首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An attempt was made to determine the replication efficiency of white spot syndrome virus (WSSV) of shrimp in different organs of freshwater rice‐field crab, Paratelphusa hydrodomous (Herbst), using bioassay, PCR, RT‐PCR, ELISA, Western blot and real‐time PCR analyses, and also to use this crab instead of penaeid shrimp for the large‐scale production of WSSV. This crab was found to be highly susceptible to WSSV by intramuscular injection. PCR and Western blot analyses confirmed the systemic WSSV infection in freshwater crab. The RT‐PCR analysis revealed the expression of VP28 gene in different organs of infected crab. The indirect ELISA was used to quantify the VP28 protein in different organs of crab. It was found that there was a high concentration of VP28 protein in gill tissue, muscle, haemolymph and heart tissue. The copy number of WSSV in different organs of infected crab was quantified by real‐time PCR, and the results revealed a steady increase in copy number in different organs of infected crab during the course of infection. The viral inoculum prepared from different organs of infected crab caused significant mortality in tiger prawn, Penaeus monodon (Fabricius). The results revealed that this crab can be used as an alternate host for WSSV replication and production.  相似文献   

2.
Quantitative real time PCR, recently developed in molecular biology, is applied in this paper to quantify the white spot syndrome virus (WSSV) in infected shrimp tissue. The WSSV content in moribund shrimp of all species tested ( Penaeus stylirostris, P. monodon, P. vannamei ) ranged from 2.0 × 104 to 9.0 × 1010 WSSV copies μg–1 of total DNA ( n =26). In whole moribund post-larvae, 4.3 × 109 WSSV copies μg–1 of DNA were detected which is equivalent to 5.7 × 1010 WSSV copies g–1 of post-larvae. The comparison of WSSV content between different tissues showed that muscle and hepatopancreas tissues contained 10 times less virus than gills, pleopods and haemolymph. With inocula of known virus content, bioassays by immersion challenge showed that a minimum of five logs of WSSV copies was necessary to establish disease in the challenged shrimp. In contrast, five logs of WSSV copies injected into shrimp muscle produced a LT-50 of 52 h. This real time polymerase chain reaction (PCR) technique is sensitive (four copies), specific (negative with DNA from shrimp baculoviruses and parvoviruses), dynamic (seven logs) and easy to perform (96 tests in <4 h).  相似文献   

3.
White leg shrimp, Penaeus vannamei, were collected on a monthly basis from grow‐out ponds located at Tamil Nadu and Andhra Pradesh states along the east coast of India for screening of viral and other pathogens. Totally 240 shrimp samples randomly collected from 92 farms were screened for white spot syndrome virus (WSSV), infectious hypodermal and haematopoietic necrosis virus (IHHNV), infectious myonecrosis virus (IMNV) and Enterocytozoon hepatopenaei (EHP). The number of shrimp collected from shrimp farms ranged from 6 to 20 based on the body weight of the shrimp. All the shrimp collected from one farm were pooled together for screening for pathogens by PCR assay. Among the samples screened, 28 samples were WSSV‐positive, one positive for IHHNV and 30 samples positive for EHP. Among the positive samples, four samples were found to be positive for both WSSV and EHP, which indicated that the shrimp had multiple infections with WSSV and EHP. This is the first report on the occurrence of multiple infections caused by WSSV and EHP. Multiplex PCR (m‐PCR) protocol was standardized to detect both pathogens simultaneously in single reaction instead of carrying out separate PCR for both pathogens. Using m‐PCR assay, naturally infected shrimp samples collected from field showed two prominent bands of 615 and 510 bp for WSSV and EHP, respectively.  相似文献   

4.
The VP 28 gene encoding a structural envelope protein of the white spot syndrome virus (WSSV) was cloned into a pET32a(+) expression vector for the production of the recombinant VP28 protein. A purified recombinant protein of 39.9 kDa size was used for polyclonal antibody production in rabbit. Specific immunoreactivity of the rabbit anti rVP28 antiserum to the viral antigen was confirmed by a Western blot. The specificity of this polyclonal anti‐rVP28 antiserum to detect the presence of the virus in WSSV‐infected Penaeus monodon was verified using a immunodot blot assay. Immunodot blot showed a positive reaction in infected shrimp tissues with prominent colour development using 3,3′,5,5′‐tetramethylbenzidine (TMB) as a chromogenic substrate when compared with 3–3′ diaminobenzidine tetrahydrochloride (DAB). Highest signal intensities of the immunodots were observed in infected shrimp pleopod extracts and haemolymph. On comparison with polymerase chain reaction (PCR), immunodot blot could detect 76% of PCR‐positive WSSV‐infected shrimp samples. Immunodot blot was found to be equivalent to first‐step PCR sensitivity to detect WSSV particles estimated to contain 1.0 × 105 viral DNA copies.  相似文献   

5.
A multiplex PCR kit for simultaneous detection of white spot syndrome virus (WSSV) and hepatopancreatic parvovirus (HPV) was developed and field testing was conducted. A 604‐bp target sequence was selected from the vp28 gene of WSSV. A primer set was developed to amplify a 338‐bp DNA fragment at the junction of the NS2 and NS1 protein genes of HPV after alignment of eight sequences from different strains. Another internal positive control primer set produced a 139‐bp PCR fragment from the β‐actin gene by alignment of this gene from Litopenaeus vannamei, Fenneropenaeus chinensis and Penaeus monodon. The detection limits, tested using purified plasmids, for WSSV and HPV were 21.4 and 19.0 copies respectively. The optimum ratio for HPV, WSSV and β‐actin was 3:1:1, with an optimum annealing temperature of 57°C. Field test of the multiplex PCR with 170 L. vannamei individuals from 17 aquaculture farms showed 41.8% coinfection with WSSV and HPV, and 40.0% and 3.5% single infection with WSSV and HPV respectively. No virus‐free shrimp farm was found. Ten wild catch F. chinensis individuals showed 60% coinfection, and 40% were infected with HPV.  相似文献   

6.
The objective of this study was to investigate the reason for variation in the virulence of white spot syndrome virus (WSSV) from different shrimp farms in the Southeast coast of India. Six isolates of WSSV from farms experiencing outbreaks (virulent WSSV; vWSSV) and three isolates of WSSV from farms that had infected shrimps but no outbreaks (non‐virulent WSSV; nvWSSV) were collected from different farms in the Southeast coast of India. The sampled animals were all positive for WSSV by first‐step PCR. The viral isolates were compared using histopathology, electron microscopy, SDS‐PAGE analysis of viral structural proteins, an in vivo infectivity experiment and sequence comparison of major structural protein VP28; there were no differences between isolates in these analyses. A significant observation was that the haemolymph protein profile of nvWSSV‐infected shrimps showed three extra polypeptide bands at 41, 33 and 24 kDa that were not found in the haemolymph protein profile of vWSSV‐infected shrimps. The data obtained in this study suggest that the observed difference in the virulence of WSSV may not be due to any change in the virus, rather it could be due to the shrimp defence system producing certain factors that help it to accommodate the virus without causing any mortality.  相似文献   

7.
WSSV has caused great losses to the global shrimp industry in recent years. This virus can infect shrimps asymptomatically. However, once the clinical signs are developed, mortalities can reach 100% in 3-10 days. PCR has been extensively used to detect WSSV in a specific and sensitive manner. Nested PCR is even more sensitive than single-step PCR and had been used for the detection of WSSV in asymptomatic populations. In this work, a detailed monitoring of WSSV by nested PCR in shrimp commercial ponds in Guasave County, State of Sinaloa, Mexico, is presented. Five ponds from two different farms were monitored for growth and presence of WSSV. At the beginning of the culture, ponds from both farms showed no or very slight WSSV presence. A 3-day period of rain occurred at both farms 10 and 14 weeks of culture for farms 1 and 2, respectively. At this time, WSSV was widely distributed in the shrimp populations of farm 1 according to nested-PCR data, although no visual symptoms were observed. In ponds of farm 2, WSSV was present at low level. However, the number of PCR-positive groups was drastically increased in both farms by nested and single-step PCR. Abrupt fluctuations in temperature and salinity were documented in farm 2 after the rain, which may have contributed to the increasing of viral load in the pond's shrimp populations. Twelve days after the rain period, estimated mortalities of 80% occurred in farm 1. Nevertheless, the study ponds at farm 2 culture continued normally for three more weeks and were harvested successfully (52% and 67% of survival for ponds 1 and 2, respectively). The removal of 40% and 50% of shrimp population 2-4 days after the raining period may have contributed to the thriving of the cultures. Analyses of the presence of WSSV in individuals of both sexes indicated that there is no preference for this virus to infect male or female shrimp. Also, no differences in weight were found between WSSV infected and non-infected individual shrimps, as well as nested-PCR positive against single-step PCR positive organisms. Nested PCR is more useful to monitor shrimp cultures than single-step PCR since it allows knowing how widely distributed the virus is in asymptomatically populations.  相似文献   

8.
White spot syndrome (WSS) is considered as a great threat to commercial farming of the tiger shrimp (Penaeus monodon). The causal agent of WSS is a DNA virus called white spot syndrome virus (WSSV). The prevalence of this dreadful virus infection has been studied in five randomly selected hatcheries located in the Cox’s Bazar district of Bangladesh. Both one-step and nested polymerase chain reaction (PCR) involving two pairs of primers, namely, 146F1/146R1 and 146F2/146R2, amplifying the 1447 bp and 941 bp fragments, respectively, were conducted to detect the WSSV. Out of 60 randomly collected shrimps, 12 (20%) were found to be positive by one-step PCR, while 18 (30%) were found to be positive by nested PCR. The nested PCR was found to be much more sensitive than the one-step PCR. The shrimp specimens showing clinical signs of WSS were positive for WSSV by both one-step and nested PCR. Some of the apparently healthy samples were also found to be positive for WSSV by nested PCR. Among the two primer-pairs, the inner pair amplifying the 941 bp fragment was more sensitive than the outer primer pair amplifying the 1447 bp fragment when used in one-step PCR.  相似文献   

9.
White spot syndrome virus (WSSV)‐infected shrimp samples collected from grow‐out ponds located at Nellore, Andhra Pradesh, India, showed WSSV negative and positive by PCR using primer sets specific to ORF119 and VP28 gene of WSSV, respectively. This indicated the deletion of genetic fragments in the genome of WSSV. The WSSV isolate along with lab strain of WSSV was subjected to next‐generation sequencing. The sequence analysis revealed a deletion of 13,170 bp at five positions in the genome of WSSV‐NS (new strain) relative to WSSV‐TH and WSSV‐LS (lab strain). The PCR analysis using the ORF's specific primer sets revealed the complete deletion of 10 ORFs in the genome of WSSV‐NS strain. The primer set was designed based on sequence covering ORF161/162/163 to amplify a product of 2,748 bp for WSSV‐LS and 402 bp for WSSV‐NS. Our surveillance programme carried out since 2002 revealed the replacement of WSSV‐LS by WSSV‐NS in Indian shrimp culture system.  相似文献   

10.
The effect of plants and probiotics on the survival and immune response of Litopenaeus vannamei challenged with the white spot syndrome virus (WSSV) was evaluated. A probiotic mixture (PM), plant extract (PE) or powdered plants (PP) were added to feed with the attractant Dry Oil®. An experiment was conducted with five treatments in triplicate. Shrimp (weighing 11.70±2.5 g) were cultured in 120 L plastic tanks and fed twice a day with commercial feed plus additives or with commercial feed plus WSSV. Animals were monitored for the occurrence of WSSV using single‐step and nested PCR. The PM and PP added to the commercial feed showed high survival, a decrease in WSSV prevalence in shrimp and an increase in the activity of lysosomal enzymes, N‐acetyl‐β‐glucosaminidase and acid phosphatase. The total haemocyte count in shrimp treated with PM was significantly higher than that in the control group (treatment I) and in shrimp fed with PE. The results of the present work indicate that PP and PM are good candidates for use as feed additives against WSSV in shrimp cultures.  相似文献   

11.
采用投喂感染白斑综合征病毒(White Spot Syndrome Virus,WSSV)对虾肌肉的方式,对养殖克氏原螯虾(Procambarus clarkii)进行人工感染,以确定WSSV对养殖克氏原螯虾的易感性。结果发现,投喂病虾感染组螯虾的死亡率达到90%,而对照组未出现死亡。采用PCR对试验组螯虾的肌肉进行WSSV检测,发现投喂感染组的阳性检出率为100%,对照组的阳性检出率均为0。PCR检测结果发现,濒死螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏六种组织的PCR结果均为WSSV阳性,而对照组的各组织检测结果均为阴性。组织切片的光镜观察也证实,濒死螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏及血淋巴等组织均发生了不同程度的病变。  相似文献   

12.
多重RT-PCR体系检测4种虾病毒的方法   总被引:1,自引:1,他引:0  
根据多重RT-PCR的技术原理,利用对虾传染性表皮与造血组织坏死症病毒、白斑综合征病毒、黄头病毒和桃拉综合征病毒的基因序列分别设计了4对特异引物,建立多重RT-PCR体系用于虾4种病毒的检测。多重RT-PCR体系能特异地扩增出IHHNV、WSSV、YHV和TSV的目的片段:TSV特异性扩增片段508 bp,WSSV 特异性扩增片段435 bp,IHHNV 特异性扩增片段301 bp 和YHV。特异性扩增片段614 bp。结果表明,多重PCR虾病毒检测系统具有较高的特异性和敏感性,并对其它对虾病原呈阴性。IHHNV、TSV、WSSV和YHV模板在多重PCR虾病毒检测体系中的检测下限分别为0.1,1,0.02和0.2 pg。病毒感染病料检测试验中,该检测体系的检测结果与单纯PCR的检测结果呈现出较好的吻合度。  相似文献   

13.
White spot syndrome virus has been a threat to the global shrimp industry since it was discovered in Taiwan in 1992. Thus, shrimp-producing countries have launched regulations to prevent import of WSSV-infected commodity shrimp from endemic areas. Recently, cooked shrimp that is infected with WSSV tested positive by PCR. However, there is no study to determine the infectivity of WSSV in cooked shrimp that tested positive by PCR. In the present study, WSSV-infected shrimp were cooked at boiling temperature for different times including 0, 1, 3, 5, 10 and 30 min. Upon exposure to boiling temperature, WSSV-infected shrimp were fed to SPF shrimp (Litopenaeus vannamei). The result showed experimentally challenged shrimp from 0-min treatment (positive control) indeed got infected with WSSV. However, experimentally challenged shrimp that were fed tissues boiled at 1, 3, 5, 10 and 30 min were not infected with WSSV. Mortality data showed that only the positive control (0-min) treatment displayed high mortality, whereas no mortality was observed in any other treatment category. These findings suggest that cooking shrimp at boiling temperature for at least 1 min might prevent any potential spread of WSSV from endemic countries to other geographical areas where WSSV has not yet been reported.  相似文献   

14.
Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina et al. 2013); therefore, it is a potential propagative vector for virus transmission. The major aim of this study was to determine whether WSSV can be transmitted from naturally infected Dendronereis spp. to specific pathogen‐free (SPF) Pacific white shrimp Litopenaeus vannamei (Boone) through feeding. WSSV was detected in naturally infected Dendronereis spp. and Penaeus monodon Fabricius from a traditional shrimp pond, and the positive animals were used in the current experiment. WSSV‐infected Dendronereis spp. and P. monodon in a pond had a point prevalence of 90% and 80%, respectively, as measured by PCR. WSSV was detected in the head, gills, blood and mid‐body of Dendronereis spp. WSSV from naturally infected Dendronereis spp was transmitted to SPF L. vannamei and subsequently from this shrimp to new naïve‐SPF L. vannamei to cause transient infection. Our findings support the contention that Dendronereis spp, upon feeding, can be a source of WSSV infection of shrimp in ponds.  相似文献   

15.
A flow‐through immunoassay (FTA), an improved version of immunodot, was developed using a nitrocellulose membrane baked onto adsorbent pads enclosed in a plastic cassette to detect white spot syndrome virus (WSSV) in shrimp. Sharp purple dots developed with WSSV against the white background of the nitrocellulose membrane. The detection limits of WSSV by the FTA and immunodot were 0.312 and 1.2 μg mL?1 crude WSSV protein, respectively. The FTA could be completed in 8–10 min compared with 90 min for immunodot. The FTA was 100 times more sensitive than 1‐step polymerase chain reaction (PCR) and in between that of the 1‐ and 2‐step PCR protocol recommended by the Office of International Epizootics (OIE). In experimental, orally infected shrimp post‐larvae, WSSV was first detected 14, 16 and 18 h post‐infection (hpi) by FTA, immunodot and one‐step PCR, respectively. The FTA detected WSSV 2 and 4 h earlier than immunodot and one‐step PCR, respectively. The FTA was more sensitive (25/27) than one‐step PCR (23/27) and immunodot (23/27) for the detection of WSSV from white spot disease outbreak ponds. The reagent components of the FTA were stable giving expected results for 6 m at 4–8 °C. The FTA is available as a rapid test kit called ‘RapiDot’ for the early detection of WSSV under field conditions.  相似文献   

16.
White spot syndrome virus (WSSV) isolated from Penaeus monodon was found to be highly infective for the western Mediterranean shrimp, Palaemon sp. Using polymerase chain reaction (PCR), it was demonstrated that such shrimp are not naturally carriers of WSSV. Following challenge with virus, mortality reached 100% 3.5-4 days after injection at 22 degrees C. Incubation of infected shrimp at 10 degrees C totally suppressed the mortality which rapidly developed when shrimp were returned to 18 or 22 degrees C. Preincubation of WSSV with mature synthetic mytilin significantly reduced shrimp mortality with a 50% efficient dose of about 5 microM. Survival of shrimp was not due to the development of an active mechanism of defence as re-injection of WSSV produced the same mortality pattern. Mortality was probably due to WSSV replication as dot blot failed to detect viral DNA in the injection sample but was positive 1 day post-injection. Protection by mytilin was by interaction at the virus level, preventing replication as no WSSV nucleic acid was detected by PCR even after 7 days in shrimp injected with WSSV preincubated with 10 or 50 microM mytilin.  相似文献   

17.
18.
中国对虾雄性生殖系统感染WSSV在其垂直传播中的作用   总被引:2,自引:0,他引:2  
通过人工感染实验,对中国对虾(Fenneropenaeus chinensis)雄性亲虾进行投喂感染。在确定其携带WSSV粒子后,将被WSSV感染的精荚人工移植到健康的雌虾纳精囊内。在无其他病源的情况下,促其产卵繁殖,统计各组子代的受精率、孵化率及无节幼体至溞状幼体的变态率贸?式PCR技术对亲虾及子代进行WSSV检测。结果表明,受WSSV感染的精荚能够把病毒传播给健康雌虾,雌虾能产出携带WSSV的卵子,培育出带毒幼体。各组子代的受精率、孵化率及变态率的统计结果表明,感染组和对照组在受精率上没有明显区别,受WSSV感染的精卵细胞可以正常结合。对照组受精卵的孵化率明显高于感染组,差异显著(P=0.045<0.05)。对照组无节幼体的变态率也高于感染组。说明WSSV的入侵对受精卵及幼体的发育有影响,WSSV感染导致部分受精卵及幼体不能正常发育或死亡。  相似文献   

19.
White spot disease (WSD) is an important viral disease of penaeid shrimp caused by white spot syndrome virus (WSSV). WSSV isolated from WSD outbreaks in commercial shrimp (Penaeus monodon) farms in India were propagated in the laboratory in healthy shrimp. The virus was purified from the infected tissues by sucrose gradient centrifugation. The VP28 was electroeluted from SDS-PAGE gels and was used to immunize Balb/c mice to produce hybridomas secreting monoclonal antibodies (MAb) against WSSV. A total of five hybridoma clones secreting MAbs to VP28 were produced. The MAbs were of the isotypes IgG1, IgG2b and IgM. The MAbs reacted with VP28 of WSSV and not with any other viral or shrimp protein in western blot. The MAbs were used to develop dot immunoblot assay using an immunocomb to detect WSSV from field samples. The test developed had an analytical sensitivity of 625 pg and a diagnostic sensitivity of 100% compared to single step polymerase chain reaction (PCR). The test can be used as an alternate for first step PCR to detect WSSV from field samples.  相似文献   

20.
以超低温保存的感染了白斑综合征病毒(WSSV)的中国对虾制备的病毒粗提液为毒种,注射感染凡纳对虾并收集濒死虾,DNA斑点杂交检测每尾凡纳对虾WSSV感染状况。取DNA斑点杂交呈强阳性的30尾对虾,平均分为3组,病毒粗提液也平均分成3组,3组材料分别通过^60Co辐照,辐照时间分别为12、24和36h,辐照剂量为0.8KGy/h。辐照后的材料经PCR检测证实^60Co辐照不能完全破坏WSSV的DNA组成。以辐照后的感染白斑综合征病毒的对虾个体和白斑综合征病毒粗提液为感染毒种,人工感染健康凡纳对虾,验证^60Co辐照对病毒感染力的破坏作用,证实^60Co辐照可显著降低WSSV病毒粗提液的感染力,^60Co辐照可适当降低WSSV感染对虾的感染力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号