LDP) ponds also contained two cages (1 m3; 100 fish/cage) of monosex male tilapia (115.6 ± 22 g), and high‐density polyculture (HDP) ponds had four cages. Total culture period was 106 d for tilapia and 114 d for prawn. Overall mean afternoon pH level was significantly lower (P ≤ 0.05) in polyculture ponds than in CTL ponds but did not differ (P > 0.05) between LDP and HDP. Phytoplankton biovolume was reduced in polyculture treatments. Tilapia in the LDP treatment had significantly higher (P ≤ 0.05) harvest weights than in the HDP treatment. Prawn weights were higher (P ≤ 0.05) in polyculture than prawn monoculture. These data indicate that a caged tilapia/freshwater prawn polyculture system may provide pH control while maximizing pond resources in temperate areas.  相似文献   

5.
Channel catfish (lctalurus punctatus) fingerlings stocked at a rate of 450 fish/0.04 ha pond were simultaneously cultured with fingerlings stocked in 1.25 m3 cages (0, 250, 350, or 450 fishlcage; one cage/pond). The fish in the cages were cultured and harvested for a 90–330 g (whole fish) market. The fish in the open ponds were cultured and harvested for a 490–1,140 g market. Harvest weights of open pond fish in all treatments were similar indicating that the presence of the caged fish and the associated higher daily pond feeding rates did not affect open pond production. Ninety-five to 99% of the caged fish and 96 to 98% of the open pond fish were of marketable size at harvest. Survival and food conversion ratios were similar among treatments. Results of this study indicate that total pond production can be increased (in this case up to 19%) by using a combination of open pond and cage techniques and by simultaneously producing fish for two markets.  相似文献   

6.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

7.
Five pond management strategies for Nile tilapia Oreochromis niloticus L. production were evaluated in 0.1‐ha earthen ponds in Egypt during a 145‐day production cycle. Pond management strategies developed by the Pond Dynamics/Aquaculture Collaborative Research Support Programme (PD/A CRSP) were compared with a traditional and a modified Egyptian pond management strategy. Young‐of‐year Nile (mixed‐sex or sex‐reversed) tilapia were stocked into ponds at 20 000 fish ha?1. Sex‐reversed tilapia were stocked into chemical fertilization, organic fertilization plus formulated feed and feed only treatment ponds, whereas mixed‐sex tilapia were stocked into organic fertilization plus formulated feed and chemical plus organic fertilization plus formulated feed treatment ponds. Nile tilapia yields ranged from 1274 to 2929 kg ha?1. Nile tilapia yields in organic fertilization plus formulated feed treatments were significantly greater than the yield from chemical fertilization ponds. PD/A CRSP pond management strategies did not produce significantly greater Nile tilapia yields than the traditional Egyptian system, but a larger percentage of harvested tilapia in the organic fertilization plus feed treatments were classified in the first and second class size categories compared with the traditional Egyptian system. Organic fertilization plus formulated feed pond management strategies had the highest net returns, average rate of return on capital and the highest margin between average price and break‐even prices to cover total variable costs or total costs.  相似文献   

8.
An experiment was conducted to evaluate the effect of using different types of organic manure on the plankton abundance, and growth and survival of Tilapia rendalli juveniles in ponds. Fish weighing 18.15±0.44 g were stocked into 12, 20 m2 ponds at 2 fish m?2 (40 fish pond?1). There were three replicate ponds per treatment (chicken manure, cattle manure, pig manure, and no‐manure as a control). After 84 days the T. rendalli in the chicken manure treatment were significantly larger and had higher net annual yields than those in the cattle manure, pig manure and no‐manure treatments. The survival rates were not significantly different across the treatments. Significantly higher amounts of chlorophyll a and higher numbers of zooplankton were found in ponds fertilized with the chicken manure treatment. The overall results obtained in this study suggest that the use of chicken manure produces better results than cattle and pig manure treatments on unfertilized ponds.  相似文献   

9.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

10.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

11.
Nile tilapia (Oreochromis niloticus L.) was fed rice bran (RB), wheat bran (WB) and maize bran (MB) at 1.5% body weight. Fingerlings averaging 14 g were stocked at 19 462 fish ha?1 in three treatments with six replicates per treatment. Clarias gariepinus was stocked at 250 fish ha?1 to reduce the density of tilapia fry. Growth and economic performance were compared for 250 days in 0.08 ha fertilized ponds. Fish growth was highest (P < 0.05) in MB and least in RB treatment. Growth in WB treatment was intermediate. Feed conversion ratio in MB and WB treatments was similar (P > 0.05), but significantly higher (P < 0.05) than in RB treatment. Water quality parameters were similar (P > 0.05) among treatments. At retail price of US$ 1.28 kg?1 fish, returns above both variable and total costs from MB and WB treatments were positive, while those from RB were negative. However, at US$ 1.79 kg?1 fish, all test‐feeds had positive returns above variable and total costs. In conclusion, MB treatment produced the highest growth, but the highest profitability was obtained in the WB treatment. Under present study conditions, RB was not cost‐effective in the production of O. niloticus. A selling price of US$ 1.79 kg?1 fish is recommended.  相似文献   

12.
We compared production variables between channel catfish, Ictalurus punctatus, nursery ponds fed according to industry standards, that is feeding immediately at stocking, to an alternative practice of delaying feeding for 6 wk after stocking in an effort to utilize natural pond productivity and reduce feed use. Twelve 0.04 ha ponds were fertilized and stocked with swim‐up fry (4–5 d posthatch) at a rate of 10,000/pond (250,000/ha). Ponds were then randomly assigned to either the standard feeding protocol (feeding daily starting immediately at stocking) or an alternative feeding protocol (no feeding until 6 wk post‐stocking). After 18 wk of production, there were no differences in water quality or zooplankton abundance between the two treatments. Fish length was not affected by treatment throughout the study, and survival and total weight harvested were similar. Total kg of feed fed was significantly reduced in the delayed feed treatment, averaging 26 kg/pond less feed fed. If proper fertilization practices are implemented, large numbers of desirable zooplankton for catfish fry culture are attained, and these zooplankton are able to sustain catfish fry stocked up to 250,000/ha. Therefore, no commercial diets are required during the first 6 wk of culture, saving over $95.55/ha in initial feed costs.  相似文献   

13.
A grow‐out monoculture experiment for rohu, Labeo rohita was conducted for 1 year in nine earthen ponds of 0.04 ha each to study the impact of varied frequency of nitrogen fertilization on fish growth. Ponds were stocked at 8000 fingerlings ha?1 density. While ponds were applied with cattle manure and phosphate fertilizer at conventional dosages followed for grow‐out carp culture, nitrogen fertilization was carried out at 15‐, 10‐ and 7‐day intervals and were designated as treatments T‐1, T‐2 and T‐3 respectively. Although all the water parameters in the treatments were within the suitable range for grow‐out carp farming, annual average concentration of dissolved oxygen (DO), plankton as well as availability of nutrients such as total ammonia‐ and nitrate‐nitrogen in ponds were significantly higher in T‐3 compared with T‐1 and T‐2. Greater fluctuation of critical parameters like DO, plankton concentration and total ammonia nitrogen were observed in T‐1 and T‐3 while the same were more consistent in T‐2, revealing the prevalence of a better growing environment in the latter. Fish in T‐2 also showed better specific growth rate, higher body weight attainment and higher biomass yield compared with the other two treatments, revealing the desirability of nitrogen fertilization at 10‐day intervals in carp culture.  相似文献   

14.
Slow growth and losses to bird predation and infectious diseases in winter can compromise the profitability of silver perch farming. To evaluate over‐wintering silver perch (Bidyanus bidyanus) in a recirculating aquaculture system (RAS), fingerlings (38 g) were stocked in either cages in a pond at ambient temperatures (10–21 °C) or tanks in the RAS at elevated temperatures (19–25 °C) and cultured for 125 days. Mean survival (96%), final weight (146 g), specific growth rate (1.07% day?1) and production rate (28.1 kg m?3) of fish in the RAS were significantly higher than for fish over‐wintered in cages (77%, 73 g, 0.53% day?1, 11.1 kg m?3). Fish from both treatments were then reared in cages for a further 129 days. Final mean weight of fish originally over‐wintered in the RAS was 426 g, while fish over‐wintered in cages were only 273 g. To determine optimal stocking densities, fingerlings (11.8 g) were stocked at 500, 1000 or 1500 fish m?3 in tanks in the RAS and cultured for 124 days. Survival was not affected, but growth was significantly slower and feed conversion ratio higher at 1500 fish m?3 compared with 500 or 1000 fish m?3. Results demonstrate that over‐wintering silver perch in an RAS can produce large fingerlings for grow‐out in early spring. This strategy could eliminate bird predation, reduce losses to diseases and shorten the overall culture period.  相似文献   

15.
Reported maximum carrying capacities of Tilapia nilotica reared in cages are Iow ranging from 10 to 70 kg/m3. This may be related to total numbers of caged fish reared in a body of water and not simply density per cage volume. An experiment was conducted to demonstrate such effects.
Sixteen cages in a 0.77 ha pond were stocked with T. nilotica at either 250, 500, 750, or 1,000 fish/cage for a total of 12,987 fish/ha. One cage in each of four 0.13 ha ponds was stocked with either 250 or 1,000 fish/cage for a total of 1,923 or 7,692 fish/hectare, respectively. Fish were fed a 32% protein diet at equal rates for 169 days. In the 0.77 ha pond, yield per cage was positively correlated with stocking density, while individual mean weights were negatively correlated with stocking density. However, among equal densities per cage between ponds, fish in the 0.13 ha ponds gained about 26% more than in the 0.77 ha pond. An interaction of the effects of density per cage volume and per pond area may have occurred.  相似文献   

16.
To assess the compensatory growth, a 10‐month pond experiment was conducted in which three species of Indian major carps, viz. Catla catla, Labeo rohita and Cirrhinus mrigala (1 : 1 : 1), were stocked at 7500 ha?1 and the fish were subjected to different restricted feeding and refeeding protocols, viz. Control (C): Continuously fed for 10 months; Treatment‐1 (T‐1): Initial supplementary feeding for 2 months+ No supplementary feeding for 1 month + Refeeding for 7 months; Treatment‐2 (T‐2): Initial supplementary feeding for 2 months + No supplementary feeding for 2 months + Refeeding for 6 months; and Treatment‐3 (T‐3): Initial supplementary feeding for 2 months + No supplementary feeding for 3 months + Refeeding for 5 months in triplicate ponds. At the end of experiment, 100% growth compensation was achieved in T‐2 for all the three carp species. Among all treatments, higher weight gain, PER and PPV and lower AFCR were also recorded in T‐2, resulting in maximum fish production. The restricted feeding had significant effect (P < 0.05) on whole body chemical composition of fish. From this study, it is concluded that in 10‐month pond culture of carp in fertilized pond, the T‐2 would be the best and most economic feeding strategy.  相似文献   

17.
This study evaluated three different pond‐based production systems for raising largemouth bass, Micropterus salmoides, for the food fish market, using nine 0.04‐ha ponds. Treatments included traditional ponds (TP), intensively aerated ponds (IAP), and split‐pond systems (SPS). TP and SPS ponds were aerated at 9.3 kW/ha, while IAP was aerated at 18.6 kW/ha. TP was stocked at 7,500 fish per ha (three replicates per treatment), and the other two production systems (SPS, IAP) were stocked with 12,500 fish per ha. Feed‐habituated advanced fingerlings (128 ± 47.6 g mean individual weight) were cultured for 157 days. Fish were fed a formulated diet (42% protein, 16% lipid) four times a day, feeding with a maximum allowance of 3% of total body weight and readjusted to the initial body weight biweekly. Fish raised in the SPS displayed a significantly lower specific growth rate, lower individual final weight, and lower weight gain, but the biomass gained was significantly higher than TP but not IAP. Final biomass gained was 50% higher in the SPS and IAP than in the TP. Survival rate and feed conversion ratio were not significantly different among treatments and ranged from 71 to 79% and 1.64 to 2.14, respectively.  相似文献   

18.
Four 20m3 cages stocked with 120 bighead carp x silver carp hybrids per cage were placed in each of four ponds varying in trophic status from mesotrophic to hypereutophic. Fish were cultured, without feeding, from 13 March to 1 Octorber 1987. Fish in the mesotrophic pond survived but lost weight (-0.37 g/fish/d). The mesotrophic pond produced insufficient food to sustain fish growth. Maximum fish growth rate occured in the two eutotrophic ponds (6.61vand 7/04 g/fish/d). Fish growth in the hypereutrophic pond was about one-half (3.64 g/fish/d) that in the two eutrophic ponds. Guy analysis of fish in the hypereutrophic pond revealed consumption of larger quantities (P < 0.05) of colonial blue-green algae that were apparently poorly digested and less (P < 0.05) zooplankton (primarily cladocerans) than was found in fish from the eutrophic ponds.  相似文献   

19.
Four different fertilization frequencies, namely twice per week, once per week, twice a month and once a month, were used in ponds to assess their effects on nutrient release, pond productivity and fish biomass. All ponds received the same total fertilizer inputs during the experimental period of 60 days (cow dung 208.3 kg ha?1 week?1, TSP 9.8 kg ha?1 week?1, urea 6.0 kg ha?1 week?1). Studies have revealed that the highest values of fish biomass, specific growth rate (SGR), net primary productivity (NPP), plankton population and nutrients were observed in the ponds that were fertilized twice a month. A strong and significant correlation of fertilization frequency was observed with dissolved oxygen, biochemical oxygen demand (BOD), alkalinity, nutrient release, NPP, plankton density (no. L?1), fish biomass and SGR. The linear relationship between NPP and fish biomass/SGR for all the ponds was strong (r2= 0.88). Sediment chemistry revealed that O‐PO4, NO3‐N, organic carbon and electrical conductivity (EC) increased significantly (P<0.05) with a decrease in the frequency of fertilization, while alkalinity and calcium were high in ponds that were fertilized twice a month.  相似文献   

20.
The project evaluated the effect of installing scrap bamboo (‘kanchi’) as a substrate for periphyton on growth and production of the indigenous major carp calbaush, Labeo calbasu (Hamilton). The impacts of fish grazing on the periphyton community were also assessed. Six ponds were used, three of which were provided with kanchi poles (700 per pond, spaced 30 cm apart). Ponds were limed and fertilized and stocked with L. calbasu fingerlings (mean total length = 5.16 cm; mean weight = 2.10 g) at a rate of 10 000 fingerlings ha–1 (75 fish per pond). There were no statistically significant differences in water quality between treatments, although differences in phytoplankton community composition were observed. Zooplankton numbers were the same in both treatments. While there was clear evidence that periphyton was being exploited by the fish, Chlorophycae being most affected, grazing was insufficient to cause significant reductions in total periphyton densities. Fish survival and specific growth rates (SGRs) were significantly higher in ponds with substrates, production in treatments with and without scrap bamboo substrate being 712.90 and 399.11 kg ha–1, respectively, over the 120-day period. However, production in both treatments was low in comparison with other studies, water temperatures (23.6–32.7 °C) being less than optimum for growth. It was concluded that kanchi and other locally available materials might be used to increase the production of some species of fish, although further evaluation of production economics is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号