首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
在水温(28±2)℃、盐度28条件下,采用30mg/kg的剂量口灌法,用HPLC-MS/MS检测研究了盐酸氯苯胍在体质量为(350.15±5.18)g的眼斑拟石首鱼体内的药代动力学和残留消除规律。结果显示,单剂量口灌给药后,眼斑拟石首鱼血浆中盐酸氯苯胍的药时数据符合一级吸收二室模型,药物在血浆中的达峰时间、血药质量浓度峰值、药时曲线下面积和消除半衰期分别为2.39h、958.78μg/L、33 247.57μg/(L·h)和19.24h;盐酸氯苯胍在肌肉、肝脏和肾脏的血药含量峰值分别为156.72、227.68μg/kg和553.44μg/kg,达峰时间分别为2.0、1.5、2.0h;药时曲线下面积分别4664.04、4897.74、17 228.19μg/(kg·h);消除半衰期分别为19.68、24.33、22.81h。按30mg/kg剂量连续5d口灌给药后,鱼血浆、肌肉、肝脏、肾脏中的药物消除半衰期(t1/2)分别为24.46、35.39、39.60、33.94h。若以10μg/kg为最高残留限量,肌肉作为食用靶组织,在本试验条件下,建议休药期不少于7d。  相似文献   

2.
研究了水温为(27±1)℃、盐度为10条件下,单剂量(100 mg/kg)口灌给药复方磺胺嘧啶(磺胺嘧啶SD:甲氧苄啶TMP=5:1)后,SD和TMP在拟穴青蟹(Scylla paramamosain)体内的药动学以及在肌肉、肝胰腺和鳃组织中的分布和消除规律.结果显示,拟穴青蟹口灌复方磺胺嘧啶后,血淋巴中SD和TMP药物浓度-时间关系曲线均符合一级吸收二室模型,SD和TMP的峰浓度(Cmax)分别为49.56 mg/L和2.79 mg/L,药时曲线下面积(AUC)分别为1417.6 mg/L.h和82.7 mg/L·h;肝胰腺是SD和TMP峰浓度最高的组织,其Cmax分别为59.36 mg/kg和74.82 mg/kg.由此可见,大量TMP蓄积在肝胰腺中,进入血液循环的TMP很少.在鳃组织中,SD和TMP的Cmax分别为51.89 mg/kg和42.58 mg/kg,消除半衰期分别为23.28 h和25.29 h;鳃组织中药物浓度比较高,且消除速度较快,推测其在药物代谢中承担着消除功能.在肌肉中,SD和TMP的Cmax分别为44.95 mg/kg和10.09 mg/kg,消除半衰期分别为25.09 h和35.08 h.以0.1 mg/kg和0.05 mg/kg分别为SD和TMP的最高残留限量(MRL),95%置信区间,推算SD和TMP在拟穴青蟹肌肉中的理论休药期分别为290.6 h和302.8 h,在肝胰腺中分别为340.4 h和377.0 h.  相似文献   

3.
甲砜霉素在鲫体内的药物代谢动力学研究   总被引:4,自引:0,他引:4  
采用液相色谱串联质谱法,研究通过单剂量口灌给药,对甲砜霉素在鲫(Carassius auratus)体内的药代动力学进行研究,为甲砜霉素在鲫疾病预防和治疗方面提供理论基础。给药剂量为30 mg/kg体重,实验水温(20±0.2)℃,鲫平均体重(40.70±7.87)g。取给药后0.25、0.5、1、1.5、2、4、6、8、12、24、36、48、72 h鲫的肌肉、血浆、肝脏、肾脏,测定各组织中甲砜霉素的浓度,用药动学3p97软件进行数据的处理和分析。结果表明:甲砜霉素在鲫体内吸收分布迅速,符合一级吸收二室开放模型,但消除缓慢。甲砜霉素在鲫血浆、肝脏、肾脏和肌肉中的主要药代动力学参数如下:分布半衰期(T1/2α)分别为1.446 h、1.958 h、7.410 h和1.376 h;消除半衰期(T1/2β)分别为16.712 h、21.267 h、79.970 h和25.600 h;药时曲线下总面积(AUC)分别为669.073μg/(mL.h)、271.260μg/(g.h)、3616.060μg/(g.h)和158.634μg/(g.h)。甲砜霉素在水产动物体内吸收快,肌肉和肾脏消除半衰期长,消除缓慢,因此,在该类药物使用时,应相对延长给药间隔时间,避免耐药性的产生。  相似文献   

4.
丁香酚在罗非鱼体内的药物代谢动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解丁香酚在罗非鱼体内的代谢动力学特征,利用高效液相色谱法(HPLC)检测经丁香酚麻醉后苏醒的吉富罗非鱼(Oreochromis niloticus)血浆、肝脏及肌肉中丁香酚的质量浓度变化。试验结果:采用30 mg/L丁香酚药浴后,罗非鱼血浆、肝和肌肉中的药时数据均符合非房室模型;丁香酚在罗非鱼血浆、肝脏和肌肉中的药代动力学参数显示,峰值浓度(Cmax)分别为8 257.52μg/m L、88.62μg/kg和73.78μg/kg,达峰时间(Tmax)分别为0.5、1和2 h,消除半衰期(t1/2)分别为11.267 3、75.616 1和24.147 4 h,药时曲线下面积(AUC0~∞)分别为83 738.054 3 h·μg/m L、1 466.467 7 h·μg/kg和1 131.101 7 h·μg/kg,0~∞平均滞留时间(MRT0~∞)分别为11.498 2、85.284 4和39.388 7 h,表观分布容积(Vz)分别为1.941 2m L/kg、743.903 0 kg/kg和307.994 9 kg/kg。结果表明,丁香酚在罗非鱼体内分布广泛、消除慢、停留时间长。本研究可为罗非鱼活体运输中麻醉剂的安全使用提供参考。  相似文献   

5.
氟苯尼考在欧洲鳗鲡体内的药物代谢动力学的研究   总被引:11,自引:0,他引:11  
应用反相高效液相色谱法对口灌和肌肉注射氟苯尼考在欧洲鳗鲡(Anguilla anguilla)体内的代谢规律进行了研究.按100 mg·kg-1口灌给药后血浆、肌肉、肝脏、肾脏中氟苯尼考浓度的达峰时间分别为2h、6h、0.5h、1h,以后开始缓慢下降,给药2d后血浆、肌肉、肝脏、肾脏中的氟苯尼考浓度分别为4.209μg·mL-1、0.792μg·g-1、0.493μg·g-1、1.448μg·g-1,给药3d后血浆中的氟苯尼考浓度分别为0.0836μg·mL-1,肌肉、肝脏、肾脏中的氟苯尼考浓度均未检出;按100mg·kg-1肌肉注射给药后血浆中氟苯尼考浓度达峰时间为0.5h,以后开始缓慢下降,给药5d后血浆中的氟苯尼考浓度为0.1151μg·mL-1,给药10d后血浆中的氟苯尼考浓度未检出.口灌氟苯尼考在欧洲鳗鲡体内血浆、肌肉、肝脏、肾脏中分布可用开放性二室模型来描述,口灌给药的血浆、肌肉、肝脏、肾脏中的消除半衰期(T1/2β)分别为27.939h、18.844h、11.83h、36.87h;肌肉注射氟苯尼考在欧洲鳗鲡体内血浆、肌肉、肝脏、肾脏中分布可用开放性一室模型来描述,肌肉注射给药的血浆中的消除半衰期(T1/2β)为37.52h.  相似文献   

6.
采用高效液相色谱法,研究药饵口灌给药途径下,恩诺沙星及其代谢物环丙沙星在欧洲鳗鲡(Anguilla anguilla)体内的药代动力学。欧洲鳗鲡口灌给药恩诺沙星10 mg/kg后,其血浆、肌肉和肝脏中药物时量曲线关系符合一级吸收的二室开放动力学模型。恩诺沙星在欧洲鳗鲡不同组织中分布较广,血浆、肌肉和肝脏的Vd分别为6.362 L/kg、8.081 L/kg和15.870 L/kg;恩诺沙星在鳗鲡体内消除较慢,在血浆、肌肉和肝脏中的消除半衰期(tβ1/2)分别为161.10 h、333.21 h和611.26 h,总体清除率(CLs)分别为27.4 mL/(kg.h)、16.8 g/(kg.h)和18.0 g/(kg.h)。代谢物环丙沙星在鳗鲡血浆、肌肉和肝脏中药物水平的变化趋势与恩诺沙星基本相似,呈现出多峰现象,但3种组织中环丙沙星出现第一个药峰时间分别为给药后第24小时、24小时和12小时,3种组织中环丙沙星峰值水平肝脏中最高、肌肉中次之、血浆中最低,环丙沙星在肌肉和肝脏中的消除速率比较缓慢。鉴于恩诺沙星和其代谢物环丙沙星在欧洲鳗鲡体内消除较慢,建议养成阶段使用其他药物。  相似文献   

7.
周帅  胡琳琳  房文红  周凯  于慧娟 《水产学报》2011,35(8):1182-1190
采用高效液相色谱法,研究盐度33条件下恩诺沙星口灌和肌肉注射给药(剂量10 mg/kg)后,恩诺沙星及其代谢物环丙沙星在拟穴青蟹体内的药代动力学和组织分布。血淋巴和组织中药代动力学参数采用基于统计矩原理的非房室模型进行计算。恩诺沙星口灌和肌肉注射拟穴青蟹给药后,血药达峰快,分别为0.5 h和1 min,达峰浓度分别为12.90和31.86 μg/mL,曲线下面积(AUC)分别为216.1和816.8 μg/(mL·h)。恩诺沙星在拟穴青蟹组织中分布较广,口灌给药下肌肉和肝胰腺AUC分别为445.9和817.6 μg/(g·h),肌肉注射给药下的AUC分别为554.7和2 573.7 μg/(g·h)。与其它水产动物相比,恩诺沙星在拟穴青蟹体内消除速度为中等水平,口灌和肌肉注射恩诺沙星后血药消除半衰期(t1/2z)分别为26.45和57.02 h,总体清除率(CLz)分别为0.054和0.012 L/(h·kg)。恩诺沙星在拟穴青蟹体内代谢生成环丙沙星的量较少,口灌给药下血淋巴、肌肉和肝胰腺的AUCCIP/AUCENR分别为6.66%、3.66%和4.78%,肌肉注射给药下,其相应值分别为4.16%、7.24%和1.48%,在拟穴青蟹体内起药效作用仍是以恩诺沙星为主。以Cmax/MIC、AUC0-24/MIC评价恩诺沙星在青蟹体内的药效作用,建议给拟穴青蟹以10 mg/kg剂量每隔24小时投喂一次恩诺沙星,对弧菌引起的细菌性疾病具有较好的防治效果。  相似文献   

8.
为研究甲砜霉素(thiamphenicol)在大菱鲆(Scophthalmus maximus)体内的代谢动力学特征和残留消除规律,本研究采用液相色谱-串联质谱法检测甲砜霉素混饲口灌后在大菱鲆血浆、肌肉、肝脏和肾脏等样品中的时间-浓度变化。甲砜霉素以30 mg/kg的剂量单次混饲口灌,采集给药后48 h内的药时数据,并以DAS软件非房室模型进行分析,结果显示,甲砜毒素在大菱鲆血浆中达峰浓度(C_(max))和达峰时间(T_(max))分别为21.968μg/m L和9 h,药时曲线下面积[AUC_((0—∞))]为319.754 mg/(L·h),表观分布容积(Vz/F)为6.206 L/kg,平均滞留时间[MRT_((0—∞))]和消除半衰期(T1/2z)分别为33.984 h和45.841 h。甲砜霉素在大菱鲆的肌肉、肝脏和肾脏组织中达峰浓度(C_(max))分别至22.346、27.128和47.718μg/g;在肝脏中达峰时间较快(4 h),在肌肉和肾脏组织中均在9 h;在肾脏中的达峰浓度(C_(max)=47.718μg/g)和药时曲线下面积AUC(0-∞)最大,为517.768 mg/(L·h),表明肾脏对甲砜霉素的吸收能力最高;在肝脏中的平均滞留时间[MRT_((0—∞))=36.565 h]最长,消除半衰期T1/2z为42.370 h,即给药后48 h内甲砜霉素在肝脏中的消除较慢。甲砜霉素以60 mg/kg的高剂量单次给药后,采集30 d内的药时数据并以WT程序进行计算,结果显示甲砜霉素在大菱鲆血浆、肌肉、肝脏和肾脏中的理论休药期分别为8.90、10.64、18.19和23.95 d。本研究结果可为甲砜霉素在大菱鲆中的合理应用提供科学依据。  相似文献   

9.
研究了水温为(27±1)℃、盐度为10条件下,单剂量(100 mg/kg)口灌给药复方磺胺嘧啶(磺胺嘧啶SD∶甲氧苄啶TMP=5∶1)后,SD和TMP在拟穴青蟹(Scylla paramamosain)体内的药动学以及在肌肉、肝胰腺和鳃组织中的分布和消除规律。结果显示,拟穴青蟹口灌复方磺胺嘧啶后,血淋巴中SD和TMP药物浓度-时间关系曲线均符合一级吸收二室模型,SD和TMP的峰浓度(C_(max))分别为49.56 mg/L和2.79 mg/L,药时曲线下面积(AUC)分别为1417.6 mg/L·h和82.7 mg/L·h;肝胰腺是SD和TMP峰浓度最高的组织,其C_(max)分别为59.36 mg/kg和74.82 mg/kg。由此可见,大量TMP蓄积在肝胰腺中,进入血液循环的TMP很少。在鳃组织中,SD和TMP的C_(max)分别为51.89 mg/kg和42.58 mg/kg,消除半衰期分别为23.28 h和25.29 h;鳃组织中药物浓度比较高,且消除速度较快,推测其在药物代谢中承担着消除功能。在肌肉中,SD和TMP的C_(max)分别为44.95 mg/kg和10.09 mg/kg,消除半衰期分别为25.09 h和35.08 h。以0.1 mg/kg和0.05 mg/kg分别为SD和TMP的最高残留限量(MRL),95%置信区间,推算SD和TMP在拟穴青蟹肌肉中的理论休药期分别为290.6 h和302.8 h,在肝胰腺中分别为340.4 h和377.0 h。  相似文献   

10.
在(10±1)℃水温条件下,研究了土霉素(OTC)经肌肉注射和口灌给药后在鲫体内的药物动力学。将试验鲫随机分为两组:一组采用肌肉注射,另一组采用口灌,两组给药剂量都为50 mg/kg。结果表明:吸收半衰期t1/2(kα)、分布半衰期t1/2(kα)和消除半衰期t1/2(kα)在口灌给药时分别为3.83 h、3.98 h和129.04 h,而在肌肉注射给药时分别为1.58 h、1.71 h、和98.61 h,说明肌肉注射时OTC在鲫体内的吸收、分布和消除比口灌时快;口灌和肌肉注射时,达峰时间分别为15.47 h和7.78 h,肌肉注射的最大药物浓度(12.04μg/mL)比口灌时高(7.20μg/mL)。  相似文献   

11.
The pharmacokinetics and active metabolite of enrofloxacin were estimated after single intramuscular administration (10.0 or 20.0 mg/kg body weight) to the Chinese mitten-handed crab (Eriocheir sinensis) in fresh water at 25.0 ± 1.0 °C. Levels of enrofloxacin and its metabolite ciprofloxacin in the main tissues (hemolymph, hepatopancreas, muscle, ovary and spermary) were simultaneously detected by HPLC. Enrofloxacin concentration–time profiles for the hemolymph in both tests were described by a two-compartment open model with first-order absorption. Distribution half-time (T1/2), elimination half-time (T1/2β), body clearance (CL/F), mean residence time (MRT0–∞), area under the concentration–time curve from 0 to ∞ h (AUC0–∞) and apparent volume of distribution (Vd/F), which derived from the pharmacokinetic model, were 0.427 h, 21.3 h, 0.133 l/h/kg, 60.0 h, 96.9 μg/ml/h and 4.08 l/kg, respectively, at a dose of 10.0 mg/kg body weight, and 0.216 h, 12.3 h, 0.189 l/h/kg, 85.8 h, 187 μg/ml/h and 3.35 l/kg, respectively, at a dose of 20.0 mg/kg body weight. Similarities were found between the hemolymph concentration–time curves of the two tests; for example, instant absorption process followed by the distribution phrase, and a second absorption peak at 6 h post-treatment. After intramuscular administration of 10.0 mg/kg body weight, absorption of enrofloxacin was observed in the main edible tissues (hepatopancreas, muscle, ovary and spermary), and the drug residue was the highest in the hepatopancreas, where the ‘drug sink’ phenomenon occurred. Comparative pharmacokinetics showed fast absorption, broad distribution and fast elimination of enrofloxacin in E. sinensis after intramuscular dosing. Regarding ciprofloxacin, the main active metabolite of enrofloxacin, though relatively low levels were detected in all the main tissues of the crab, its kinetics in the hemolymph in the two tests were not described by a one- or two-compartment open model.  相似文献   

12.
研究了不同水温(16℃、25℃)、不同给药剂量(10 mg/kg、20 mg/kg)和不同给药方式(肌注、口灌)等条件下,恩诺沙星及其代谢产物环丙沙星在中华绒螯蟹体内的药代动力学,比较了不同条件下药物在蟹血淋巴中的吸收、分布和代谢的差异。结果表明,恩诺沙星在蟹血淋巴中的药-时数据符合开放式二室模型。16℃时以10 mg/kg剂量肌注给药后,恩诺沙星在蟹血淋巴的主要药代动力学参数为:AUC96.818 mg/(L.h),Cmax6.54μg/mL,t1/2α0.851 h,t1/2β95.415 h;25℃时以10 mg/kg剂量肌注给药后,恩诺沙星的主要药代动力学参数为:AUC168.457 mg/(L.h),Cmax7.12μg/mL,t1/2α0.58h,t1/2β88.833 h;25℃时以20 mg/kg剂量肌注给药后,恩诺沙星的主要药代动力学参数为:AUC155.612 mg/(L.h),Cmax11.045μg/mL,t1/2α5.239h,t1/2β88.378 h;25℃时以10 mg/kg剂量口灌给药后,恩诺沙星的主要药代动力学参数为:AUC86.525 mg/(L.h),Cmax3.469μg/mL,t1/2α8.071h,t1/2β61.842 h。不同条件下,恩诺沙星在蟹血淋巴中的主要药代动力学参数差异较大。恩诺沙星的活性代谢产物环丙沙星在各种给药条件下的蟹血淋巴中均能检出,但含量均处于较低值,且药-时数据不能用房室模型拟合,表明恩诺沙星在蟹体内只有极少部分代谢为环丙沙星。  相似文献   

13.
研究了单剂量肌肉注射和多剂量混饲口灌给药方式下,诺氟沙星在鲫(Carassius auratus)体内的药物动力学和残留情况。结果显示:在(25.4±0.3)℃水温条件下,以每千克鱼体重10 mg的剂量单次给鲫肌肉注射诺氟沙星后,药物几乎在瞬间吸收,0.0333 h时血液中达到6.6708μg/mL,其血药浓度-时间数据用一级吸收二室模型描述较为合适,主要的药动学参数为:t1/2α、t1/2β、AUC和C l(s)分别为:0.4231 h、9.1613 h、17.8619μg.h/mL和0.5727 L/(kg.h)。在(23±1)℃水温条件下,以每千克鱼体重10 mg的剂量多次连续5 d混饲后,鲫停药后第8天肌肉、血清和肝脏中未检测到药物,此时肾脏中药物浓度已降到(0.0463±0.0134)μg/g,低于0.05μg/g。建议在(23±1)℃水温条件下,按每千克体重10 mg的剂量连续5 d混饲给鲫诺氟沙星,休药期至少为最后一次给药后的8 d。  相似文献   

14.
土霉素在奥尼罗非鱼体内的药动学研究   总被引:2,自引:0,他引:2  
在(21±1)℃的水温条件下,以50 mg/kg的单剂量,分别给奥尼罗非鱼(Oreochromis aureus×O.niloticus)水剂口灌和混饲口灌土霉素,用高效液相色谱法(HPLC)检测给药后各个时间点的血药浓度。结果显示:最低检测限为0.005μg/mL,线性范围为0.005~4μg/mL。水剂口灌组和混饲口灌组的药时数据均符合具时滞的二室开放动力学模型,水剂口灌组的动力学方程为:Ct=0.231e-0.028(t-0.010)+0.353e-0.011(t-0.010)-0.584e-0.468(t-0.010),混饲口灌组动力学方程:Ct=0.839e-0.057(t-0.459)+0.442e-0.013(t-0.459)-1.281e-0.282(t-0.459)。水剂口灌组及混饲口灌组主要药动学参数分别为:吸收半衰期(t1/2ka)为1.481 h,2.458 h;分布半衰期(t1/2α)为24.834 h,12.193 h;消除半衰期(t1/2β)为60.312 h,51.533 h;达峰时间(Tmax)为7.230 h,8.221 h;最大血药浓度(Cmax)为0.494μg/mL,0.796μg/mL;血药浓度-时间曲线下面积(AUC)=37.74μg.h/mL,43.075μg.h/mL。这些参数表明,水剂口灌比混饲口灌吸收快,分布和消除慢,在血液中达到峰浓度的时间更短,但峰浓度值比混饲口灌低。  相似文献   

15.
Oxytetracycline (OTC) pharmacokinetic models previously used to investigate Penaeus vannamei have not addressed the specific problems related to drug distribution/disposition in particular tissues. This study aimed to provide an insight into OTC kinetics in the hepatopancreas and muscle based on a physiological model approach. Adult male P. vannamei at the C‐D0 inter‐moulting stage were randomly assigned to intra‐sinus and oral administrations. In the intra‐sinus group, shrimps were dosed via the ventral sinus at an OTC level of 10.0 μg g?1 body weight, while in the oral one, they were force fed at a dose level of 50.2 μg g?1. The medicated animals were sampled at various time intervals until 170 h after dosing. Haemolymph, muscle and hepatopancreas samples were taken and OTC levels were determined using the validated HPLC method. A model focused on the hepatopancreas and muscle was developed. Oxytetracycline pharmacokinetic profiles in particular tissues were fitted into the model with an R2 of between 0.6568 and 0.9904. Oxytetracycline muscular distributions were essentially identical for both groups and the drug did not accumulate in muscle. The distributions in the hepatopancreas for both groups were extensive, whereas that for oral administration was approximately 2.3 times greater than that for the intra‐sinus one. It was demonstrated that hepatopancreatic OTC may undergo significant first‐pass elimination with non‐linear kinetics.  相似文献   

16.
The present study examined the pharmacokinetics and bioavailability of oxytetracycline (OTC) in vannamei shrimp (Penaeus vannamei) after intra-sinus (10 mg/kg) and oral (10 and 50 mg/kg) administration and also investigated the net changes of OTC residues in the shrimp after the thermal, acid and alkaline processing methods. The hemolymph concentrations of OTC after intra-sinus dosing were best described by a two-compartment open model. The oral bioavailability was found to be 48.2 and 43.6% at doses of 10 and 50 mg OTC/kg, respectively. The peak hemolymph concentrations after 10 and 50 mg OTC/kg doses were 3.37 and 17.4 μg/ml; the times to peak hemolymph concentrations were 7 and 10 h. The elimination half-lives were found to be 15.0 and 11.5 h for the low and high dose, respectively. The residual OTC was rapidly eliminated from muscle with the elimination half-life value of 19.4 and 15.4 h, respectively, for the groups treated with doses of 10 and 50 mg/kg. The residual OTC levels in the muscle fell below the MRL (0.2 μg/g) at 72 and 96-h post-dosing at dose levels of 10 or 50 mg/kg, respectively. Residual OTC levels in muscle and shell were approximately 20–50% lower in the thermal treatment such as boiling, baking and frying. By the acid treatment, OTC residues were reduced to >80%, while those were reduced to around 30% by alkaline treatment.  相似文献   

17.
The white shrimp, Litopenaeus vannamei, has become a very important species for the development of shrimp aquaculture in Northwest Mexico. However, viral and bacterial diseases are considered a major threat to the development of this industry. In the present study a trial was conducted to evaluate the tissue distribution, maximum concentration, and elimination of the widely used antibiotic oxytetracycline (OTC) in L. vannamei using indoor tanks under laboratory-controlled conditions. OTC was given to shrimp simulating a therapeutic treatment through medicated feed for 14 days followed by a period of feeding without antibiotic for another 14 days to evaluate the elimination pattern. Samples of hemolymph, muscle, and hepatopancreas were taken from medicated animals every two days for 28 days. All tissues were removed and frozen immediately in liquid nitrogen. OTC levels were analyzed by High Performance Liquid Chromatography (HPLC). Results showed an important OTC increase during consumption of medicated feed in all examined tissues. OTC maximum concentrations were 33.54 ± 11.19, 194.37 ± 16.11, and 18.79 ± 5.87 µg g− 1 for muscle, hepatopancreas and hemolymph, respectively. Although the highest OTC level was found in the hepatopancreas, it required only two days after the start of dosing to reach this value, whereas the maximum OTC for muscle and hemolymph was detected after eight days of dosing. Ten days after the cessation of medicated feeding, the drug content in the shrimp tail muscle was under the detectable limit for the method (0.01 µg g− 1 of OTC).  相似文献   

18.
Toxicokinetics has demonstrated abnormal signs in drug distribution/disposition without waiting until the drug damages the tissues/organs. It is a study of the kinetic assessment of administering high‐dose of oxytetracycline (OTC) to white shrimp. Male Penaeus vannamei in the C–D0 molting stage, were force fed with medicated feeds at various accurate dose levels including 500, 1000, and 2500 mg/kg‐body weight (BW). After dosing with different time intervals, hemolymph, muscle, and hepatopancreas were collected, and assayed for OTC by validated high‐performance liquid chromatography method. The simulated profile based on the maximum recommended dose was tested to approach the systemic level where the drug was anticipated not to cause significant toxic responses. OTC kinetic profiles in the hemolymph were fitted into the flow limited model having r2 value between 0.8341 and 0.9373. The relative affinities for the muscle and hepatopancreas changed at dose level exceeding 1000 mg/kg BW. Although hepatopancreatic clearance was non‐linearly related with dose, the persistence of OTC in muscle after 2500 mg/kg BW dosing was observed to indicate abnormalities in drug distribution/disposition. It was hypothesized that the pharmacokinetic alteration after extreme dosing was because of induction of functional abnormalities in hepatopancreas. In addition, a single administration of OTC at 1000 mg/kg BW was anticipated to be a tolerated dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号