首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
  1. Freshwater communities and especially pond‐breeding amphibians are extremely vulnerable to land‐use change, alien species introductions and the use of pesticides or other toxic chemicals, as reflected in their worldwide decline. Effective conservation and management of ponds requires a better understanding of the biotic and abiotic factors that shape diversity patterns and species distribution, especially in cases of habitat loss
  2. The present study aimed to reveal and classify which pond and landscape characteristics are the most important determinants for the occurrence patterns of amphibian species as well as for the overall amphibian species richness in an urban pond network. To achieve this aim, 17 biotic and abiotic variables were measured for 61 ponds and the dataset was analysed by means of a machine‐learning approach, suitability indices and co‐occurrence modelling
  3. The highest probability of Triturus macedonicus occurrence was found at fishless artificial and semi‐natural ponds. The persistence of Lissotriton graecus in ponds was predicted by high pond connectivity and the absence of fish reflecting the species dispersive potential. Pelophylax kurtmuelleri showed a higher probability of occurrence with increased pond connectivity and macrophyte cover.
  4. Amphibian species richness was higher in fishless ponds with well‐oxygenated waters located in sites with a low to intermediate road density network. Ponds categorized as ‘average’ in terms of newt suitability were more frequently inhabited by fish than Triturus macedonicus. Alien fish species showed negative associations with both newt species, while both newt species showed a positive association between them.
  5. The results support the view that conserving a greater number of water bodies with increased landscape connectivity and without any fish presence could provide amphibian species with alternative habitat choices, especially in sites with human pressure where pond stability is at stake owing to continuous landscape changes.
  相似文献   

3.
  1. Global environmental change is threatening freshwater biodiversity with ecological impacts predicted to be particularly severe in high-altitude regions. Despite this, an ecological understanding of high-altitude pond networks remains patchy, with only limited knowledge of the environmental and spatial predictors of taxonomic and functional diversity. Moreover, previous studies of pond ecosystems have focused primarily on taxonomic richness and largely overlooked functional diversity.
  2. This study examined the influence of local environmental and spatial factors on taxonomic and functional α and β diversity (including the turnover and nestedness-resultant components) of 17 high-altitude (~2,500 m above sea level) pond macroinvertebrate communities, in the Macun Cirque, Switzerland.
  3. Spatial processes (pond connectivity) were important drivers for taxonomic α diversity, while local environmental variables (pond permanence and surface area) were important determinants of functional α diversity. Species turnover was the most important component of β diversity for taxonomic composition, and functional composition demonstrated a nested spatial pattern.
  4. Variation in taxonomic and functional composition (and the turnover and nestedness components of β diversity) were determined by local environmental variables despite the limited environmental gradients within the pond network. No significant effects of spatial variables on community composition were recorded for either facet of diversity, indicating that compositional variation was determined at a local scale. Water temperature, depth and pond permanence were consistently the most important measured drivers of diversity.
  5. Given the importance of both spatial and environmental variables in structuring taxonomic and functional diversity, landscape-scale conservation and management activities that aim to improve or protect high-altitude freshwater biodiversity should focus on maintaining connectivity among ponds and environmental heterogeneity, particularly pond surface area, water depth, and hydroperiod. Understanding the mechanisms driving taxonomic and functional diversity will be critically important for the management and conservation of macroinvertebrate communities in high-altitude pond networks in the face of climatic warming.
  相似文献   

4.
  1. Farmland ponds promote regional aquatic biodiversity; however, optimally managing these ponds requires knowledge on how the biodiversity differs between ponds across catchments with different land uses.
  2. This study investigated the response of macrophytes, both those in the pond and on the bank, as well as dragonfly and water beetle species richness, diversity and composition in artificial ponds, to numerous environmental variables in catchments dominated by three land uses: protected areas (as reference sites), sugarcane‐dominated and forestry‐dominated landscapes, across two seasons.
  3. There was a strong association between insect species richness and vegetation cover, particularly sedges (Cyperus spp.) in spring and bulrushes (Typha capensis) in summer. There was also a positive response between insect species richness and sedges up to 70% cover, and bulrushes up to 40% cover, after which there was a decrease. Furthermore, the protected area ponds contained more rare and specialist insect species. Pond size was not a major variable for biodiversity overall.
  4. Although there was generally little congruence in composition among the three taxa, dragonflies were a good surrogate for water beetles and floating macrophytes.
  5. Well‐vegetated ponds, both in the water and along the margin, are the most suited to promoting biodiversity, as long as the vegetation is not too dense, and not dominated by one plant species.
  6. Artificial ponds in production landscapes have great potential for conserving aquatic species, irrespective of land use, as long as there is management for macrophyte density and heterogeneity.
  相似文献   

5.
  1. Terrapins are integral to many freshwater ecosystems, yet are imperilled at a global scale. In Sri Lanka, terrapins are understudied; thus, much of their natural history and distribution status remain unknown. Such paucity of studies impedes conservation.
  2. In this study, 79 freshwater habitats located outside the protected area network of south‐western Sri Lanka were surveyed to document current population densities and habitat use of two terrapin species: Indian black terrapin (Melanochelys trijuga thermalis ) and flap‐shelled terrapin (Lissemys ceylonensis ). Local inhabitants were interviewed to assess human threats towards terrapins.
  3. Both species were recorded in low densities: 1–2 individuals ha?1. Indian black terrapin was found in half of the surveyed sites while flap‐shelled terrapin occurred in one‐third of the surveyed sites. Highly urbanized river basins had the lowest densities for both species while rural basins supported higher numbers. Basking was the predominant behaviour of both species and large woody debris and boulders were preferred as basking substrates, together with sparse‐canopy aquatic habitats with intact marshlands.
  4. Overharvesting for meat was a major threat for terrapins. Most local inhabitants were unaware of legislation on terrapin conservation and the ecological importance of terrapins. Human threats such as pollution, modification of aquatic and wetland habitats, and loss of riparian forests were frequently observed in surveyed sites. Terrapin populations outside the protected area are at risk as evidenced by lower population densities and a multitude of human threats.
  5. A landscape‐scale ecosystem‐based conservation approach is recommended for Sri Lanka's terrapins with incorporation of lands with different management regimes (privately owned, municipality managed) into the protected area network. Current environmental legislation should be revised to support buffer zone delineation for aquatic habitats, wetland restoration, and landscape‐scale connectivity.
  相似文献   

6.
  1. Stream fish diversity is threatened by anthropogenic environmental alterations to landscapes, and successful conservation requires knowledge of the processes that degrade diversity. A primary step in identifying diversity losses is the comparison between historical and contemporary states of landscapes and fish assemblages, but uncertainty remains regarding the appropriate spatial scales of investigation.
  2. Historical data collected in 1976 were paired with two years of contemporary replication (2015, 2016) to assess fish diversity change at 10 sites in Blackburn Fork, TN, USA. Analyses focused on a nested hierarchy of spatial scales, including sampling sites (fine scale), nested within stream orders (intermediate scale), nested within the entire catchment (broad scale). Diversity change between 1976 and 2015–16 was assessed using traditional diversity metrics (site scale) and rarefaction (stream‐order scale), whereas spatial variation in contemporary diversity (2015–16) was assessed with nonmetric multidimensional scaling (catchment scale).
  3. At the site scale, locations on the east side of Blackburn Fork and in close proximity to developed land experienced diversity loss. At the stream‐order scale, the effective number of species declined in first‐order streams where land development was concentrated, but no consistent species losses occurred in other stream orders. At the catchment scale, assemblages responded significantly to stream size but not land use, perhaps because diversity was already homogenized by 2015–16. Mapping 40 years of land‐use change across the catchment underscored a pattern of spatial alignment between developed lands and stream fish diversity loss.
  4. This study highlights the benefits of considering multiple spatial scales when assessing historical change in stream fish assemblages, and highlights stronger inference derived from historical comparisons relative to contemporary space‐for‐time substitutions. This framework combines recent analytical advances in rarefaction with a riverscape perspective, and can be applied to conserve streams, and their biota, in riverscapes around the world.
  相似文献   

7.
  • 1. Amphibians are declining worldwide in response to local and global pressures. Pond‐breeding species are particularly vulnerable to environmental change because they rely on two components of the landscape: aquatic and terrestrial habitats. Agricultural practices are changing rapidly at world and local scales. As a consequence, farm ponds and their surrounding terrestrial landscapes will probably be affected.
  • 2. This study investigated the main habitat determinants for the occurrence of four species of newts (genus Triturus) inhabiting the Pays de Herve, a rural area in Belgium. Newt occurrence was determined for 258 ponds and the effect of habitat on distribution determinants was evaluated using generalized linear models.
  • 3. Newts were found in 42% of the ponds. Contrary to expectations, the distribution of newts was not positively associated with a high density of ponds. However, a low occurrence of newts and the low water depth of many ponds suggest a low quality of habitats. Proximity to forest, deep water, and an absence of fish in ponds are factors that significantly favour newts, but terrestrial habitat requirements vary among species.
  • 4. These results indicate the necessity of maintaining both forest and meadow patches in close proximity to ponds inhabited by newts, and of controlling fish introduction in those ponds. These findings stress the importance of conservation and management of terrestrial and aquatic habitats for maintaining amphibian diversity.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
  • 1. Rice field expansion is one of the activities associated with the disappearance of 90% of the wetlands in southern Brazil. Worldwide, rice agriculture has been recognized as having considerable potential value for many aquatic species. Nevertheless, management practices in such systems must be ameliorated and better investigated.
  • 2. This study evaluated the potential role of rice fields as refugia for amphibians, and whether different hydrologic management practices after rice cultivation could contribute to wetland amphibian conservation in southern Brazil.
  • 3. Six collections were made in six rice fields with different management practices after cultivation (three dry and three flooded) and three natural wetlands. The amphibians were sampled through six random 15‐min visual transects per collection in each rice field and the natural wetlands.
  • 4. In total, 2139 anuran individuals were observed in rice fields (798) and Reserva Lake (1341), comprising 12 anuran species distributed among five anuran families. Anuran richness and abundance varied over the rice cultivating cycle, and they were higher in the growing phases than in the fallow phases. The mean anuran richness and abundance was higher in Reserva Lake than in flooded and dry rice fields.
  • 5. The different management practices adopted after the harvesting period (presence or lack of surface water) did not influence the anuran richness and abundance. It did, however, influence species composition.
  • 6. The difference in species composition between the management practices adopted is an interesting result in terms of biodiversity conservation. Rice producers could maintain part of their agricultural land flooded during the fallow phase as a strategy to preserve a higher diversity of anurans. These results should be taken into consideration in wetland conservation plans in southern Brazil; however, the percentage of each agricultural land that should be kept flooded should be decided by Brazilian agricultural and conservation policies. Such a strategy would reconcile agricultural/economic needs with the conservation of biodiversity in southern Brazil, where more than 90% of wetland systems have already been lost. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

9.
  1. Amphibians are the vertebrate group experiencing the steepest global population decline and species loss. Habitat alteration and loss caused by the intensification of agriculture is among the main causes; however, in the past, amphibians have been favoured by traditional agriculture and husbandry as more terrestrial and aquatic habitats became available through land‐use diversification and the construction of artificial facilities for cattle watering. Troughs for cattle watering may represent the only permanent water points for amphibian reproduction in human‐modified landscapes.
  2. The present study focused on Lissotriton vulgaris meridionalis, a semi‐aquatic salamander, subendemic and widespread in Italy, capable of colonizing artificial aquatic habitats. The main goal was to determine the importance of drinking troughs for the ecology and conservation of the species in a hilly area (Latium region, Central Italy) subjected to traditional livestock farming (i.e. Maremmana cattle).
  3. Specifically, generalized linear models (GLMs) were used to analyse the effects of drinking trough characteristics (i.e. size, substrate, aquatic vegetation), landscape features (distance to the forest, forest cover, percentage of cultivated lands and infrastructural development, terrestrial connectivity) and intensity of management practices on the occurrence and abundance of the target species.
  4. In the light of the present results, it is suggested that drinking troughs represent suitable surrogates for pristine habitats for L. vulgaris meridionalis. Hence, even man‐made aquatic habitats, associated with traditional husbandry, may help to sustain amphibian populations in landscapes where natural wetlands are scarce. The present findings are timely because of the lack of empirical data on the role of drinking troughs in amphibian conservation within rural socio‐economic scenarios, which may have been neglected in research and policy in favour of lakes, rivers and streams.
  相似文献   

10.
11.
12.
13.
  1. Natural wetlands emerge as the best sites to preserve the diversity of aquatic and riparian vegetation; however, especially in the lowlands, pristine wetlands and aquatic ecosystems have almost completely disappeared through land reclamation and agricultural development. Actions are needed, therefore, to maintain and recreate a wide network of wetlands able to preserve adequate levels of vegetation diversity.
  2. Focusing on a complex wetland system located in an overexploited plain, the article entitled ‘The importance of being natural in a human‐altered riverscape: Role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation’, published in 2016 in Aquatic Conservation: Marine and Freshwater Ecosystems (AQC) explored the role of wetland origin and hydrology as the main drivers of physical and vegetation functional diversity, following a hierarchical sampling approach.
  3. The main results reinforced the key contribution of natural sites in maintaining vegetation diversity in heavily impaired riverine contexts, suggesting a direct effect of the interannual and seasonal dynamics of water‐level variations in the observed vegetation patterns.
  4. The article offered an important contribution to our knowledge of vegetation patterns in wetlands, partly attributed to the innovative functional, hierarchical approach applied which is able to guarantee reliable data on the distribution patterns of physical heterogeneity and wetland vegetation.
  5. The findings of the article have been applied and adopted in a series of technical handbooks designed, inter alia, to support the monitoring programmes of habitats of community interest or vegetation of relevance for aquatic biodiversity conservation. In addition, this article has helped to raise awareness of the essential roles played by wetlands in agricultural landscapes and has emphasized the need for a better synergy between the European Habitats Directive and the Water Framework Directive. Several ecological recovery projects have been funded in line with the results described in the AQC article.
  相似文献   

14.
15.
  1. Ecoacoustics is increasingly being used to monitor species populations and to estimate biodiversity in marine ecosystems, but the underwater soundscapes of freshwater environments remain largely unexplored in this respect. Few studies exist concerning the acoustic diversity of ponds, but because aquatic plants and many arthropods such as Coleoptera and Hemiptera are known to produce sound, there is potential to use ecoacoustic techniques to monitor changes in biodiversity and conservation value.
  2. This pilot study compares the underwater soundscapes of recently restored open-canopy ponds and unmanaged highly terrestrialized ponds situated in an arable agricultural landscape of North Norfolk, UK, in order to assess the benefits of farmland pond restoration.
  3. Daytime sound recordings were made for 10 min in each pond and analysed primarily for arthropod stridulations. In addition, six commonly used acoustic indices were calculated to assess the soundscape biodiversity between the unmanaged and the restored ponds. The stridulations of three diving beetle species (Dytiscidae) were recorded in tank studies to assess the potential for individual species recognition from underwater sound capture.
  4. Sound-type richness and abundance, as estimated by visually and aurally identifying arthropod stridulation from spectrograms, were significantly higher in the restored open-canopy ponds compared with the unmanaged terrestrialized ponds. In addition, the acoustic indices ‘acoustic complexity’ and ‘biodiversity index’ were significantly higher in restored open-canopy ponds than in unmanaged terrestrialized ponds.
  5. The three dytiscid water beetle species recorded in a tank were found to produce distinctive and recognizable sounds, indicating potential to create an audio reference library that could be used for automatic acoustic monitoring of freshwater arthropods.
  6. Pond soundscapes are rich in biological information and this study suggests that, with further development, automated passive ecoacoustic monitoring could be an effective non-invasive technique for assessing pond conservation value and pond restoration and management success.
  相似文献   

16.
  1. Humanity is facing a biodiversity crisis, with freshwater-associated biodiversity in a particularly dire state. Novel ecosystems created through human use of mineral resources, such as gravel pit lakes, can provide substitute habitats for the conservation of freshwater and riparian biodiversity. Many of these artificial ecosystems are subject to a high intensity of recreational use, however, which may limit their biodiversity potential.
  2. The species richness of several taxa (plants, amphibians, dragonflies, damselflies, waterfowl, and songbirds) was assessed and a range of taxonomic biodiversity metrics were compared between gravel pit lakes managed for recreational fisheries (n = 16) and unmanaged reference lakes (n = 10), controlling for non-fishing-related environmental variation.
  3. The average species richness of all the taxa examined was similar among lakes in both lake types and no substantial differences in species composition were found when examining the pooled species inventory. Similarly, there were no differences between lake types in the presence of rare species and in the Simpson diversity index across all of the taxa assessed.
  4. Variation in species richness among lakes was correlated with woody habitat, lake morphology (surface area and steepness), and land use, but was not correlated with the presence of recreational fisheries. Thus, non-fishing-related environmental variables had stronger effects on local species presence than recreational fisheries management or the presence of recreational anglers.
  5. Collectively, no evidence was found that anglers and recreational fisheries management constrain the development of aquatic and riparian biodiversity in gravel pit lakes in the study region; however, the conservation of species diversity in gravel pit lakes could benefit from an increasing reliance on habitat enhancement activities.
  相似文献   

17.
18.
19.
20.
  1. Today, aquatic biodiversity suffers from many pressures linked to human activities, including climate change, which particularly affects alpine areas. Many alpine freshwater species have shifted their geographical distribution to colder areas, but a reduced availability of suitable habitats is also forecasted. New artificial water bodies could provide habitat enhancement opportunities, including small mountain reservoirs built to overcome a lack of snow during winter.
  2. To investigate the role of reservoirs as a habitat for freshwater invertebrates, a case study was conducted on eight reservoirs in the Swiss Alps. The study aimed to compare the water quality and freshwater biodiversity of the reservoirs with those of 39 natural and newly excavated ponds. Data were collected on physico‐chemistry, freshwater habitat structure, and aquatic insects (dragonflies and aquatic beetles).
  3. The study showed that the mountain reservoirs investigated did not differ from natural ponds in terms of surface area, conductivity, and trophic level. Similarly to natural ponds, reservoirs showed signs of impairment owing to surface run‐off carrying pollutants linked to ski tourism. They presented a low diversity of mesohabitats, and in particular lacked vegetation. Compared with natural ponds, the species richness in reservoirs was lower for dragonflies but not for beetles. At the regional scale, the community from the reservoirs was a subset of the natural ponds community, supporting 38% of the regional species richness for these two insect groups.
  4. The results suggest that mountain reservoirs are likely to be important for biodiversity in alpine areas, both as habitats and as stepping stones for species shifting their geographical range. These water bodies can be enhanced further by some nature‐friendly measures to maximize benefits for biodiversity, including margin revegetation or the creation of adjacent ponds. Ecological engineering needs to be innovative and promote freshwater biodiversity in artificial reservoirs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号