首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

2.
Litopenaeus vannamei (Boone) grown in ponds are exposed to salinities of less than 5 g L?1 during inland shrimp culture or to more than 40 g L?1 from evaporation and reduced water exchange in dry, hot climates. However, dietary requirements for shrimp grown in low or high salinities are not well defined, particularly for fatty acids. Feeding shrimp postlarvae with highly unsaturated fatty acids (HUFA) enhances tolerance to acute exposure to low salinity, as a result of better nutritional status, or/and specific effects of HUFA on membrane function and osmoregulation mechanisms. This study analysed the effect of HUFA supplementation (3% vs. 34%) on L. vannamei juveniles reared for 21 days at low (5 g L?1), medium (30 g L?1) and high salinities (50 g L?1). Juveniles grown at 5 g L?1 had lower survival compared with controls (30 g L?1) or shrimp grown at 50 g L?1, but no significant effect on survival was observed as a result of HUFA enrichment. In contrast, growth was significantly lower for shrimp grown at 50 g L?1, but this effect was compensated by the HUFA‐enriched diet. Osmotic pressure in haemolymph was affected by salinity, but not by HUFA enrichment. Shrimp fed HUFA‐enriched diets had significantly higher levels of eicosapentaenoic acid and docosahexaenoic acid in hepatopancreas and gills. These results demonstrate that growth at high salinities is enhanced with diets containing high HUFA levels, but that HUFA‐enriched diets have no effect on shrimp reared at low salinities.  相似文献   

3.
A 10‐week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 ± 0.002 g, mean ± SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg?1) and three lipid levels (50, 75 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 ± 2 °C and the salinity was 28 ± 1 g L?1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg?1 protein showed the poorest growth. However, shrimp fed the 75 g kg?1 lipid diets had only slightly higher growth than that fed 50 g kg?1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg?1. Shrimp fed the diet with 420 g kg?1protein and 75 g kg?1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg?1 protein and 75 g kg?1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg?1 protein and 75 g kg?1 lipid with digestible protein/digestible energy of 21.1 mg kJ?1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein‐sparing effect.  相似文献   

4.
This study aimed to evaluate the effect of low salinity on the water quality, microbial flocs composition and performance of Litopenaeus vannamei juveniles reared over 40 days in a zero‐water‐exchange super‐intensive system at 0, 2, 4 and 25 g L?1. At 0 g L?1, the mortality was total at the 26th day, and consequently, these salinity data were not included in the statistical analysis. Among the water quality parameters, only pH and the total suspended solids concentration were significantly influenced by salinity. However, a trend towards intensification of the nitrification processes was observed as the salinity increased, with the lowest ammonia and the highest nitrite and nitrate concentrations found at 25 g L?1. The concentrations of ciliates and flagellates diminished and increased, respectively, with the increase in salinity. Diatoms predominated at 25 g L?1, whereas at 2 and 4 g L?1, chlorophytes were more abundant. Microbial floc crude protein content was reduced with the increase in salinity, whereas ash content demonstrated the inverse trend. The best overall growth performance and survival were observed at 25 g L?1. However, satisfactory productivity was also found at 4 g L?1, suggesting the viability of rearing L. vannamei at low salinity under zero‐water‐exchange conditions.  相似文献   

5.
Few marine rotifer species (e.g. Encentrum linheii and Synchaeta cecilia) have been cultured successfully besides Brachionus plicatilis and B. rotundiformis, commonly used to rear larvae of many marine fish species. The development of culture techniques for marine rotifers smaller in size than the Brachionus species may be useful for rearing fish species for which the currently used prey are too large. We evaluated the possibility of culturing Colurella dicentra isolated from a Mississippi Gulf Coast estuary. An experiment was conducted to determine the effects of salinity (10–35 g L?1) on its population growth rate. Rotifers were fed Nannochloropsis oculata at a density of 100 000 cells mL?1 for 15 days. Colurella dicentra survived in water with a salinity of 10–47 g L?1. Densities of up to 300 rotifers mL?1 were sometimes attained in cultures. Salinity influenced C. dicentra production (P<0.001). The mean rotifer numbers at 10 g L?1 (22 840±2604 SD), 15 g L?1 (25 980±7071 SD) and 20 g L?1 (19 780±1029 SD) at the end of the experiment were similar (P>0.05), but were higher (P=0.05) than numbers at 25 g L?1 (4240±1783), 30 g L?1 (1300±264 SD) and 35 g L?1 (100±101 SD). The population growth rate (r) of the rotifers was the highest at 15 g L?1 (0.37–0.42 day?1), and the lowest at 35 g L?1 (?0.33–0.06 day?1). This is the first report of C. dicentra in the estuarine waters of the Gulf of Mexico, and also the first time it has been cultured successfully.  相似文献   

6.
First‐feeding halibut larvae (245‐day degrees; 40 days post hatch), reared at 34 g L?1 salinity and 7°C, were subjected to handling and allowed to recover in a range of salinities (0–34 g L?1) and at 10°C. Survival of the unfed larvae was determined daily for 18 days. Mortality rates approached 0 after 4 days in all treatments and presumed starvation‐induced mortality started at about 11 days post handling. By 20 days post treatments, all larvae had died. Salinities in the range of 10–20 g L?1 produced significantly (anova , P<0.01) higher initial survival (71–95%) than salinities above 20 g L?1 (24–48%) or below 10 g L?1 (0–19%) and this survival pattern changed little in unfed larvae for the first 10 days following the stressor. For example, 24 hour post handling, survival of halibut was improved from 28.7±16.5% (mean±standard error, n=3) at 34.0 g L?1 to 95.2±4.8% at 13 g L?1. A second‐order polynomial regression of 4‐day post‐handling survival data (y=?0.002x 2+0.0603x+0.0699, r2=0.3936) predicted a maximum survival at 15.1 g L?1 salinity. These results have important implications for halibut aquaculture and research when handling of larvae is unavoidable. For practical applications, we recommend reducing salinity of receiving waters to 15–20 g L?1 with a slow (3–4 days) reacclimation to ambient conditions.  相似文献   

7.
The interactive effects of salinity and temperature on development and hatching success of lingcod, Ophiodon elongatus Girard, were studied by incubating eggs at four temperatures (6, 9, 12 and 15°C) and five salinities (15, 20, 25, 30 and 35 g L?1). Hatch did not occur in any of the 15°C treatments. Degree days (°C days) to first hatch was not influenced by temperature or salinity, however, calendar days to first hatch differed significantly for temperature (P<0.0001, 61±1, 44±1 and 35±1 days for 6, 9 and 12°C respectively). Degree days to 50% (427.1±4.2) hatch was not significantly influenced by temperature but was by salinity (P=0.0324). Viable hatch (live with no deformities, 74.1±4.0%) was greatest at 9°C and 25 g L?1 but not significantly different in the range of 20–30 g L?1. Larval length (9.4±0.13 mm) was greatest at 9°C and 20–30 g L?1. Temperature and salinity significantly influenced all categories of deformities with treatments at the upper (12°C and 35 g L?1) and lower limits (6°C and 15 g L?1) producing the greatest deformities. The optimal temperature and salinity for incubating Puget Sound lingcod eggs was found to be 9°C and 20–30 g L?1.  相似文献   

8.
A 40‐day experiment was conducted to investigate the effects of different Ca2+ concentration fluctuation on the moulting, growth and energy budget of juvenile Litopenaeus vannamei with an initial wet body weight of (1.20±0.01) g. The Ca2+ concentration of the control group C385 was 385 mg L?1 throughout the experiment, while the Ca2+ concentration of the C591, C803, C1155 and C2380 groups periodically fluctuated from 385 to 591, 803, 1155 and 2380 mg L?1 respectively. The moulting frequency (MF) of the shrimp in the Ca2+ concentration fluctuating groups was significantly higher than those in the control group (P<0.05). The specific growth rates (SGRd) and feed intake of the shrimp in the C591 and C803 groups were significantly higher than those in other groups (P<0.05), but no significant differences in feed efficiency were found among all groups (P>0.05). The shrimp in C591 and C803 groups spent significantly less energy in respiration, while depositing significantly more energy for growth than those in other three groups (P<0.05). These results showed that proper Ca2+ concentration fluctuation could increase the MF and growth rate of the juvenile L. vannamei, and according to the regression formula made using SGRd and range of Ca2+ concentration fluctuation, periodically enhanced Ca2+ concentration of 295 mg L?1 in the seawater was suggested to be used in shrimp culture.  相似文献   

9.
Zooplankton, macrozoobenthos and feeding habits of Litopenaeus stylirostris and L. vannamei in monoculture and polyculture semi‐intensive experimental ponds were evaluated. Zooplankton was more abundant in monoculture of L. stylirostris (1002±670 organisms (org.) L?1) than in monoculture of L. vannamei (470±37 org. L?1), and polyculture (321±188 org. L?1). The main zooplanktonic groups were polychaeta larvae, nauplii, copepods and polychaeta. Macrozoobenthos was more abundant in polyculture (6898±11 137 org. m?2) compared with monoculture of L. stylirostris (3201±350 org. m?2) and L. vannamei (2384±3752 org. m?2). The main benthic groups were copepods, polychaeta, ostracods, nematodes and insects. Differences in feeding habits were found between species and regimes. Litopenaeus vannamei showed to be a more voracious species and fed mostly on organic detritus and benthos in both culture regimes. Litopenaeus stylirostris had a more restricted sources of feed in the ponds. The major component in the stomach content of both species was detritus. Macroalgae, sand, exuvia, formulated feed, prey and microalgae were minor components for both species (<7%). Ingestion of formulated feed was <4% for L. stylirostris and was not detected for L. vannamei. The stomach repletion rates were larger for L. vannamei (55.6% and 48.8%) than for L. stylirostris (43.75% and 44.89%). Litopenaeus stylirostris grew better in polyculture (10.3±3.4 g) that in monoculture (9.0±3.8 g). Litopenaeus vannamei grew better in monoculture (16.1±4.8 g) than in polyculture (13.4±4.5 g). For both species, feed conversion ratio was lower in polyculture.  相似文献   

10.
Effect of salinity on carrying capacity of a recirculation system for Nile tilapia, Oreochromis niloticus L.; production was assessed. Survival, growth and feed conversion ratio of adult Nile tilapia fed 30% crude protein diet for 88 days were measured at three different salinity levels (8, 15 and 25 g L?1) and two stocking densities (20 and 40 m?3) in three independent recirculating systems. Highest survival (98%) and a linear growth in net biomass (P<0.01) was observed in both densities at 8 g L?1 and in 20 m?3 treatment at 15 g L?1. Highest net biomass growth was observed in the 40 m?3 stocking density treatment at 8 g L?1 salinity level (P<0.05). Overall biomass growth was significantly affected by salinity indicating a decrease in Nile tilapia carrying capacity with increased salinity. About 11 000 kg ha?1 crop?1 of Nile tilapia can be obtained in recirculating systems at 8 g L?1 salinity, significantly higher than the net production at 15 g L?1 (5200 kg ha?1 crop?1) and 22 g L?1 (4425 kg ha?1 crop?1).  相似文献   

11.
The synchronous effects of aqueous Na/K and dietary potassium (K+) on growth and physiological characters was studied on the Pacific white shrimp (Litopenaeus vannamei) reared in low‐salinity well water (4 ppt) for 8 weeks with initial weight of 0.28 ± 0.01 g. Three practical diets were formulated with supplement of 0, 0.3%, 0.6% K+ which contained 1.29 g/100 g, 1.60 g/100 g, 1.93 g/100 g K+ respectively. The supplement of K+ to the low‐salinity well water was 10, 20, 40 mg L?1 which formed Na:K ratios of 42:1, 33:1, 23:1 respectively. Results showed that when the aqueous Na:K ratio was 42 and dietary K+ was 1.93 g/100 g K+, the WGR and PER of L. vannamei were the highest and the FCR was lower than that of others (< 0.01). Supplement of K+ into well water and diets did not showed significant effects on haemolymph ammonia‐N, uric acid, urea content (> 0.05), but had a extremely significant effect on arginase activity and Cl? concentration (< 0.01). Moreover, similar results were observed in alkaline phosphatase (ALP), bacteriolytic activity (LSZ) and respiratory burst activity (O2?) (< 0.05). These results suggested that aqueous Na/K in the low‐salt well water and dietary K had significant synergistic effect on the growth, osmoregulation and immunity of L. vannamei. Concluded from the growth performance, nitrogen metabolism, osmoregulation and immunity, as the Na/K in the low‐salinity well water descended from 42 to 23, the requirement of dietary K+ was also decreased.  相似文献   

12.
The effects of salinity on plasma osmolality, branchial chloride cell density, feed consumption and conversion and growth performance of yellowtail kingfish (Seriola lalandi) were evaluated. Fish (11.6 ± 0.6 g) were kept for 29 days at 14, 18, 22, 26 (experimental) and 30 g L?1 (control) salinity in independent, pilot‐scale recirculation aquaculture systems. No differences in plasma osmolality or chloride cell numbers in gills were observed, pointing to a strong osmoregulatory capacity in the juveniles. Fish at 14, 18 and 22 g L?1 (7.61 ± 0.19, 7.61 ± 0.01 and 7.61 ± 0.13% day?1, respectively) had higher growth rates than fish at 26 and 30 g L?1 (7.10 ± 0.05 and 6.97 ± 0.06% day?1 respectively). The higher growth rate at lower salinity resulted from increased feed intake; feed conversion was not different. An evaluation of the impact of salinity on growth rate of on‐growing stages (till market size) seems warranted to assess whether the profitable effects of low salinity persist in later stages of this important aquaculture species.  相似文献   

13.
We evaluated the performance of whiteleg shrimp Penaeus vannamei (Boone, 1931) in response to different stocking densities and acclimation periods. Shrimp postlarvae were acclimated from seawater (30 g L?1) to low‐salinity well water (<1.0 g L?1) at a constant hourly reduction rate of 40, 60, 80 and 100 h. After acclimation to low‐salinity well water, postlarvae from each acclimation time treatment were stocked in three replicate tanks at densities of 50, 100, 150 or 200 shrimps m?2 for 12 weeks of growth. Salinity averaged <1.0 g L?1 for each growth study. The different treatments resulted in significant differences in both the final body weight and the survival rate (SR). Shrimp acclimated for 100 h showed substantially improved survival (83%) relative to shrimp acclimated for shorter periods. Shrimp yields for all cultured periods ranged from 0.32 kg m?2 in tanks stocked at 50 m?2 to 1.14 kg m?2 in tanks stocked at 200 m?2. We conclude that whiteleg shrimp can be successfully grown in low‐salinity well water, and that the growth, production output and SRs are significantly higher when shrimp are acclimated for longer periods.  相似文献   

14.
A series of four trials were conducted on inland saline groundwater of 58 g L?1 diluted to lower salinities up to 10 g L?1 and later manipulating its ionic concentrations to enhance the survival and growth of Penaeus monodon postlarvae (PL). In the first experiment, the survival of PL was tested at several salinities (10, 20, 30, 40, 50 and 58 g L?1), and the survival of PL was studied in comparison with natural sea water of similar salinities. Complete mortality of PL was observed at all salinity levels within 144 h. Longest survival for 96 h followed by 72 h was found at 10 and 20 g L?1 salinity respectively. In the second experiment, survival of PL was tested at 10–20 g L?1 salinity at different concentrations of calcium varying between 100 and 300 mg L?1. The survival of PL could be increased to 7 days at 12.5 g L?1 salinity by reducing the calcium level to 200 from 921.8 mg L?1 with magnesium and potassium levels of 208.5 and 30.03 mg L?1 respectively. In the third experiment, the survival of PL could be further enhanced to 18 days at the same salinity by increasing the magnesium level from 208.5 to 400 mg L?1 with potassium held at 30.03 mg L?1. Survival and growth of PL in inland saline water of 12.5 g L?1 salinity similar to performance in sea water of the same salinity was achieved by increasing the potassium concentration from 30.03 to 200 mg L?1 with calcium and magnesium levels of 199.5 and 199.4 mg L?1 respectively.  相似文献   

15.
The performance of the Pacific white shrimp Litopenaeus vannamei (Boone) under various stocking strategies was evaluated in earthen ponds filled with freshwater amended with major ions. Six 0.1‐ha earthen ponds located in Pine Bluff, AR, USA, were filled with freshwater in 2003 and 2004, and potassium magnesium sulphate added to provide 50 mg K+ L?1 and stock salt added to provide 0.5 g L?1 salinity. In 2003, three ponds either were stocked with PL15 shrimp (39 PL m?2) for 125 days of grow out or with PL25 shrimp for 55 days (23 PL m?2) followed by a 65‐day (28 PL m?2) grow‐out period. In 2004, ponds were stocked with 7, 13 or 30 PL15 m?2 for 134 days of grow out. Salinity averaged 0.7 g L?1 during both years, and concentration of SO4?2, K+, Ca2+ and Mg2+ was higher, and Na+ and Cl? was lower in amended pond water than in seawater at 0.7 g L?1 salinity. Potassium concentration in amended water was 52–61% of the target concentration. Shrimp yields ranged from 3449 kg ha?1 in 2003 to 4966 kg ha?1 in 2004 in ponds stocked with 30–39 PL15 m?2 for a 125–134‐day culture period. At harvest, mean individual weight ranged from 17.1 to 19.3 g shrimp?1. In ponds stocked with PL25 shrimp, yields averaged 988 and 2462 kg ha?1 for the 1st and 2nd grow‐out periods respectively. Gross shrimp yield in 2004 increased linearly from 1379–4966 kg ha?1 with increased stocking rate. These experiments demonstrated that L. vannamei can be grown successfully in freshwater supplemented with major ions to a final salinity of 0.7 g L?1.  相似文献   

16.
An indoor trial was conducted for 42 days to evaluate water quality, Vibrio density and growth of Litopenaeus vannamei in an integrated biofloc system (IBS) with Gracilaria birdiae. Four treatments were used, each in triplicate: Control (monoculture shrimp); IBS 2.5 (L. vannamei and 2.5 kg wet weight seaweed m?3); IBS 5.0 (L. vannamei and 5.0 kg wet weight seaweed m?3) and IBS 7.5 (L. vannamei and 7.5 wet weight seaweed m?3). Shrimp individuals (0.34 ± 0.01 g) were stocked at a density of 500 shrimp m?3. No water exchange was carried out during the experimental period. Molasses was added once a day as an organic carbon source to maintain the C:N ratio at 12:1. The IBS significantly decreased (P < 0.05) dissolved inorganic nitrogen (DIN) ranging from 19% to 34% (3.12–3.83 mg L?1), NO3‐N ranging from 19% to 38% (2.40–3.16 mg L?1), Vibrio density ranging from by 8–83% (0.40–2.20 log 103 colony‐forming units mL?1), and FCR ranging from by 20–30% (1.20–1.37), as compared to the control (4.73 mg L?1, 3.93 mg L?1, 2.40 log 103 colony‐forming units mL?1, and 1.74 respectively). Moreover, the IBS significantly increased (P < 0.05) crude protein in whole body shrimp, ranging from 8% to 13% (13.2–13.7% wet weight basis); as well as final weight, ranging from 25% to 32% (3.90–4.12 g), weekly growth ranging from 25% to 34% (0.59–0.63 g), and shrimp yield by 22–39% (1.72–1.96 kg m?3), as compared to control (12.1% wet weight basis, 3.12 g, 0.47 g, and 1.41 kg m?3 respectively). It can thus be concluded that cultivating Gracilaria birdiae in an IBS with L. vannamei can contribute to DIN and NO3‐N removal, lower Vibrio density, increased crude protein in whole body shrimp, higher growth and yield parameters in shrimp culture.  相似文献   

17.
The effects of ammonia and nitrite on survival, growth and moulting were investigated in juvenile tiger crab, Orithyia sinica (carapace length 3.91±0.15 mm, carapace width 3.84±0.23 mm, n=440), after 30 days exposure to ammonia‐N (0, 20, 50, 100 and 150 mg L?1) and nitrite‐N (0, 50, 100, 150, 200 and 250 mg L?1) using a continuous flow system. Survival rates of tiger crab exposed to ammonia and nitrite decreased linearly with the exposure time and concentration. The growth rate of tiger crab exposed to 50, 100 and 150 mg L?1 ammonia was significantly lower than that of control crabs. The growth rate of tiger crab exposed to nitrite decreased at 150, 200 and 250 mg L?1 nitrite. During the ammonia and nitrite exposure, the intermoult period of the juveniles of tiger crab O. sinica was shortened between the first and second moult, and the number of moulting of crabs exposed to a higher concentration were significantly higher than that of control crabs.  相似文献   

18.
The effects of dietary astaxanthin supplemented at 0, 40, 80 or 150 mg astaxanthin kg−1 on growth, survival, moult frequency, osmoregulatory capacity (OC) and selected metabolic and haematological variables in Litopenaeus vannamei acclimated to low‐salinity water (3 g L−1) were evaluated. Supplemented astaxanthin at 80 mg kg−1 improved growth, survival and moult frequency in shrimp. The lowest OC was also exhibited in shrimp fed with dietary astaxanthin at 80 mg kg−1. Shrimp haemolymph concentrations of glucose, lactate, haemocyanin and total haemocyte count were all significantly enhanced by feeding the diet supplemented with 80 mg astaxanthin kg−1 compared with shrimp fed with the other diets. On the basis of these results, dietary astaxanthin supplementation of 80 mg kg−1 is recommended for juvenile L. vannamei cultured in low‐salinity water.  相似文献   

19.
We investigated the growth of juvenile common snook (Centropomus undecimalis) reared at 25°C and 28°C and salinities of 0.3, 15, and 32 g L?1. Total length, weight, RNA/DNA, and protein/DNA ratios were determined after 90 days of experiment. Higher growth was observed at 28ºC compared with 25°C, at the same salinity. At 28°C and 15 g L?1 salinity, the weight (25.14 g) of juveniles was twice that of the juveniles reared at the lower temperature. At different salinities, only higher temperature affected growth, with higher weight values obtained at 15 g L?1 in comparison with 0.3 and 32 g L?1. Length was similar at 0.3 and 15 g L?1. The RNA/DNA ratio was greater in juveniles reared at a salinity of 15 g L?1 when compared with 0.3 and 32 g L?1. This study shows that the combination of higher temperature and intermediate salinity promotes better growth of common snook juveniles.  相似文献   

20.
More than 250 male and female yellowfin seabream (Acanthopagrus latus) were caught in the creeks near the Mahshar area in the north‐west of Persian Gulf using fishhooks to study the effects of salinity on reproductive indices. The experiments were carried out using three salinity treatments (30 ± 1 g L?1, 35 ± 1 g L?1 and 40 ± 1 g L?1) with three replications. A total of six males and three females were randomly introduced to each tank. The survival rate of the broodstock was estimated at more than 90% at different salinity levels and the maximum rate was observed at 30 g L?1 of the experiment rate. The percentage of buoyant eggs was more than 90% at 40 g L?1 and it was significantly different from other treatments. The average number of eggs per female (312 914 ± 65 085), and the average number of eggs per kilogram of female (649 460 ± 173 574) at 40 g L?1 were more than those in the other treatments but no significant differences were observed (≤ 0.05). The average percentage of fertilized eggs (86.7%) and the average percentage of hatched larvae (67%) at 40 g L?1 treatment was more than those at 30 g L?1 and 35 g L?1 treatments but no significant differences were observed (≤ 0.05). At 40 g L?1 salinity, in all spawning cases, the released eggs were hatched. Overall, the present study has shown that better buoyant eggs of A. latus can be obtained at salinity 40 g L?1. On the other hand, the percentage of fertilized eggs and hatched larvae were not affected by salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号