首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

2.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

3.
This paper reports on experiments conducted to examine the combined effects of salinity and potassium concentration on survival and growth of juvenile mulloway (Argyrosomus japonicus, Temminck and Schlegel) in inland saline groundwater. Three separate experiments were conducted in 20 (±1)°C water. In the first experiment, mulloway were held in 60 L aquaria (triplicate) with salinities of 5, 15, 25 or 35 g L?1 and potassium concentrations of 20%, 40%, 60% or 80% of the concentration present in oceanic water of the equivalent salinity in a 4 × 4 factorial combination for 7 days. Response surface contour diagrams were generated from survival data to estimate optimal conditions. The results showed that maximum survival of juvenile mulloway occurred at salinities of >14 g L?1 and potassium concentrations of >38%. Survival was lowest at salinities of <7 and >33 g L?1 and potassium concentrations of <25%. The second experiment was conducted with mulloway held in 60 L aquaria at salinities of 15, 25 or 35 g L?1 and potassium concentrations of 40%, 60%, 80% or 100% in a 3 × 4 factorial combination for 44 days. Optimal conditions for maximum survival and growth of mulloway were within a salinity range of 15–35 g L?1 and potassium concentration above 40%. The third experiment was conducted in three 500 L tanks to record the survival and growth of mulloway fingerlings held at 20 (±1)°C, 23 g L?1 salinity and potassium concentrations of 50% for 8 months. Survival and growth of mulloway fingerling in inland saline groundwater were similar to those reported from a semi‐intensive floating tank system in inland saline water and sea cage trials in oceanic water.  相似文献   

4.
The combined effects of temperature and salinity on larval survival and development of the mud crab, Scylla serrata, were investigated in the laboratory. Newly hatched larvae were reared under 20 °C temperature and salinity combinations (i.e. combinations of four temperatures 25, 28, 31, 34 °C with five salinities 15, 20, 25, 30, 35 g L−1). The results showed that temperature and salinity as well as the interaction of the two parameters significantly affected the survival of zoeal larvae. Salinity at 15 g L−1 resulted in no larval survival to the first crab stage, suggesting that the lower salinity tolerance limit for mud crab larvae lies somewhere between salinity 15 and 20 g L−1. However, within the salinity range of 20–35 g L−1, no significant effects on survival of zoeal larvae were detected (P>0.05). The combined effects of temperature and salinity on larval survival were also evident as at low salinities, both high and low temperature led to mass mortality of newly hatched larvae (e.g. 34 °C/15 g L−1, 34 °C/20 g L−1 and 25 °C/15 g L−1 combinations). In contrast, the low temperature and high salinity combination of 25 °C/35 g L−1 resulted in one of the highest survival to the megalopal stage. It was also shown that at optimal 28 °C, larvae could withstand broader salinity conditions. Temperature, salinity and their interaction also significantly affected larval development. At 34 °C, the mean larval development time to megalopa under different salinity conditions ranged from 13.5 to 18.5 days. It increased to between 20.6 and 22.6 days at 25 °C. The effects of salinity on larval development were demonstrated by the fact that for all the temperatures tested, the fastest mean development to megalopa was always recorded at the salinity of 25 g L−1. However, a different trend of salinity effects was shown for megalopae as their duration consistently increased with an increase in salinity from 20 to 35 g L−1. In summary, S. serrata larvae tolerate a broad range of salinity and temperature conditions. Rearing temperature 25–30 °C and salinity 20–35 g L−1 generally result in reasonable survival. However, from an aquaculture point of view, a higher temperature range of 28–30 °C and a salinity range of 20–30 g L−1 are recommended as it shortens the culture cycle.  相似文献   

5.
Survival of marble goby larvae fed either Rhodovulum sulfidophilum, a phototrophic bacterium cultured from palm oil mill effluent (pPB), or microalgae ( Nannochloropsis sp.) was evaluated at two salinities. Larvae directly fed pPB had survival of 0–29% at 5 g L?1 salinity and 0–19% at 10 g L?1 salinity, whereas larvae directly fed microalgae suffered complete mortality after 20 days of culture at both salinities. However, larvae indirectly fed pPB or microalgae, i.e. via rotifers (Days 1–30) and Artemia nauplii (Days 21–30) cultured solely from pPB or microalgae, showed improved survival of 35–55% or 44–49% at 5 g L?1 salinity respectively. In all experiments, fish larvae reared at 5 g L?1 salinity showed significantly higher (P < 0.01) mean survival than those reared at 10 g L?1 salinity. The survival of larvae fed the bacterial‐based diet was higher compared with microalgal diet used in previous studies. The pPB had higher total polyunsaturated fatty acids and docosahexaenoic acid (DHA) than the microalgae, which had very high eicosapentaenoic acid (EPA). Larvae with very high ratios of DHA/EPA (>11) or/and ARA (arachidonic acid)/EPA (>5), attributable to their given diet, however suffered the highest mortality.  相似文献   

6.
Salinity tolerance and growth of Japanese flounder Paralichthys olivaceus at different developmental stages were evaluated, including newly hatched larvae (nhl), yolk sac larvae (ysl), oil droplet larvae (odl), post oil droplet larvae (podl), premetamorphic larvae (preml) and prometamorphic larvae (proml), at 11 salinities from 5 to 55 g L?1 for 96 h. The ontogenesis during the early life of P. olivaceus was investigated under hatchery salinity 35 g L?1. The results showed that suitable salinities for nhl, ysl, odl, podl, preml and proml larvae were 10 to 25 g L?1, 10 to 30 g L?1, 20 to 30 g L?1, 30 g L?1, 10 to 30 g L?1, 15 g L?1, respectively, demonstrating an ontogenetic variation of salinity tolerance. The salinity tolerance of nhl, ysl, preml was higher than that of odl, podl and proml. The ysl and preml larvae displayed wide salinity tolerances. The present findings demonstrate that the suitable salinity for larviculture of P. olivaceus is 20–25 g L?1 before the depletion of oil droplet; after that, higher salinity (30 g L?1) should be ensured for the post‐oil droplet larvae; the premetamorphic larvae can be cultured at a wide salinity range (10–30 g L?1), and the metamorphosed larvae should be reared at salinity about 15 g L?1.  相似文献   

7.
The interactive effects of salinity and temperature on development and hatching success of lingcod, Ophiodon elongatus Girard, were studied by incubating eggs at four temperatures (6, 9, 12 and 15°C) and five salinities (15, 20, 25, 30 and 35 g L?1). Hatch did not occur in any of the 15°C treatments. Degree days (°C days) to first hatch was not influenced by temperature or salinity, however, calendar days to first hatch differed significantly for temperature (P<0.0001, 61±1, 44±1 and 35±1 days for 6, 9 and 12°C respectively). Degree days to 50% (427.1±4.2) hatch was not significantly influenced by temperature but was by salinity (P=0.0324). Viable hatch (live with no deformities, 74.1±4.0%) was greatest at 9°C and 25 g L?1 but not significantly different in the range of 20–30 g L?1. Larval length (9.4±0.13 mm) was greatest at 9°C and 20–30 g L?1. Temperature and salinity significantly influenced all categories of deformities with treatments at the upper (12°C and 35 g L?1) and lower limits (6°C and 15 g L?1) producing the greatest deformities. The optimal temperature and salinity for incubating Puget Sound lingcod eggs was found to be 9°C and 20–30 g L?1.  相似文献   

8.
A series of four trials were conducted on inland saline groundwater of 58 g L?1 diluted to lower salinities up to 10 g L?1 and later manipulating its ionic concentrations to enhance the survival and growth of Penaeus monodon postlarvae (PL). In the first experiment, the survival of PL was tested at several salinities (10, 20, 30, 40, 50 and 58 g L?1), and the survival of PL was studied in comparison with natural sea water of similar salinities. Complete mortality of PL was observed at all salinity levels within 144 h. Longest survival for 96 h followed by 72 h was found at 10 and 20 g L?1 salinity respectively. In the second experiment, survival of PL was tested at 10–20 g L?1 salinity at different concentrations of calcium varying between 100 and 300 mg L?1. The survival of PL could be increased to 7 days at 12.5 g L?1 salinity by reducing the calcium level to 200 from 921.8 mg L?1 with magnesium and potassium levels of 208.5 and 30.03 mg L?1 respectively. In the third experiment, the survival of PL could be further enhanced to 18 days at the same salinity by increasing the magnesium level from 208.5 to 400 mg L?1 with potassium held at 30.03 mg L?1. Survival and growth of PL in inland saline water of 12.5 g L?1 salinity similar to performance in sea water of the same salinity was achieved by increasing the potassium concentration from 30.03 to 200 mg L?1 with calcium and magnesium levels of 199.5 and 199.4 mg L?1 respectively.  相似文献   

9.
Effect of isolipidic (62.7 ± 5.0 g kg?1) diets with protein levels of 204.6 (T20), 302.3 (T30), 424.6 (T40) or 511.0 g kg?1 (T50) on growth and survival in Nile tilapia (Oreochromis niloticus Linnaeus 1758) fry cultured for 70 days at one of four salinities (0, 15, 20 and 25 g L?1) was evaluated. A bifactorial (4 × 4) design was used with 16 treatments run in triplicate and 20 fry (0.25 ± 0.04 g) per replicate under semi‐controlled conditions. Four independent, recirculating systems (one per salinity level) were used, each one with 12 circular tanks (70 L capacity), filters and constant aeration. The different salinities had no significant effect on growth. Weight gain improved significantly as dietary protein content increased, although organisms fed the T50 diet had a lower growth rate. Survival was highest (98.33%) in the T50/15 (protein/salinity levels) treatment and lowest (71.0%) in the T20/20 treatment, with no pattern caused by the variables. The T40/25, T40/20 and T50/0 treatments produced the most efficient growth and feed utilization values while the T20 treatments at all the salinities resulted with the lowest performance. With the exception of the T50 treatments, a non‐significant tendency to increased weight gain was observed as water salinity increased, suggesting that the salinity of the culture environment does not influence dietary protein requirements in Nile tilapia O. niloticus fry.  相似文献   

10.
To evaluate the effect of salinity on the hatching rate, hatching time, survival percentage, osmoregulation pattern and the incidence of abnormalities in newly hatched larvae, embryos of Sphoeroides annulatus (Jenyns 1842) were exposed to 5, 12, 19, 26, 33, 35 and 40 psu. The hatching percentage (HP), survival percentage (PS), normal larvae (PN), deformed larvae (PD) and hatching time (HT) were significantly affected by salinity (< 0.05). The embryos exposure to 5 psu caused that HP, PS, and PN had lower values (2.6 ± 0.32, 7.78 ± 0.88 and 70.37 ± 7.75% respectively), PD and HT had the highest values 26.67 ± 7.54% and 55.53 ± 0.59 h respectively. However, the survival of newly hatched larvae was not possible in 5 ups, though it was in 40 ups. Osmotic pressure (OP) remained constant in each salinity, whereas isosmotic points changed from 435.5 mOsm kg?1 in 21 h post fertilization to 342.8 mOsm kg?1 at 47 h post fertilization, obtaining a pattern of hyper‐osmoregulation at lower salinities and hypo‐osmoregulation in higher salinities. This study is the first carried out on embryos of this species; therefore, the obtained information is essential to improve strategies and growing conditions in their initial development.  相似文献   

11.
The effects of salinity fluctuation on the growth, intermoult period and energy budget of juvenile Litopenaeus vannamei were investigated. Salinity fluctuation regimes were set in different frequencies of 2, 4 and 8 days and different amplitudes of ±2, ±5 and ±10 g L?1 from a control salinity of 20 g L?1. After a 48‐day feeding trial, the intermoult period of shrimp became shorter with increasing amplitude and frequency of salinity fluctuation (P<0.05). Both the frequency and the amplitude of salinity fluctuation had a significant effect on the growth rate of L. vannamei juveniles (P<0.05). At the frequency of 4 days, the highest growth rates occurred at amplitudes of 5–10 g L?1, whereas the growth rate was the lowest at 10 g L?1 when the frequency was reduced to 2 days. Feed intake (FI) and assimilation efficiency (AE) of shrimp were also significantly affected by the salinity fluctuation (P<0.05) and matched the growth rate response. The energy expenditures for growth (G), respiration (R), excretion (U) and exuviae (E) to the energy consumed as food (C) were not affected by salinity fluctuation. However, salinity fluctuation significantly affected the percentage of C as faeces (F), with the lowest value occurring at salinity amplitudes of 5–10 g L?1 and frequencies of 4–8 days. Therefore, salinity fluctuations (every 4 days by ±5–10 g L?1) result in higher growth rates than constant salinity conditions (20 g L?1) through greater FI, enhanced feed assimilation and reduced faecal energy loss.  相似文献   

12.
Litopenaeus vannamei (Boone) grown in ponds are exposed to salinities of less than 5 g L?1 during inland shrimp culture or to more than 40 g L?1 from evaporation and reduced water exchange in dry, hot climates. However, dietary requirements for shrimp grown in low or high salinities are not well defined, particularly for fatty acids. Feeding shrimp postlarvae with highly unsaturated fatty acids (HUFA) enhances tolerance to acute exposure to low salinity, as a result of better nutritional status, or/and specific effects of HUFA on membrane function and osmoregulation mechanisms. This study analysed the effect of HUFA supplementation (3% vs. 34%) on L. vannamei juveniles reared for 21 days at low (5 g L?1), medium (30 g L?1) and high salinities (50 g L?1). Juveniles grown at 5 g L?1 had lower survival compared with controls (30 g L?1) or shrimp grown at 50 g L?1, but no significant effect on survival was observed as a result of HUFA enrichment. In contrast, growth was significantly lower for shrimp grown at 50 g L?1, but this effect was compensated by the HUFA‐enriched diet. Osmotic pressure in haemolymph was affected by salinity, but not by HUFA enrichment. Shrimp fed HUFA‐enriched diets had significantly higher levels of eicosapentaenoic acid and docosahexaenoic acid in hepatopancreas and gills. These results demonstrate that growth at high salinities is enhanced with diets containing high HUFA levels, but that HUFA‐enriched diets have no effect on shrimp reared at low salinities.  相似文献   

13.
More than 250 male and female yellowfin seabream (Acanthopagrus latus) were caught in the creeks near the Mahshar area in the north‐west of Persian Gulf using fishhooks to study the effects of salinity on reproductive indices. The experiments were carried out using three salinity treatments (30 ± 1 g L?1, 35 ± 1 g L?1 and 40 ± 1 g L?1) with three replications. A total of six males and three females were randomly introduced to each tank. The survival rate of the broodstock was estimated at more than 90% at different salinity levels and the maximum rate was observed at 30 g L?1 of the experiment rate. The percentage of buoyant eggs was more than 90% at 40 g L?1 and it was significantly different from other treatments. The average number of eggs per female (312 914 ± 65 085), and the average number of eggs per kilogram of female (649 460 ± 173 574) at 40 g L?1 were more than those in the other treatments but no significant differences were observed (≤ 0.05). The average percentage of fertilized eggs (86.7%) and the average percentage of hatched larvae (67%) at 40 g L?1 treatment was more than those at 30 g L?1 and 35 g L?1 treatments but no significant differences were observed (≤ 0.05). At 40 g L?1 salinity, in all spawning cases, the released eggs were hatched. Overall, the present study has shown that better buoyant eggs of A. latus can be obtained at salinity 40 g L?1. On the other hand, the percentage of fertilized eggs and hatched larvae were not affected by salinity.  相似文献   

14.
Few marine rotifer species (e.g. Encentrum linheii and Synchaeta cecilia) have been cultured successfully besides Brachionus plicatilis and B. rotundiformis, commonly used to rear larvae of many marine fish species. The development of culture techniques for marine rotifers smaller in size than the Brachionus species may be useful for rearing fish species for which the currently used prey are too large. We evaluated the possibility of culturing Colurella dicentra isolated from a Mississippi Gulf Coast estuary. An experiment was conducted to determine the effects of salinity (10–35 g L?1) on its population growth rate. Rotifers were fed Nannochloropsis oculata at a density of 100 000 cells mL?1 for 15 days. Colurella dicentra survived in water with a salinity of 10–47 g L?1. Densities of up to 300 rotifers mL?1 were sometimes attained in cultures. Salinity influenced C. dicentra production (P<0.001). The mean rotifer numbers at 10 g L?1 (22 840±2604 SD), 15 g L?1 (25 980±7071 SD) and 20 g L?1 (19 780±1029 SD) at the end of the experiment were similar (P>0.05), but were higher (P=0.05) than numbers at 25 g L?1 (4240±1783), 30 g L?1 (1300±264 SD) and 35 g L?1 (100±101 SD). The population growth rate (r) of the rotifers was the highest at 15 g L?1 (0.37–0.42 day?1), and the lowest at 35 g L?1 (?0.33–0.06 day?1). This is the first report of C. dicentra in the estuarine waters of the Gulf of Mexico, and also the first time it has been cultured successfully.  相似文献   

15.
The effect of two disinfectants on eggs and larvae of Baltic cod, Gadus morhua, was investigated. The eggs were disinfected for 10 min using various concentrations of either glutaraldehyde (100, 200, 400, 600 and 800 mg L?1) or iodophor (10, 50, 100 and 150 mg L?1), 1–4‐days post‐fertilization. Bactericidal effect of disinfection, survival to hatching, hatching success and larval abnormalities were assessed. Larval survival was recorded at 5‐, 10‐ and 15‐days post‐hatch (dph). Although Baltic cod eggs have an unusually thin chorion, they could tolerate surface disinfection. A reduction in bacterial growth was observed with increased concentrations of disinfectant (3.0 × 107–1.6 × 101 CFU mL?1). Abnormalities in newly hatched larvae were not related to disinfection. Survival of the yolk sac larvae was significantly better for eggs treated with 400 mg L?1 glutaraldehyde for 10 min at 10 and 15 dph. Effective disinfection was also recorded using 100 mg L?1 Actomar K30. Egg batch effect rather than initial bacterial concentration, disinfectant type or incubation method determined the survival of the eggs to hatching and survival of larvae. Because of the carcinogenic effect of glutaraldehyde, iodophor is recommended for routine disinfection of cod eggs.  相似文献   

16.
Blue king crab (Paralithodes platypus) larvae were cultivated to test the effects of diet, temperature and rearing density. Dietary treatments included no feeding (unfed), Artemia nauplii enriched with diatoms Thalassiosira nordenskioeldii (THAL), unenriched Artemia fed in addition to Thalassiosira (A+THAL) and a control diet of Artemia enriched with frozen Isochrysis paste (ISO 6). Trials were conducted at 6 °C, and a rearing density of 10 zoea L?1, with six replicates per treatment. The ISO 6 diet was also tested at 3 °C (ISO 3) and 9 °C (ISO 9), and at densities of 20 (ISO 20) and 40 (ISO 40) zoea L?1. Survival of zoea larvae fed the A+THAL diet (91.7%) was significantly higher than all others, whereas unfed zoea larvae died within 2 weeks. Temperature and rearing density had no significant effects on survival. Time required to reach stage C1 was significantly greater at 3 °C (109 days) than at 6 °C (70 days), but did not decrease further at 9 °C. After reaching the postlarval (glaucothoe) stage, half of the replicates in the ISO 20 and ISO 40 treatments were fed continuously, but survival did not differ significantly from unfed glaucothoe. We conclude that blue king crab larvae are not lecithotrophic and can be cultivated with high survival using the proper diet. These techniques can be used to produce large numbers of juvenile crab for laboratory research, or could be modified for use in stock‐enhancement programmes.  相似文献   

17.
The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L?1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20–29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L?1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5–35 g L?1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L?1. The optimal salinity range for the juvenile is from 23 to 25 g L?1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture.  相似文献   

18.
The brown shrimp, Farfantepenaeus californiensis (Holmes), is a species native to north‐west Mexico, where its culture potential is presently being addressed. Because of the climatic conditions prevailing in the region, salinities over 40 g L?1 is a commonly encountered problem. In the present study, the effect of salinity on the growth and mortality of juvenile F. californiensis is described. The change in short‐term routine metabolism at different salinities was also evaluated in order to define the adaptive capacity of the shrimp and to provide insight into the changes in the pathways of energy distribution. Groups of shrimp were exposed to increasing salinity (25, 35, 45 and 55 g L?1), and growth and survival rates after 75 days were determined in duplicate 1.8‐m3 tanks for each salinity level. Significant differences were found in final weight, growth rate and mortality of shrimp as a result of salinity level. Final mean shrimp weights at increasing salinity levels were 10.0, 9.4, 8.6 and 7.8 g. Corresponding mortality was 24.4%, 15.1%, 33.6% and 55.7%. Oxygen consumption was found to depend significantly on salinity and was equivalent to 0.0027, 0.0037, 0.0043 and 0.0053 mg g?1 min?1 respectively for the increasing salinities. The increased rate of oxygen consumption at high salinities reflects the response of the organism to osmoregulatory and ionic imbalances. Increased energy requirements to fulfil basic metabolic function as salinity increased resulted in a reduction in the energy that could be diverted to growth. Consequently, the culture of the brown shrimp at salinities over 35 g L?1 would probably result in reduced yields.  相似文献   

19.
A 30‐day feeding experiment was conducted in blue tanks (70 × 50 × 60 cm, water volume 180 L) to determine the effects of dietary lipid levels on the survival, growth and body composition of large yellow croaker (Pseudosciaena crocea) larvae (12 days after hatchery, with initial average weight 1.93 ± 0.11 mg). Five practical microdiets, containing 83 g kg?1 (Diet 1), 126 g kg?1 (Diet 2), 164 g kg?1 (Diet 3), 204 g kg?1 (Diet 4) and 248 g kg?1 lipid (Diet 5), were formulated. Live feeds (Artemia sinicia nauplii and live copepods) were used as the control diet (Diet 6). Each diet was randomly assigned to triplicate groups of tanks, and each tank was stocked with 3500 larvae. During the experiment, water temperature was maintained at 23(±1) °C, pH 8.0 (±0.2) and salinity 25 (±2) g L?1. The results showed that dietary lipid significantly influenced the survival and growth of large yellow croaker larvae. Survival increased with the increase of dietary lipid from 83 to 164 g kg?1, and then decreased. The survival of larvae fed the diet with 83 g kg?1 lipid (16.1%) was significantly lower than that of larvae fed other diets. However, the survival in larvae fed the diet with 16.4 g kg?1 lipid was the highest compared with other artificial microdiets. Specific growth rate (SGR) significantly increased with increasing dietary lipid level from 83 to 164 g kg?1 (P < 0.05), and then decreased. The SGR in larvae fed the diet with 164 g kg?1 lipid (10.0% per day) was comparable with 204 g kg?1 lipid (9.6% per day), but were significantly higher than other microdiets (P < 0.05). On the basis of survival and SGR, the optimum dietary lipid level was estimated to be 172 and 177 g kg?1 of diet using second‐order polynomial regression analysis respectively.  相似文献   

20.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号