首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为实现水稻病害图像的快速、准确识别,提出一种基于注意力机制与EfficientNet的轻量化水稻病害识别方法。该方法首先引入轻量级卷积注意力模块(Convolutional Block Attention Module,CBAM)改进Efficientnet-B0中的主体模块轻量翻转瓶颈卷积核(Mobile Inverted Bottleneck Convolution,MBConv),然后利用Ghost模块优化网络中的卷积层,降低网络的参数量和计算量,最后使用Adam优化算法提高网络的收敛速度。在由572幅水稻白叶枯病、稻粒黑粉病、稻曲病、稻胡麻斑病和健康叶片5类水稻图像构成的测试集上,本文所提方法的识别准确率为95.63%,较EfficientNet-B0提高1.75%;分别比同类经典神经网络VGG16、Inception-V3、ResNet101和DenseNet201提高8.39%、4.72%、3.67%和1.05%。本文所提方法模型参数量为4.4 M,较EfficientNet-B0减少2.8 M;相比于对照网络,其参数量仅是这些网络模型参数量的9.05%、18.37%、9.81%和21.64%。试验结果表明:本文所提方法能够实现对不同水稻病害图像的准确、快速识别,而且识别模型轻量,具有较少的网络参数量。  相似文献   

2.
基于多层EESP深度学习模型的农作物病虫害识别方法   总被引:3,自引:0,他引:3  
为了提取图像高层语义特征、解决各种植物病虫害图像尺寸不相同的问题,提出了多层次增强高效空间金字塔(Extremely efficient spatial pyramid,EESP)卷积深度学习模型。首先,对图像进行预处理;其次,构建多层融合EESP网络模型,该模型通过对每层设置不同的空洞率进行空洞卷积,选择性地提取不同层次的特征信息,通过融合各层信息获得各种农作物病虫害图像的不同特征;最后,通过Softmax分类方法实现农作物病虫害识别。数据集包括10种农作物的61种病虫害类别,迭代训练300次,得到本文方法 Top1分类准确率最高达到了88.4%,且采用三阶EESP模型达到了最佳效果。  相似文献   

3.
基于改进ResNet的植物叶片病虫害识别   总被引:1,自引:0,他引:1  
轻量化植物叶片病虫害识别算法设计是实现移动端植物叶片病虫害识别的关键。研究提出一种基于改进ResNet模型的轻量化植物叶片病虫害识别算法Simplify ResNet。以人工采集图像和PlantVillage数据集图像为实验数据,根据移动端植物病虫害识别对准确率、速度和模型大小的实际需求,改进ResNet模型。使用5×5卷积替代7×7卷积,采用残差块的瓶颈结构代替捷径结构,采用模型剪枝处理训练后的模型。通过测试集5 786幅图像测试Simplify ResNet模型,证明5×5卷积和残差块的瓶颈结构可有效降低模型参数量,模型剪枝可有效降低训练后的模型大小。Simplify ResNet模型对测试集图像的识别准确率为92.45%,识别时间为48 ms,内存大小为36.14 Mb。与LeNet、AlexNet和MobileNet等模型相比,其准确率分别高18.3%,7.45%和1.2%。为移动端植物病虫害识别解决最重要的算法设计问题,为移动端植物病虫害识别做出有益探索。  相似文献   

4.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   

5.
针对苹果叶部病害由于数据集类间样本不均衡和拍摄角度、光照变化等实际成像与环境因素造成的精度低和泛化能力差的问题,本文提出了一种新型的非对称混洗卷积神经网络ASNet。首先,通过在ResNeXt骨干网络中添加改进的scSE注意力机制模块增强网络提取的特征;其次,针对多数叶片病害特征分布相对分散的问题,使用非对称混洗卷积模块代替原始的残差模块来扩大卷积核的感受野和增强特征提取能力,从而提升模型的分割精度和泛化能力;最后,在非对称混洗卷积模块中使用通道压缩和通道混洗的方式弥补了分组卷积造成的通道间关联性不足的缺陷,降低了由于叶部病害类间不均衡导致的传统网络模型精度偏低的问题。在COCO数据集评价指标下,实验结果表明,相比于骨干网络为ResNeXt-50的原始Mask R-CNN模型,本文模型的平均分割精度达到96.8%,提升了5.2个百分点,模型权重文件减小为321MB,减小了170MB。对实地采集和AI Challanger农作物病害分割挑战赛的240幅苹果叶片图像进行测试,结果表明,本文模型ASNet对苹果黑腐病、锈病与黑星病3种病害和健康叶片的平均分割精度达到94.7%。  相似文献   

6.
为提高葡萄种植区遥感识别精度,基于高分二号卫星遥感影像,对U-Net网络进行改进:从空间和通道维度自适应校准特征映射,以增强有意义的特征,抑制不相关的特征,提升地物边缘分割精度;减少下采样次数,使用混合扩张卷积代替常规卷积操作,以增大卷积核感受野,降低图像分辨率的损失,提高对不同尺寸地物的识别能力。实验结果表明,本文模型在测试集上的像素准确率、平均交并比和频权交并比分别为96.56%、93.11%、93.35%,比FCN-8s网络分别提高了5.17、9.57、9.17个百分点,比U-Net网络提高了2.39、4.59、4.39个百分点。此外,本文通过消融实验和特征可视化证明了注意力模块和混合扩张卷积在精度提升上的可行性。本文模型结构简单、参数量少,能够识别不同面积的葡萄种植区,边缘分割效果良好。  相似文献   

7.
为方便调查宁夏全区荒漠草原植物种类及其分布,需对植物识别方法进行研究。针对YOLO v5s模型参数量大,对复杂背景下的植物不易识别等问题,提出一种复杂背景下植物目标识别轻量化模型YOLO v5s-CBD。改进模型YOLO v5s-CBD在特征提取网络中引入带有Transformer模块的主干网络BoTNet(Bottleneck transformer network),使卷积和自注意力相结合,提高模型的感受野;同时在特征提取网络融入坐标注意力(Coordinate attention, CA),有效捕获通道和位置的关系,提高模型的特征提取能力;引入SIoU函数计算回归损失,解决预测框与真实框不匹配问题;使用深度可分离卷积(Depthwise separable convolution, DSC)减小模型内存占用量。实验结果表明,YOLO v5s-CBD模型在单块Nvidia GTX A5000 GPU单幅图像推理时间仅为8 ms,模型内存占用量为8.9 MB,精确率P为95.1%,召回率R为92.9%,综合评价指标F1值为94.0%,平均精度均值(mAP)为95.7%,在VOC数据集...  相似文献   

8.
为实现苹果果径与果形快速准确自动化分级,提出了基于改进型SSD卷积神经网络的苹果定位与分级算法。深度图像与两通道图像融合提高苹果分级效率,即对从顶部获取的苹果RGB图像进行通道分离,并提取分离通道中影响苹果识别精度最大的两个通道与基于ZED双目立体相机从苹果顶部获取的苹果部分深度图像进行融合,在融合图像中计算苹果的纵径相关信息,实现了基于顶部融合图像的多个苹果果形分级和信息输出;使用深度可分离卷积模块替换原SSD网络主干特征提取网络中部分标准卷积,实现了网络的轻量化。经过训练的算法在验证集下的识别召回率、精确率、mAP和F1值分别为93.68%、94.89%、98.37%和94.25%。通过对比分析了4种输入层识别精确率的差异,实验结果表明输入层的图像通道组合为DGB时对苹果的识别与分级mAP最高。在使用相同输入层的情况下,比较原SSD、Faster R-CNN与YOLO v5算法在不同果实数目下对苹果的实际识别定位与分级效果,并以mAP为评估值,实验结果表明改进型SSD在密集苹果的mAP与原SSD相当,比Faster R-CNN高1.33个百分点,比YOLO v5高14.23个百分点...  相似文献   

9.
基于多尺度融合模块和特征增强的杂草检测方法   总被引:1,自引:0,他引:1  
针对单步多框检测器(Single shot multibox detector, SSD)网络模型参数多、小目标检测效果差、作物与杂草检测精度低等问题,提出一种基于多尺度融合模块和特征增强的杂草检测方法。首先将轻量网络MobileNet作为SSD模型的特征提取网络,并设计了一种多尺度融合模块,将浅层特征图先通过通道注意力机制增强图像中的关键信息,再将特征图经过不同膨胀系数的扩张卷积扩大感受野,最后将两条分支进行特征融合,对于检测小目标的浅层特征图,在包含较多小目标细节信息的同时,还包含丰富的语义信息。在此基础上对输出的6个特征图经过通道注意力机制进行特征增强。实验结果表明,本文提出的基于多尺度融合模块和特征增强的杂草检测模型,在自然环境下甜菜与杂草图像数据集中,平均检测精度可达88.84%,较标准SSD模型提高了3.23个百分点,参数量减少57.09%,检测速度提高88.44%,同时模型对小目标作物与杂草以及叶片交叠情况的检测能力均有提高。  相似文献   

10.
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。  相似文献   

11.
基于Faster R-CNN的田间西兰花幼苗图像检测方法   总被引:4,自引:0,他引:4  
为解决自然环境下作物识别率不高、鲁棒性不强等问题,以西兰花幼苗为研究对象,提出了一种基于Faster R-CNN模型的作物检测方法。根据田间环境特点,采集不同光照强度、不同地面含水率和不同杂草密度下的西兰花幼苗图像,以确保样本多样性,并通过数据增强手段扩大样本量,制作PASCAL VOC格式数据集。针对此数据集训练Faster R-CNN模型,通过设计ResNet101、ResNet50与VGG16网络的对比试验,确定ResNet101网络为最优特征提取网络,其平均精度为90. 89%,平均检测时间249 ms。在此基础上优化网络超参数,确定Dropout值为0. 6时,模型识别效果最佳,其平均精度达到91. 73%。结果表明,本文方法能够对自然环境下的西兰花幼苗进行有效检测,可为农业智能除草作业中的作物识别提供借鉴。  相似文献   

12.
农作物病虫害对农业产量和品质影响巨大。数字图像处理技术在农作物病虫害识别中发挥重要作用。深度学习在该领域取得显著突破,效果优于传统方法。深度学习方法的特征提取能力更强,能准确捕捉细微特征,提高检测精度和可靠性。深度学习为农业提供了有力支持。本研究综述了基于深度学习的农作物病虫害检测研究,从分类网络、检测网络和分割网络3方面进行了概述,并对每种方法的优缺点进行了总结,同时比较了现有研究的性能。在此基础上,进一步探讨了基于深度学习的农作物病虫害检测算法在实际应用中面临的难题,并提出了相应的解决方案和研究思路。最后,对基于深度学习的农作物病虫害检测技术的未来趋势进行了分析和展望。  相似文献   

13.
互联网是一个巨大的资源库,也是一个丰富的知识库。针对农作物小样本引起的过拟合问题,本研究引入了知识迁移和深度学习的方法,采用互联网公开的ImageNet图像大数据集和PlantVillage植物病害公共数据集,以实验室的黄瓜和水稻病害数据集AES-IMAGE为对象开展相关的研究与试验。首先将批归一化算法应用于卷积神经网络CNN中的AlexNet和VGG模型,改善网络的过拟合问题;再利用PlantVillage植物病害数据集得到预训练模型,在改进的网络模型AlexNet和VGG模型上用AES-IMAGE对预训练模型参数调整后进行病害识别。最后,使用瓶颈层特征提取的迁移学习方法,利用ImageNet大数据集训练出的网络参数,将Inception-v3和Mobilenet模型作为特征提取器,进行黄瓜和水稻病害特征提取。本研究结合试验结果探讨了适用于农作物病害识别问题的最佳网络和对应的迁移策略,表明使用VGG网络参数微调的策略可获得的最高准确率为98.33%,使用Mobilenet瓶颈层特征提取的策略可获得96.8%的验证准确率。证明CNN结合迁移学习可以利用充分网络资源来克服大样本难以获取的问题,提高农作物病害识别效率。  相似文献   

14.
农作物病虫害识别关键技术研究综述   总被引:4,自引:0,他引:4  
农作物病虫害的预防与治理对农业生产具有十分重要的作用,病虫害防治工作的前提是准确识别病虫害目标。传统的病虫害识别方法包括人工识别和仪器识别,传统识别方法在识别效率、识别准确性、应用场景等方面已无法满足科学研究和生产的需要。深度学习是机器学习的一个重要分支,能够自动、高效、准确地从大规模数据集中学习到待识别目标的特征,从而替代传统依赖手工提取图像底层特征的识别方法,因此,将结合图像处理的深度学习技术应用于农作物病虫害识别是未来精准农业发展的必然趋势。农作物病虫害识别所涉及的关键技术以农作物病虫害数据为基础展开,通过阐述病虫害数据获取、数据预处理、数据增强、深度学习网络优化、识别结果可视化、识别结果可解释性、预测预报等关键技术的研究现状,归纳与总结了各关键技术应用中存在的问题和面临的挑战,最后指出农作物病虫害识别未来的研究发展方向,即在数据获取方面,构建多源农业数据集和积极打造数据共享资源平台,在数据处理方面,结合迁移学习算法、使用新型数据增强方法,在数据应用方面,积极开展可视化、可解释性和预测预报等工作。  相似文献   

15.
传统深度学习模型在用于蔬菜病害图像识别时,存在由于网络梯度退化导致的识别性能下降问题。为此,本文研究了一种基于深度残差网络模型的番茄叶片病害识别方法。该方法首先利用贝叶斯优化算法自主学习网络中难以确定的超参数,降低了深度学习网络的训练难度。在此基础上,通过在传统深度神经网络中添加残差单元,解决了由于梯度爆炸/消失造成的过深层次病害识别网络模型性能下降的问题,能够实现番茄叶片图像的高维特征提取,根据该特征可进行有效病害鉴定。试验结果表明,本研究中基于超参数自学习构建的深度残差网络模型在番茄病害公开数据集上取得了良好的识别性能,对白粉病、早疫病、晚疫病和叶霉病等4种番茄叶片常见病害的识别准确率达到95%以上。本研究可为快速准确识别番茄叶片病害提供参考。  相似文献   

16.
农作物病虫害是一种严重的自然灾害,需要对其进行及时预测和监控,以保证农作物产量。由于害虫种类繁多以及作物在生长初期的形态相似,农业工作者难以准确识别各类作物昆虫,给病虫害的防治工作带来巨大挑战。针对这一问题,提出一种基于多尺度特征融合的网络模型(FFNet)对作物害虫进行精准识别与分类。首先,采用空洞卷积设计多尺度特征提取模块(MFEM),获取害虫图像的多尺度特征图;然后,使用深层特征提取模块(DFEM)提取图像的深层特征信息;最后,将分别由多尺度特征提取模块(MFEM)和深层特征提取模块(DFEM)提取到的特征图进行融合,从而实现以端到端的方式对作物害虫进行精准分类与识别。试验表明:所提出的方法在12类害虫的数据集上获得优异的分类性能,分类准确率(ACC)达到98.2%,损失函数Loss为0.031,模型训练时间为197 min。  相似文献   

17.
苹果和番茄是日常生活非常常见的果蔬,准确地识别病害能够提升作物产量,减少经济损失。针对现有的植物病害检测方法不能准确且快速地检测植物叶片中病害区域的问题,设计一种基于改进Yolov5的深度学习方法,用于检测苹果、番茄叶片常见病害。通过数据增强和图像标注技术构建苹果、番茄叶片病害数据集,利用K means算法对初始锚框进行调整,在此基础上使用复合主干网增强Yolov5主干网对病害特征的提取能力,使用Varifocal Loss函数提高对密集感染区域的识别精度。试验结果表明:改进后的Yolov5病害检测算法mAP达到95.7%,在原来Yolov5模型基础上mAP提升1.7%,平均检测一张图像耗时0.033 s,为苹果、番茄叶片病害检测提供一种高性能的解决方案,能够以较高的准确率对植物叶片病害进行分类与定位。  相似文献   

18.
数据集对基于深度学习的作物病害识别有效性影响   总被引:1,自引:0,他引:1  
基于深度学习的作物病害自动识别已成为农业信息化领域新的研究热点,为探究数据集的大小和质量对基于深度学习的作物病害识别有效性的影响,研究不同数据集训练得到的模型识别效果并进行了分析。以338张玉米病害数据集为例,对其进行数据增强、移除背景和细分割划分等处理,设计5个AlexNet框架的CNN网络模型并利用不同类型的数据集进行测试,使用十倍交叉法验证识别结果。试验结果表明:使用不同数量和等级的数据训练后的模型识别准确率分别为56.80%、78.30%、80.50%、89.30%和81.00%。在获得每个网络的最终精度后,挑选出识别错误的图像进行分析,结合前人的研究结果,得出影响深度神经网络用于作物病害识别有效性的9个主要因素。数据集对基于深度学习的作物病害识别有效性的影响因素主要分为带注释的数据集大小、叶片症状代表性、协变量转移、图像背景情况、图像数据获取过程、症状分割、特征多变性、并发性病害以及症状的相似性等这9类,该试验能够为深度学习技术田间病害识别的实际应用中提供依据和指导。  相似文献   

19.
为了减少检测整株大豆豆荚及茎秆时相互遮挡对精度造成的影响,提出了一种基于卷积神经网络的大豆豆荚及茎秆表型信息检测方法,根据大豆植株的生长特征和卷积网络的特点,对单次多框检测器(Single shot multibox detector, SSD)进行了改进。与传统SSD相比,改进SSD(IM-SSD)具有更好的抗干扰能力和自学习能力。首先,通过大豆植株图像采集平台获取收获期的大豆植株图像,建立大豆植株RGB空间图像数据集,将数据集分为训练集、测试集和验证集,对训练集进行颜色变换、图像平移、旋转和缩放等方式实现数据的扩增,提高网络的泛化能力。其次,提出一种针对大豆植株图像中豆荚和茎秆的标注方法,仅对未被遮挡的部分进行标注,目的是降低遮挡产生的误判。IM-SSD是在传统SSD结构的基础上增加2个残差层,使用低层特征图融合到高层特征图来增强对小目标的检测能力,提高网络的识别率,输入图像尺寸为600像素×300像素,降低压缩变形带来的影响。对比试验结果表明,IM-SSD的平均精度比SSD300高7.79个百分点,比SSD512高3.83个百分点。由于卷积神经网络获得的大豆植株茎秆定位是分段的,不能体现茎秆的真实特征,提出了一种基于蚁群优化(Ant colony optimization, ACO)算法的大豆植株茎秆提取方法,利用ACO结合IM-SSD的结果提取完整的大豆植株茎秆。最后,通过豆荚定位和大豆植株茎秆提取获得了大豆植株的部分表型信息,包括全株荚数、株高、有效分枝数、主茎与株型。  相似文献   

20.
通过对植物叶特征的分析,可以确定植物的种类和生长状态,对于植物研究、指导生产等具有重要意义.传统的叶特征提取方法都是通过人的手工操作完成的,效率较低,而当前可以借助于图像处理技术对叶特征进行自动提取.为此,对基于图像处理的叶特征提取研究现状进行了综述,并对其做了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号