首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The objective of this study was to determine the long‐term effects of ambient unionized ammonia nitrogen (NH3‐N) combined with different feeding regimes on Atlantic salmon Salmo salar L parr growth, welfare and smoltification. Previous studies on the parr stage of Atlantic salmon have mostly focused on acute exposure, or at low temperatures. Atlantic salmon parr were exposed for 105 days (at 12°C, pH 6.8) to four sublethal ammonia concentrations ranging from 0.1 to 35 μg L?1 NH3‐N (0.1–25 mg L?1 TAN) at two feeding levels: full feed strength (+20% overfeeding) and 1/3 of full feed strength. After 21 days, it was observed that 32 μg L?1 NH3‐N reduced growth rate of parr fed full ration, but this effect was not evident at the end of the exposure. Feed utilization was not affected by ammonia exposure at any sampling point. Increasing ammonia levels were associated with a higher prevalence and severity of gill damage at 22 days but not at the end of the exposure. The examination of welfare indicators revealed only a few pathologies, not related to ammonia exposure. In addition, higher ammonia concentrations did not appear to influence the development of hypo‐osmoregulatory ability during parr‐smolt transformation.  相似文献   

2.
The monogenean parasite Gyrodactylus salaris poses serious threats to many Atlantic salmon populations and presents many conservation and management questions/foci and challenges. It is therefore critical to identify potential vectors for infection. To test whether hybrids of native Atlantic salmon (Salmo salar) × brown trout (Salmo trutta) are suitable as reservoir hosts for G. salaris during winter, infected hybrid parr were released into a natural subarctic brook in the autumn. Six months later, 23.9% of the pit‐tagged fish were recaptured. During the experimental period, the hybrids had a sixfold increase in mean intensity of G. salaris, while the prevalence decreased from 81% to 35%. There was high interindividual hybrid variability in susceptibility to infections. The maximum infrapopulation growth rate (0.018 day?1) of G. salaris throughout the winter was comparable to earlier laboratory experiments at similar temperatures. The results confirm that infrapopulations of G. salaris may reproduce on a hybrid population for several generations at low water temperatures (~1 °C). Wild salmon–trout hybrids are undoubtedly susceptible to G. salaris and represent an important reservoir host for the parasite independent of other co‐occurring susceptible hosts. Consequently, these hybrids may pose a serious risk for G. salaris transmission to nearby, uninfected rivers by migratory individuals.  相似文献   

3.
This study presents a simple urease method for analysis of ammonia and urea in freshwater aquaculture systems. Urea is hydrolysed into ammonia using urease followed by analysis of released ammonia using the salicylate‐hypochlorite method. The hydrolysis of urea is performed at room temperature and without addition of a buffer. A number of tests were performed on water samples obtained from a commercial rainbow trout farm to determine the optimal urease concentration and time for complete hydrolysis. One mL of water sample was spiked with 1.3 mL urea at three different concentrations: 50 μg L?1, 100 μg L?1 and 200 μg L?1 urea‐N. In addition, five concentrations of urease were tested, ranging from 0.1 U mL?1 to 4 U mL?1. Samples were hydrolysed for various time periods ranging from 5 to 120 min. A urease concentration of 0.4 UmL?1 and a hydrolysis period of 120 min gave the best results, with 99.6–101% recovery of urea‐N in samples spiked with 100 or 200 μg L?1 urea‐N. The level of accurate quantification of ammonia using the method is 50 μg L?1 NH4+‐N, and the detection level is 5–10 μg L?1 NH4+‐N.  相似文献   

4.
Tracking individual variation in the dynamics of parasite infections in wild populations is often complicated by lack of knowledge of the epidemiological history of hosts. Whereas the dynamics and development of Gyrodactylus salaris Malmberg, 1957, on Atlantic salmon, Salmo salar L., are known from laboratory studies, knowledge about infection development on individual wild fishes is currently sparse. In this study, the dynamics of an infection of G. salaris on individually marked Atlantic salmon parr was followed in a section of a natural stream. During the 6‐week experiment, the prevalence increased from 3.3 to 60.0%, with an average increase in intensity of 4.1% day?1. Survival analyses showed an initially high probability (93.6%) of staying uninfected by G. salaris, decreasing significantly to 37% after 6 weeks. The results showed that even at subarctic water temperatures and with an initially low risk of infection, the parasite spread rapidly in the Atlantic salmon population, with the capacity to reach 100% prevalence within a short summer season. The study thus track individual infection trajectories of Atlantic salmon living under near‐natural conditions, providing an integration of key population parameters from controlled experiments with the dynamics of the epizootic observed in free‐living living populations.  相似文献   

5.
The present study examined the protective effects of water chloride (Cl?) towards nitrite toxicity in Atlantic salmon parr during 84‐day long nitrite exposure. Effects on growth, histology, blood indices and gene expression were studied at a fixed nominal Cl? concentration of 200 mg/L and at several water nitrite concentrations (0, 0.5, 2, 5 and 10 mg/L NO2?–N). The specific growth rate was significantly reduced during the first three weeks at a Cl:NO2?–N ratio of 21:1, suggesting the activation of coping mechanisms at the later stages of the experiment. No significant effect of nitrite on gill histology and mortality was found. Nitrite accumulated in plasma; however, a Cl:NO2?–N ratio of 104:1 or higher prevented nitrite entry. The concentration of NO2?–N in plasma was significantly reduced at the end of the study, supporting the hypothesis of coping mechanisms. Cystic fibrosis transmembrane conductance regulator (cftr)‐1 showed a significant up‐regulation at highest nitrite concentration on day 22, and in three of the highest exposure groups at the end of the experiment. Our findings suggest that a Cl:NO2?–N ratio above 104:1 should be maintained through episodes of nitrite accumulation in water during the production of Atlantic salmon parr.  相似文献   

6.
In the field, moulting and salinity drop in the water due to excessive rainfall have been mentioned to be risk factors for WSSV outbreaks. Therefore, in this study, the effect of an acute change in environmental salinity and shedding of the old cuticle shell on the susceptibility of Penaeus vannamei to WSSV was evaluated by immersion challenge. For testing the effect of abrupt salinity stress, early premoult shrimp that were acclimated to 35 g L?1 were subjected to salinities of 50 g L?1, 35 g L?1, 20 g L?1, 10 g L?1 and 7 g L?1 or 5 g L?1 and simultaneously exposed to 105.5 SID50 mL?1 of WSSV for 5 h, after which the salinity was brought back to 35 g L?1. Shrimp that were transferred from 35 g L?1 to 50 g L?1, 35 g L?1 and 20 g L?1 did not become infected with WSSV. Shrimp became infected with WSSV after an acute salinity drop from 35 g L?1 to 10 g L?1 and lower. The mortality in shrimp, subjected to a salinity change to 10 g L?1, 7 g L?1 and 5 g L?1, was 6.7%, 46.7% and 53.3%, respectively (P < 0.05). For testing the effect of moulting, shrimp in early premoult, moulting and post‐moult were immersed in sea water containing 105.5 SID50 mL?1 of WSSV. The resulting mortality due to WSSV infection in shrimp inoculated during early premoult (0%), ecdysis (53.3%) and post‐moult (26.72%) demonstrated that a significant difference exists in susceptibility of shrimp during the short moulting process (P < 0.05). The findings of this study indicate that during a drop in environmental salinity lower than 10 g L?1 and ecdysis, shrimp are at risk for a WSSV infection. These findings have important implications for WSSV control measures.  相似文献   

7.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

8.
In this study, tetracycline (TC), epitetracycline (ETC), 4‐epianhydrotetracycline (EATC) and anhydrotetracycline (ATC) concentrations were determined in the surface waters carrying outflows of trout farms. The samples were taken from downstream of Keban Dam and upstream of Karakaya Dam Lake, which are located in the Euphrates and Tigris River Basin. The occurrence of TC and degradation products (DPs) was proved in the sampling points which take the outflows of the trout farms. Tetracycline and DPs were under the detection limits in sampling points where the trout farms do not exist. The highest TC concentration was detected as 50.0 ± 2.5 μg L?1 (1st week), whereas the lowest TC concentration was 8.2 ± 0.41 μg L?1 (7th week). The highest ETC concentration was 88.1 ± 4.4 μg L?1 (3rd week)and the lowest ETC concentration was 9.4 ± 0.4 μg L?1 (3rd week). The highest and lowest EATC concentrations were detected as 35.8 ± 1.8 μg L?1 (2nd week) and 8.2 ± 0.4 μg L?1 (2nd week) respectively. The highest ATC concentration was 28.3 ± 1.4 μg L?1 (3rd week), whereas the lowest was 6.54 ± 0.34 μg L?1 (7th week). Tetracycline and DP concentrations detected in surface waters followed the following order: ETC>TC>EATC>ATC.  相似文献   

9.
Coral reef fish are collected from the wild and exhibited in aquaria worldwide. Some of the fish spawn in captivity; however, the eggs are usually neglected. In this study, we collected the eggs spawned naturally in the exhibit tanks, hatched and cultured them indoor in 2000‐L fibreglass tanks (initial density = 18 000 egg tank?1). We applied an inorganic fertilization method commonly used in freshwater fish culture in raising these coral reef fish larvae. We maintained inorganic phosphorus concentration at 100 μg P L?1 and inorganic nitrogen at 700 μg N L?1 daily in the fertilized group (n = 4), while the control tanks (n = 4) were fed with rotifers (10 ind mL?1). Chlorophyll a at particle sizes of both 0.45–20 μm and >20 μm, as well as NH3‐N, NO3‐N, and PO4‐P concentrations were significantly higher in the fertilized group than the control. Zooplankton in the size groups of 10–50 μm (mainly flagellates) and 50–100 μm (mainly ciliates) were abundant (about 10~60 ind mL?1) during 3–7 days in fertilized tanks. The average larval fish survival rate at 21 day after hatch in fertilized group was consistently higher than the control in two trials. The experiments demonstrated that the inorganic fertilization approach can be successfully adapted for coral reef fish culture in an aquarium to achieve sustainable exhibits.  相似文献   

10.
Camelina meal (Camelina sativa) (CM) is a potential protein source for aquaculture feeds, on account of its crude protein level (380 g kg?1) and inclusion of most indispensable amino acids. Two experiments were conducted with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Rainbow trout (44.9 g fish?1) were fed diets with CM at 0 g kg?1 (0% CM), 70 g kg?1 (7% CM), 140 g kg?1 (14% CM) or 210 g kg?1 (21% CM) for 12 weeks at 14 °C in freshwater, and salmon (241.8 g fish?1) were fed diets with CM at 0 g kg?1 (0% CM), 80 g kg?1 (8% CM), 160 g kg?1 (16% CM) or 240 g kg?1 (24% CM) for 16 weeks at 14 °C in sea water. Growth, lipid and amino acid tissue compositions were compared between species. Trout could tolerate up to 14% CM diets without affecting the growth compared to the control, while salmon fed ≥8% CM gained less weight than the control (P = 0.008). The feed conversion ratio in trout fed 21% CM was higher than the control (P = 0.002), and feed intake in salmon fed ≥8% CM was lower than the control (P = 0.006). Trout fatty acid and amino acid composition showed minimal differences between CM‐fed and control‐fed fish, while salmon showed significant alterations after feeding CM diets. Multivariate analyses emphasized differences in tissue composition between species fed CM diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号