首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了解微囊藻毒素MC-LR在鲤各组织器官中的生物富集作用,采用腹腔注射法将MC-LR纯品稀释液(0.215μg/g)注射到鲤体内,酶联免疫吸附法(ELISA)检测0、1、3、12、24和48 h时肾脏、肝脏、肌肉、胆囊、空肠和卵巢中MC-LR含量分布和积累规律.结果显示,MC-LR在肾脏含量最高,均值为(1.007±0.120)μg/g(各器官均按干重计),其次是肝脏(0.490±0.060)μg/g、胆囊(0.355 ±0.011) μg/g、空肠(0.210±0.005)μg/g、卵巢(0.082±0.021)μg/g和肌肉(0.047±0.003) μg/g.鲤不同组织器官对MC-LR的富集能力存在较大差异,肾脏是MC-LR的主要靶器官,卵巢中也存在少量MC-LR富集,肌肉对MC-LR的生物富集量远低于其他组织器官.试验48 h时,鲤体内各组织器官中和鱼缸水中MC-LR含量均有一定程度的下降,表明鲤体内对MC-LR有较强的解毒机制.  相似文献   

2.
2017年7~9月对河南师范大学养殖基地暴发蓝藻水华的养殖池塘进行监测。结果显示,共鉴定浮游藻类25种(属),隶属于5门。7月水华初期和8月水华中期,优势种均为微囊藻(Microcystis sp.),占总浮游藻类的99%以上。浮游藻类丰度和生物量波动范围分别为(0.883~12.666)×10~8 cells/L和9.740~70.020 mg/L,生物多样性为0.05~1.15。总磷(TP)和总氮(TN)含量分别为0.32~0.51和4.18~7.09 mg/L,水温为22.1~30.6℃。TP、TN、水温较高是造成蓝藻水华暴发的主要原因之一,蓝藻水华暴发造成生物多样性整体偏低。冗余分析(RDA)结果显示,浮游藻类密度和生物量与TP、TN含量呈正相关,蓝藻门(Cyanophyta)与水温、TP、TN呈正相关。同时,微囊藻暴发最大的威胁是微囊藻毒素(Microcystins, MCs)的释放,根据世界卫生组织规定的MCs含量不得超过1.0μg/L,否则就会对水生生物产生危害。实验结束时,对水样和胞内MCs的测定。研究表明,水样中MCs含量为0.040μg/L,胞内MCs含量为0.686μg/L,该养殖池塘微囊藻毒素含量在安全范围内。  相似文献   

3.
为了解蓝藻水华期间微囊藻毒素在罗非鱼体内的分布及累积传递过程,2008年6~8月采集了高密度蓝藻池塘及太湖网箱内的鱼样及水样,用ELISA法对鱼样和水样进行微囊藻毒素MC-LR含量的检测。结果表明,池塘水体微囊藻毒素MC-LR含量在0.123~0.514μg/L,MC-LR含量随着藻密度的下降而降低,对照组水体MC-LR浓度显著高于实验组MC-LR含量。池塘鱼体肌肉组织微囊藻毒素MC-LR累积含量在1.194~3.615ng/g,肝脏组织微囊藻毒素MC-LR累积含量显著高于肌肉组织。将池塘与网箱罗非鱼转至无微囊藻水体中暂养,跟踪检测MC-LR含量变化,池塘和网箱鱼体肌肉组织微囊藻毒素MC-LR含量均低于人体每日可耐受摄入量,而肝脏组织藻毒素MC-LR含量则分别需要经过10~20d自然生物降解后降低至安全摄入量之下。讨论了微囊藻毒素在鱼体组织分布与食物链中的累积传递。  相似文献   

4.
利用实验生态学方法研究了不同温度(17、21、25℃)对黄带拟鲹Pseudocaranx dentex(389.34 g±49.70 g)耗氧率、排氨率及窒息点的影响。结果显示:17℃组耗氧率为(0.26±0.01)mg/(g·h),排氨率为(3.12±0.25)μg/(g·h),窒息点为(0.85±0.13)mg/L;21℃组耗氧率为(0.37±0.02)mg/(g·h),排氨率为(3.99±0.18)μg/(g·h),窒息点为(0.93±0.08)mg/L;25℃组耗氧率为(0.52±0.03)mg/(g·h),排氨率为(5.23±0.21)μg/(g·h),窒息点为(1.24±0.10)mg/L。黄带拟鲹的耗氧率、排氨率及窒息点均随温度的升高而升高,且温度对耗氧率和排氨率有显著影响(P0.05)。同时,O/N比值在81.62~105.38,表明试验水温条件下黄带拟鲹的主要供能物质为脂肪和碳水化合物。  相似文献   

5.
太湖微囊藻毒素在罗非鱼体内累积及生物降解的初步研究   总被引:1,自引:0,他引:1  
为了解蓝藻水华期间微囊藻毒素在罗非鱼体内的分布及累积传递过程,2008年6~8月采集了高密度蓝藻池塘及太湖网箱内的鱼样及水样,用ELISA法对鱼样和水样进行微囊藻毒素MC-LR含量的检测.结果表明,池塘水体微囊藻毒素MC-LR含量在0.123~0.514 μg/L,MC-LR含量随着藻密度的下降而降低,对照组水体MC-LR浓度显著高于实验组MC-LR含量.池塘鱼体肌肉组织微囊藻毒素MC-LR累积含量在1.194~3.615ng/g,肝脏组织微囊藻毒素MC-LR累积含量显著高于肌肉组织.将池塘与网箱罗非鱼转至无微囊藻水体中暂养,跟踪检测MC-LR含量变化,池塘和网箱鱼体肌肉组织微囊藻毒素MC-LR含量均低于人体每日可耐受摄入量,而肝脏组织藻毒素MC-LR含量则分别需要经过10~20d自然生物降解后降低至安全摄入量之下.讨论了微囊藻毒素在鱼体组织分布与食物链中的累积传递.  相似文献   

6.
在构建转基因红鲤的基础上,采用生物预警系统比较和分析了非转基因和转基因红鲤(Cyprinus carpio)在不同铜离子浓度条件下的游速和活动范围的变化。转基因红鲤和非转基因红鲤孵育自同一批受精卵,转基因红鲤体长(5.31±0.64)cm、体重(3.40±0.55)g,非转基因红鲤体长(4.58±0.59)cm、体重(2.40±0.58)g。CuSO4的浓度设置0(对照)、5、15、25、35和45μg/L共6组。生物预警系统包括储水池、数字摄像仪和数据运算处理器,可以记录鱼的二维移动轨迹,并计算出鱼的平均游速。试验结果表明,非转基因和转基因红鲤的平均游速分别为:对照组1、1.57 BL/s,5μg/L组1.24、1.07 BL/s,15μg/L组1.61、1.03 BL/s,25μg/L组1.50、1.59 BL/s,35μg/L组1.62、1.61 BL/s,45μg/L组1.25、1.97BL/s。非转基因和转基因红鲤的活动范围:除35μg/L组外,其他组的坐标X值非转基因与转基因红鲤间差异都极显著(P<0.01);对照组、5和25μg/L浓度组,转基因红鲤坐标X值极显著高于非转基因红鲤;15和45μg/L浓度组,非转基因红鲤坐标X值极显著高于转基因红鲤。低于45μg/L时,铜离子没有对转基因和非转基因红鲤产生明显的毒性;在45μg/L浓度组,转基因红鲤对铜离子不敏感,而非转基因红鲤较敏感。  相似文献   

7.
去除内脏对冰藏鲤感官、化学和微生物变化的影响   总被引:1,自引:0,他引:1  
以感官、TVBN、菌落总数、假单胞菌为指标,探讨去除内脏对冰藏鲤(Cyprinus carpio)品质变化及货架期的影响。结果表明,去除内脏和未去除内脏冰藏鲤的高品质期分别为333h和330h,货架期分别为575h和654h;去除内脏鲤冰藏的货架期略短,但无显著性差异(P0.05)。在冰藏过程中二者假单胞菌数量占优势,高品质期终点,去除内脏和未去除内脏鲤的菌落总数(CFU/g)的对数值分别为6.33±0.02和6.07±0.03;假单胞菌数(CFU/g)的对数值分别为6.15±0.19和6.04±0.01;挥发性盐基氮值分别为(10.86±0.50)mg/(100g)和(10.15±0.01)mg/(100g)。货架期终点,二者细菌总数(CFU/g)的对数值分别为7.06±0.18和6.90±0.14;假单胞菌数(CFU/g)分别为6.89±0.13和6.31±0.05;挥发性盐基氮值分别为(19.03±0.90)mg/(100g)、(21.15±0.80)mg/(100g)。二者在高品质期终点和货架期终点的各指标均无显著性差异(P0.05)。与未去除内脏鲤相比,冰藏初期去除内脏鲤的挥发性盐基氮值略低,而其细菌增殖较快且直接进入对数增长期,这可能是由于去除内脏过程对鱼体造成破坏所致,而过了高品质期后,无论是挥发性盐基氮值还是感官评分都比未去除内脏的高,因此去除内脏鲤的货架期略短。  相似文献   

8.
为了探究阿维菌素胁迫对鲤机体的响应机制,在水温(22±2.0)℃,将体质量(150±30)g的鲤(Cyprinus carpio)分别暴露在阿维菌素浓度0μg·L-1(对照组)、1.5μg·L-1和3.0μg·L-1下5 d,采用转录组学测序分析方法,探究阿维菌素胁迫对鲤肝胰腺转录组学的影响,解析其对鲤的分子毒理机制。通过对所得基因的功能注释发现,被注释的差异基因主要与结合、催化和代谢等功能有关。KEGG通路富集分析结果显示,差异表达基因在药物代谢-细胞色素P450、药物代谢-其他酶、淀粉和蔗糖代谢等通路中显著富集,涉及药物代谢、氨基酸代谢、碳水化合物代谢、脂质代谢以及辅助因子和维生素的代谢等多个代谢过程。这些功能基因和预测通路为理解阿维菌素胁迫鲤体内解毒和免疫系统奠定了基础。本研究获得的转录组数据可为深入研究鱼类应对杀虫剂污染物的分子机制提供丰富的基因资源。  相似文献   

9.
湖南镇水库浮游生物及其影响因子的典范对应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
2006年至2007年间调查了蓝藻(Cyanophyta)暴发水体——湖南镇水库的浮游生物群落结构及其变化,研究了其与环境参数之间的关系。调查期间,共鉴定出浮游植物96种(属),浮游动物73种(属)。单位水体浮游植物平均细胞数量变化于0.49×106~16.71×106L-1之间,浮游动物则变化于8~3548L-1之间。春、夏季螺旋鱼腥藻(Anabaena sporoides)水华持续数月,水体表层细胞密度高达2.28×108L-1,进入秋季后其优势逐渐被颤藻属(Oscillatoria)蓝藻取代。典范对应分析显示,浮游植物的季节演替规律与螺旋鱼腥藻数量、总溶解固形物(TDS)和透明度(SD)存在较高的相关性,浮游动物演替主要与溶解在水中的微囊藻(Microcystis)毒素(EMC)、营养盐和螺旋鱼腥藻数量相关。由于高水平营养盐的存在,上行效应无法有效限制蓝藻的发生,水华蓝藻以其数量优势改变了水体理化条件,成为影响浮游植物群落的潜在因素,而营养盐可能通过主导可食藻类的生长,间接影响浮游动物的动态。将水华蓝藻数量及藻毒素浓度作为环境因子进行多元分析,分别提高了对浮游植物、动物群落的解释15.6%和25.8%,说明水华蓝藻和藻毒素的存在对浮游生物群落的组成和结构具有较大的影响。  相似文献   

10.
为了解蓝藻水华期间微囊藻毒素在罗非鱼体内的分布及累积传递过程,2008年6月至8月采集了高密度蓝藻池塘及太湖网箱内的鱼样及水样,用ELISA法对鱼样和水样进行微囊藻毒素MC-LR含量的检测。结果表明:池塘水体微囊藻毒素MC-LR含量变化范围在0.123~0.514ug/L间,MC-LR含量随着藻密度的下降而降低,对照组水体MC-LR浓度显著高于实验组MC-LR含量。池塘鱼体肌肉组织微囊藻毒素MC-LR累积含量在1.194~3.615ng/g间,肝脏组织微囊藻毒素MC-LR累积含量显著高于肌肉组织。将池塘与网箱罗非鱼转至无微囊藻水体中暂养,跟踪检测MC-LR含量变化,池塘和网箱鱼体肌肉组织微囊藻毒素MC-LR含量均低于人体每日可耐受摄入量,而肝脏组织藻毒素MC-LR含量则分别需要经过10~20天自然生物降解后降低至安全摄入量之下。并讨论了微囊藻毒素在鱼体内的组织分布与食物链中的累积传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号