首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine protected areas (MPAs) are often promoted as tools for biodiversity conservation as well as for fisheries management. Despite increasing evidence of their usefulness, questions remain regarding the optimal design of MPAs, in particular concerning their function as fisheries management tools, for which empirical studies are still lacking. Using 28 data sets from seven MPAs in Southern Europe, we developed a meta‐analytical approach to investigate the effects of protection on adjacent fisheries and asking how these effects are influenced by MPA size and age. Southern European MPAs showed clear effects on the surrounding fisheries, on the ‘catch per unit effort’ (CPUE) of target species, but especially on the CPUE of the marketable catch. These effects depended on the time of protection and on the size of the no‐take area. CPUE of both target species and the marketable catch increased gradually by 2–4% per year over a long time period (at least 30 years). The influence of the size of the no‐take area appeared to be more complex. The catch rates of the entire fishery in and around the MPA were higher when the no‐take areas were smaller. Conversely, catch rates of selected fisheries that were expected to benefit most from protection increased when the no‐take area was larger. Our results emphasize the importance of MPA size on its export functions and suggest that an adequate, often extended, time frame be used for the management and the evaluation of effectiveness of MPAs.  相似文献   

2.
3.
  • 1. Marine protected areas (MPAs) are expected to function simultaneously as biological conservation and fisheries management tools, but empirical evidence linking biodiversity conservation with fisheries benefits is scarce. Around the Medes Islands marine reserve (Spain, NW Mediterranean) patterns of fish catch diversity, catch (CPUE) and income (IPUE) were assessed and the economic value of diversity for local fisheries was explored by combining a Geographic Information System (GIS) analysis with geostatistics.
  • 2. Catch data were derived from the trammel net fleet operating around the MPA to gain information on species diversity, functional diversity, functional redundancy, CPUE and IPUE.
  • 3. Results revealed significant impact of both the fishing prohibition in the MPA and the presence of seagrass beds on diversity metrics, catch and income. Clear differences in functional redundancy in fish assemblages were found within the study area, indicating greater resilience of the fish assemblage against fishing pressure or human impact close to the MPA (?2 km). In contrast, fish assemblages beyond 2 km of the MPA border are more vulnerable to disturbance. High values of diversity, CPUE and IPUE overlapped close to the MPA border and close to seagrass beds.
  • 4. The spatial approach developed suggests that, in addition to the more commonly studied effect of density‐dependent spillover of adult fish, increased levels of ecological diversity and economic diversity can also result in fisheries benefits of an MPA. Hence, the fishing regulations in and around the Medes Islands marine reserve have shown that biological conservation and fisheries benefits can be complementary in the long‐term, which should be considered in future policies for MPAs or MPA networks.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
1. Well‐enforced partial or total no‐fishing zones (collectively known as marine protected areas, or MPAs) can help restore degraded coral reefs and enhance fish populations. 2. A comparison was made of community perceptions of ecological changes in an MPA with concurrent scientific data on these changes in the same MPA. Such analyses are particularly important in community‐based MPAs where local support is a key determinant of ecological success. 3. The no‐take MPA in question was initially launched in partnership with the community in 1995 and formalized in 1998. The perceptions data come from interviews with community members in 1999 and 2004, the biological data come from underwater visual censuses of the MPA from 1998 to 2004. 4. Community members perceived more fish within the MPA and slight increases in catch outside the MPA. In contrast, fish censuses showed a high degree of stochastic variation and only minor increases in fish abundance, size and diversity in and around the MPA between 1998 and 2004. 5. Possible explanations for these discrepancies include different temporal, spatial or species frames of reference and/or limitations to the biological survey technique. Other options include wishful thinking, external influences, a desire to please, or confounding with other benefits. 6. This study demonstrates some of the strengths and weaknesses of community perceptions and biological data. In order to improve our understanding about the changes that occur over time in an MPA and engender community support for the long‐term viability of MPAs, it is important to develop diverse and efficient monitoring schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The establishment of marine protected areas (MPAs), particularly of no‐take areas, is often viewed as a conflict between conservation and fishing. Partially protected areas (PPAs) that restrict some extractive uses are often regarded as a balance between biodiversity conservation and socio‐economic viability. Few attempts have been made to generalize the ecological effects of PPAs. We synthesized the results of empirical studies that compared PPAs to (i) no‐take reserves (NTRs) and (ii) to open access (Open) areas, to assess the potential benefits of different levels of protection for fish populations. Response to protection was examined in relation to MPA parameters and the exploitation status of fish. Our syntheses suggest that while PPAs significantly enhance density and biomass of fish relative to Open areas, NTRs yielded significantly higher biomass of fish within their boundaries relative to PPAs. The positive response to protection was primarily driven by target species. There was a large degree of variability in the magnitude of response to protection, although the size of the PPA explained some of this variability. The protection regime within the PPA provided useful insights into the effectiveness of partial MPAs. We conclude that MPAs with partial protection confer advantages, such as enhanced density and biomass of fish, compared to areas with no restrictions, although the strongest responses occurred for areas with total exclusion. Thus, MPAs with a combination of protection levels are a valuable spatial management tool particularly in areas where exclusion of all activities is not a socio‐economically and politically viable option.  相似文献   

6.
7.
  1. The implementation of marine protected areas (MPAs) has been widely used as a tool to manage and conserve marine resources and services. Yet, to date, the reserve effect is still weakly evaluated, particularly for soft-sediment habitats.
  2. The Arrábida MPA, considered as a biodiversity hotspot, was fully established in 2009 on the west coast of Portugal and is characterized by large expanses of soft-sediment habitats. This MPA was established to protect biodiversity and to ensure the livelihood of the local small-scale fisheries community.
  3. Beyond before–after-control–impact (BACI) analyses were carried out on catch data (abundance and biomass) of 351 trammel net sets from experimental fishing campaigns (2007–2019) to study the reserve effect on demersal fish populations.
  4. The results show a declining trend in abundance inside and outside the protected area, with significant positive effects only found for undersize commercial species and Solea senegalensis, and a general increase in fish species total length. Despite the lack of any obvious reserve effect, the increase in fish length can be considered as a first sign.
  5. Anthropogenic pressures are generalized around the area, and transgressions of the restrictions are frequently observed inside the no-take zone. These can, among other aspects, delay or prevent the expected reserve effects. Therefore, enforcement and/or modification of the spatial plan must be incentivized to achieve the goals of the MPA.
  相似文献   

8.
9.
10.
11.
Advocates, practitioners and policy-makers continue to use and advocate for marine protected areas (MPAs) to meet global ocean protection targets. Yet many of the worlds MPAs, and especially no-take MPAs, are plagued by poaching and ineffective governance. Using a global dataset on coral reefs as an example, we quantify the potential ecological gains of governing MPAs to increase compliance, which we call the ‘compliance gap’. Using ecological simulations based on model posteriors of joint Bayesian hierarchical models, we demonstrate how increased compliance in no-take MPAs could nearly double target fish biomass (91% increases in median fish biomass), and result in a 292% higher likelihood of encountering top predators. Achieving these gains and closing the compliance gap necessitates a substantial shift in approach and practice to go beyond optimizing enforcement, and towards governing for compliance. This will require engaging and integrating a broad suite of actors, principles, and practices across three key domains: (i)) harnessing social influence, (ii) integrating equity principles, and (iii) aligning incentives through market-based instruments. Empowering and shaping communication between actor groups (e.g., between fishers, practitioners, and policy-makers) using theoretically underpinned approaches from the behavioural sciences is one of the most essential, but often underserved aspects of governing MPAs. We therefore close by highlighting how this cross-cutting tool could be further integrated in governance to bolster high levels of compliance in MPAs.  相似文献   

12.
Abstract  The declaration of marine protected areas (MPAs) in Australia generates much confusion and controversy between government conservation and fisheries agencies, the fishing industry and NGOs. There are fundamental differences between the principles and practices underpinning the implementation of MPAs and fisheries management. This paper analyses the interactions between these two approaches to natural resource management and highlights the difficulties in integrating them effectively. The major challenges for governments are: poor cooperation between fisheries and conservation agencies; in principle inconsistencies between allocation of fishing rights by fisheries agencies and loss of these rights through MPA declaration; re-allocation of resources between user groups through spatial zoning; lack of fisheries expertise in conservation planning, and inappropriate single-species/single-issue approach to fisheries management. As fisheries agencies are now considering developing their own MPAs as tools for fisheries management, the need to address inconsistencies between conservation and fisheries approaches to the spatial management of natural resources increases further. Better collaboration between government agencies and better coordination of their activities would help more effective and less conflicting management of marine resources.  相似文献   

13.
14.
Overfishing may seriously impact fish populations and ecosystems. Marine protected areas (MPAs) are key tools for biodiversity conservation and fisheries management, yet the fisheries benefits remain debateable. Many MPAs include a fully protected area (FPA), restricting all activities, within a partially protected area (PPA) where potentially sustainable activities are permitted. An effective tool for biodiversity conservation, FPAs, can sustain local fisheries via spillover, that is the outward export of individuals from FPAs. Spillover refers to both: “ecological spillover”: outward net emigration of juveniles, subadults and/or adults from the FPA; and “fishery spillover”: the fraction of ecological spillover that directly benefits fishery yields and revenues through fishable biomass. Yet, how common is spillover remains controversial. We present a meta‐analysis of a unique global database covering 23 FPAs worldwide, using published literature and purposely collected field data, to assess the capacity of FPAs to export biomass and whether this response was mediated by specific FPA features (e.g. size, age) or species characteristics (e.g. mobility, economic value). Results show fish biomass and abundance outside FPAs was higher: (a) in locations close to FPA borders (<200 m) than further away (>200 m); (b) for species with a high commercial value; and (c) in the presence of PPA surrounding the FPA. Spillover was slightly higher in FPAs that were larger and older and for more mobile species. Based on the broadest data set compiled to date on marine species ecological spillover beyond FPAs' borders, our work highlights elements that could guide strategies to enhance local fishery management using MPAs.  相似文献   

15.
  • 1. The use of experimental design and statistical analysis to evaluate the effects of marine protected areas (MPAs) is increasingly popular throughout the world.
  • 2. However, in looking at historical approaches to MPA evaluations, flaws were identified in the execution of theoretically correct designs, as well as disconnects between the stated objectives of MPAs and those of assessment studies.
  • 3. MPA assessments can be improved by: (1) considering the enforcement/compliance level; (2) linking explicitly the choice of indicator(s) to the MPA objectives; (3) accounting for habitat structure; (4) taking into account the age and size of the MPA; and (5) quantifying the fishing pressure outside the MPA (including possible displacement effects).
  • 4. Neglecting social factors, using inappropriate indicators, and/or ignoring relevant covariates, carries the risk of having MPAs dismissed as an effective management tool. Societal expectations are strong that MPAs will confer benefits, and thus assessment studies need to be progressively improved using new methodologies and the best available scientific evidence. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

16.
17.
Marine protected areas (MPAs) are a key strategy for mitigating the impacts of fisheries, but their designation can be controversial, and there is uncertainty surrounding when and where MPAs are most effective. Evidence synthesis that collates primary research on MPA effectiveness can provide a crucial bridge between research, policy and practice. However, reviews vary in scope and rigour, meaning decision‐makers face the challenge of identifying appropriate reviews. Documenting differences amongst reviews can therefore support nonspecialists in locating the most relevant and rigorous reviews and can also assist researchers in targeting evidence gaps. We addressed these priorities by systematically searching for reviews examining effectiveness of MPAs for biodiversity, critically appraising methods used and categorizing review scope. The 27 reviews assessed overlapped in scope (suggesting some redundancy) and differed substantially in reliability. Key strengths related to the effects of MPAs on fish abundance and the influence of MPA size and age on effectiveness. However, several gaps were noted, with some questions not addressed and others lacking highly reliable syntheses – importantly, the latter may create the perception that particular questions have been adequately addressed, potentially deterring new syntheses. Our findings indicate key aspects of review conduct that could be improved (e.g. documenting critical appraisal of primary research, evaluating potential publication bias) and can facilitate evidence‐based policy by guiding nonspecialists to the most reliable and relevant reviews. Lastly, we suggest that future reviews with broader taxonomic coverage and considering the influence of a wider range of MPA characteristics on effectiveness would be beneficial.  相似文献   

18.
19.
  • 1. This study describes spatial patterns in the biodiversity (species, assemblages) of rocky reef fishes at a spatial scale relevant to management, and compared the outcomes for this biodiversity from alternative procedures for selecting marine protected areas (MPAs) and from the selection of MPAs for fisheries‐related objectives.
  • 2. The study area included 104 species in two assemblage types; 36 species and 14 species occurred only in one or two locations respectively.
  • 3. MPAs selected by hotspot richness, greedy richness complementarity, and summed irreplaceability included similar percentages of species and significantly more species than randomly selected MPAs. A combined species‐assemblage selection ensured representation of assemblage diversity. Representation of all species and assemblage types required 92% of locations.
  • 4. MPAs chosen using density of all fishes or density of exploitable fishes as selection criteria included fewer species (than MPAs selected using species identity) and the percentage of species accumulated did not differ from a random selection.
  • 5. Use of an established MPA as the seed for an expanded network was inefficient, leading to additional locations being required and an accumulation of species that did not differ from a random selection.
  • 6. The smallest MPA network that fulfilled multiple management objectives (representation of assemblage diversity and majority of species, population viability, support for fisheries, connectivity) required 30% of the surveyed locations.
  • 7. This study concluded that: MPAs selected without the benefit of data on intra‐habitat variation in species assemblages will be unrepresentative; the upper range of currently promoted targets for MPA establishment (i.e. 30%) should be regarded as a minimum for biodiversity conservation; MPAs selected for fisheries‐related reasons may not provide expected benefits for the remainder of the fish assemblage.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
  1. Spatial connectivity is an essential process to consider in the design and assessment of Marine Protected Areas (MPAs). To help maintain and restore marine populations and communities MPAs should form ecologically coherent networks. How to estimate and implement connectivity in MPA design remains a challenge.
  2. Here a new theoretical framework is presented based on biophysical modelling of organism dispersal, combined with a suite of tools to assess different aspects of connectivity that can be integrated in MPA design. As a demonstration, these tools are applied to an MPA network in the Baltic Sea (HELCOM MPA).
  3. The tools are based on the connectivity matrix, which summarizes dispersal probabilities, averaged over many years, between all considered areas in the geographic target area. The biophysical model used to estimate connectivity included important biological traits that affect dispersal patterns where different trait combinations and habitat preferences will produce specific connectivity matrices representing different species.
  4. Modelled connectivity matrices were used to assess local retention within individual MPAs, which offers indications about the adequacy of size when MPAs are considered in isolation. The connectivity matrix also provides information about source areas to individual MPAs, e.g. sources of larvae or pressures such as contaminants. How well several MPAs act as a network was assessed within a framework of eigenvalue perturbation theory (EPT). With EPT, the optimal MPA network with respect to connectivity can be identified. In addition, EPT can suggest optimal extensions of existing MPA networks to enhance connectivity. Finally, dispersal barriers can be identified based on the connectivity matrix, which may suggest boundaries for management units.
  5. The assessment of connectivity for the HELCOM MPA are discussed in terms of possible improvements, but the tools presented here could be applied to any region.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号