首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
以黏土为研究对象,利用地表灌水(SI)和不同深度的地下灌水(SDI12、SDI15和SDI18)实现了不同的水分垂直非均匀分布,研究了不同水分分布下的旱地土壤CO2日排放特征。结果表明:不同的处理的CO2排放呈现相同的日变化规律,但不同处理间排放量存在差异;两次灌水后CO2日平均排放通量之间的大小关系均表现为SISDI12SDI15SDI18,且SI处理在初次灌水后的排放通量显著大于SDI15和SDI18处理,而第二次灌水后各处理之间均有明显的差异性。各处理在两次灌水后同一观测日内,其0~12 cm土层的土壤水分WFPS之间的大小关系分别为:SISDI12SDI15SDI18和SISDI12SDI15SDI18。对同一处理来说,其土壤0~12 cm土层的平均含水率在不同观测日均呈现出逐渐递减趋势,相应的初次灌水后CO2日平均排放通量呈现出逐渐递增的趋势,而第二次灌水后SI和SDI12处理呈现出逐渐递增的趋势,SDI15和SDI18则呈现出先递减后递增的趋势。此外,比较第一次和第二次灌水后的CO2排放,发现季节温度变化是影响CO2日排放重要因素,CO2的排放随着温度的升高而增加,而温度过高时,CO2的排放随温度升高出现降低的趋势。  相似文献   

2.
为揭示奶牛场沼液灌溉后麦地CO2和N2O排放通量的变化特征及与相关环境因子相互关系,采用静态箱-气相色谱法对奶牛场沼液灌溉后第1d土壤CO2和N2O排放通量连续进行24h观测,同时观测灌前1d、灌后第2d、第4d和第7d排放通量。结果表明,沼液灌溉(SI)、习惯施肥(CF)、不施肥(CK)处理灌后第1d土壤CO2与N2O日排放通量范围分别为115.55~253.44、66.97~114.17、62.86~125.96mg/(m2·h)与115.79~401.1、4.15~21.04、1.44~28.32μg/(m2·h),日峰值和日谷值均出现在14:00和5:00;除CK外,各处理排放通量与地表及距地表5cm处地温显著相关(P0.05)。灌溉前后CK和CF处理CO2和N2O排放通量变化较小。灌溉后SI处理土壤CO2和N2O排放通量迅速升高且分别在灌后第1d和第2d达到排放峰值,此时CO2和N2O排放通量分别较SI处理灌溉前分别升高111.9%和890.0%,随后SI处理CO2和N2O排放通量开始下降,灌溉后第7d分别与CK和CF处理相比无显著差异。灌溉后7d内SI处理的CO2和N2O累积排放量均显著高于CK和CF处理。  相似文献   

3.
【目的】探讨不同灌水下限设施土壤CO2排放特征及其影响因素,为调控设施土壤水分和碳排放提供理论依据。【方法】在番茄生育期内采用LI-8100A土壤碳通量自动测定仪观测不同灌水下限[20 kPa(D20)、30 kPa(D30)、40 kPa(D40)]下的土壤CO2排放速率,并分析其影响因素。【结果】在番茄生育期内,不同灌水下限设施土壤CO2排放速率变化趋势基本一致,D20处理最高,平均速率为2.759μmol/(m2·s),其次是D30处理,为2.601μmol/(m2·s),D40处理最低,为2.559μmol/(m2·s)。在土壤CO2累积排放量方面,D20处理显著高于其他2个处理,而D30和D40处理之间无显著差异。就单因素模型而言,不同灌水下限处理的土壤CO2排放速率与15 cm土壤温度呈指数回归关系,且均达显著水平(P<0.05);不同灌水下限处理的土壤CO2排放速率与15 cm土壤含水率均呈显著二次回归关系(P<0.05);与单因素模型相比,土壤温度和土壤含水率的双因素复合模型(68.5%~83.8%)可以更好地解释土壤CO2排放的变化。土壤温度敏感系数Q10值在1.442~1.498之间,其中D20处理最敏感,D40处理最不敏感。相关分析结果表明,土壤CO2累积排放量与0~20 cm土层土壤有机质量、pH值、全氮量、速效磷量、速效钾量、碱解氮量和微生物量碳呈显著相关关系。采用PCA分析提取出的2个主成分累积贡献率为85.79%。【结论】灌水下限影响设施土壤CO2的排放,其中D20处理促进了设施土壤CO2的排放。  相似文献   

4.
不同灌水水平对温室番茄地土壤CO_2排放影响   总被引:1,自引:0,他引:1  
为分析不同灌水水平对温室番茄地土壤CO_2排放的影响,采用静态箱气相色谱法对2014年秋冬季和2015年春夏季番茄地土壤CO_2排放进行原位观测。试验设置2个灌水水平分别为:充分灌溉(FI)和亏缺灌溉(DI)。结果表明:番茄两个生长季中,不同灌水处理下土壤CO_2排放通量均呈波动性变化。2015年春夏季试验各处理土壤CO_2平均排放通量和排放量高于2014年秋冬季试验对应的各处理土壤CO_2平均排放通量和排放量,且两个生育期内高灌水处理的土壤CO_2排放在番茄生育期绝大多数时间内均高于低灌水处理。以2015年FI处理土壤CO_2累积排放量最大(5 641.57kg/hm~2),分别较2014年FI处理、2014年DI处理和2015年DI处理增加了3.9%、54.2%和16.7%。此外,研究还发现春夏茬试验中不同灌水处理下,土壤CO_2排放通量与土壤水分呈显著负相关关系。这为评估设施菜地温室气体减排提供一定的科学依据。  相似文献   

5.
为研究加气条件下土壤过氧化氢酶活性(CAT)和番茄生长对土壤CO_2排放的影响,试验于2017年4月至7月采用静态暗箱/气相色谱法对加气灌溉(AI)和常规膜下滴灌(CK)两个处理下的温室番茄地土壤CO_2排放进行原位监测;并同时测定各处理CAT、土壤充水孔隙率(WFPS)、土壤温度和番茄株高。结果表明:在番茄整个生育期内,各处理土壤CO_2排放通量均呈现先增加后减小的趋势; CAT呈现波动性变化,在生育末期达到最大值。AI处理CO_2累积排放量(9 031.08 kg/hm2)较CK处理增加了2.4%,但不显著(P0.05)。此外,加气灌溉促进了番茄的生长,增加了CAT和土壤温度,但降低了WFPS,且处理间各指标差异性均不明显(P0.05)。土壤CO_2排放通量与CAT、土壤温度和番茄株高均呈正相关(P0.05),与WFPS呈极显著负相关(P0.01)。  相似文献   

6.
夏玉米种植期间,设置淡水和再生水2种滴灌灌水水质,无肥、尿素、硫酸铵和缓释肥4种施肥处理。研究不同水质、不同氮肥对农田土壤CO2、N2O排放和夏玉米产量的影响。结果表明:与淡水灌溉相比,再生水灌溉土壤CO2日平均排放通量平均降低12.44%,N2O日平均排放通量平均增加17.31%,但灌水水质对CO2、N2O日平均排放通量没有显著影响(p>0.05);与不施肥处理相比,尿素、硫酸铵和缓释肥处理CO2日平均排放通量分别平均增加18.67%、10.20%和2.76%,N2O日平均排放通量分别平均增加117.73%、220.21%和108.70%,施肥种类对CO2日平均排放通量没有显著性影响(p>0.05),但对N2O日平均排放通量影响显著(p<0.05);与国家夏玉米生产试验产量相比,各施肥处理产量平均增加19.83%,而不施肥处理平均降低0.83%,但不同水质、施肥处理对产量没有显著影响(p>0.05)。  相似文献   

7.
灌溉影响土壤微生物活动和作物根系生长,进而影响土壤CO_2的产生和排放。为揭示亏缺灌溉夏玉米地土壤CO_2的排放特征,于2015年6-10月在西北农林科技大学中国旱区节水农业研究院农田水分转化试验场,采用静态暗箱-气相色谱法对夏玉米地土壤CO_2排放进行了原位观测。试验设置3个处理,分别为充分灌溉(CK),亏水20%(T1)和亏水40%(T2)。结果表明:夏玉米地土壤CO_2排放通量在播种后达到峰值并急剧下降至低谷,直到在灌水后出现短暂的次高峰期,随后一直维持在较低排放水平直到玉米收获。在灌水后,土壤CO_2的排放通量表现为CKT1T2,且CK与T2,T1与T2处理间有显著差异(P0.05)。不同灌溉水平下,夏玉米地土壤CO_2排放通量与土壤充水孔隙率呈指数正相关关系,相关性达显著水平(P0.05)。亏缺灌溉在一定程度上抑制了土壤CO_2的排放,土壤充水孔隙率低于50%时,CO_2排放通量维持在较低水平,但当土壤充水孔隙率高于50%时,CO_2排放通量随着土壤充水孔隙率的增加而有大幅度增加。该研究结果可为农田的节水减排提供参考。  相似文献   

8.
采用静态箱-气相色谱仪法,共设置不施肥灌溉清水CK、习惯施肥灌溉清水CF、不施肥灌溉一次2∶1(清水∶沼液)奶牛场沼液T1、不施肥灌溉两次2∶1奶牛场沼液T2、不施肥灌溉两次1∶1奶牛场沼液T3等5个处理。通过田间原位观测试验对不同比例、不同次数沼液灌溉对华北平原麦田土壤CO2、N2O排放及其相关土壤因子的影响进行研究。结果表明:小麦主要生育期内各处理CO2排放具有明显的季节变化趋势,变化范围为1.93~13.70kg/(hm2·d),分别在4个重要时期即返青期、拔节期、抽穗期、灌浆期出现了排放高峰。N2O变化范围为:-3.93~41.86g/(hm2·d),排放高峰仅出现在灌溉奶牛场沼液后的很短一段时间(7d)内,很快下降并维持在较低水平。整个观测期内与CK和CF处理相比,3种不同模式沼液灌溉都不会引起CO2累积排放量增加;与CF处理相比,3种不同模式沼液灌溉都不会引起N2O累积排放量增加。T3处理为较为合理的沼液灌溉模式,既能保证小麦产量,也不会引起CO2和N2O排放量的增加。3种不同模式沼液灌溉均显著(p0.05)提高了冬小麦田土壤DOC含量,T3、T2、T1处理较CK处理分别提高了203.0%、114.9%、40.3%。在实验条件下,土壤的CO2排放量与土壤DOC含量显著相关;土壤的N2O排放量与土壤的NO-3-N含量、DOC含量极显著相关,与土壤WFPS显著相关。  相似文献   

9.
通过设置在北京市大兴区青云店镇的不同耕作措施试验,利用静态箱-气相色谱法对2季冬小麦(2011年10月—2012年7月和2012年10月—2013年7月)各关键生育期内CO2、CH4的排放通量进行了测定。结果表明:免耕(NT)、深松(ST)、旋耕(RT)、传统耕作(CT)4种耕作措施下,冬小麦农田土壤总体表现为CO2源和CH4汇的功能,且CO2和CH4都有明显的日变化和季节变化特征。CO2日排放通量最高峰出现在0:00,最低峰出现在10:00;CO2季节排放通量最高峰出现在冬小麦播种期和收获期,最低峰出现在越冬期。CH4日排放和季节排放通量变化特征差异显著,但没有明显的变化规律。CO2排放通量与0~20cm各土层土壤温度呈正相关,与0~30cm各土层土壤质量含水率呈负相关关系。CH4排放通量与0~20cm各土层土壤温度呈正相关关系。4种耕作处理下,冬小麦农田CO2的季节平均排放通量为:传统耕作>旋耕>深松>免耕,CH4的季节平均吸收通量为:旋耕>传统耕作>免耕>深松。免耕相对于旋耕和传统耕作农田CO2季节平均排放通量降低了23.3%~27.1%;旋耕、传统耕作相对于免耕和深松CH4的季节平均吸收量增加了20%以上。因此,在京郊冬小麦农田,4种耕作措施(NT、ST、RT和CT)均能不同程度地增加CH4的吸收量,同时,采用免耕能进一步降低农田CO2排放量。  相似文献   

10.
灌溉水盐分和灌水量对温室气体排放与玉米生长的影响   总被引:2,自引:0,他引:2  
为揭示地下水与微咸水灌溉条件下灌水量对土壤CO2、N2O排放和春玉米生长的影响,设置2种灌溉水含盐量(1.1、5.0g/L)和3种灌水量(210、255、300mm),于2019年4—9月在内蒙古自治区河套灌区进行了春玉米田间试验。结果表明,不同灌水量下,微咸水(含盐量5.0g/L)灌溉比地下水(含盐量1.1g/L)灌溉土壤N2O累积排放量提高了19.86%~44.21%,但利用微咸水灌溉并不会影响土壤CO2累积排放量与全球增温潜势。在相同的灌溉水盐分条件下,灌水量为300mm时土壤CO2、N2O累积排放量和全球增温潜势均最大,灌水量为210mm和255mm时并不会对土壤CO2、N2O的累积排放量和全球增温潜势产生显著影响。相关性分析表明,土壤含水率和无机氮含量是影响土壤CO2、N2O排放的重要因素,灌溉水盐分通过促进土壤的硝化作用促进土壤N2O排放。在微咸水灌溉条件下,春玉米产量较地下水灌溉减少了30.88%~37.32%。随着灌水量的增大,春玉米产量呈增加趋势,但255mm和300mm灌水量条件下的春玉米产量差异不显著。在地下水与微咸水灌溉条件下,灌水量为255mm时,土壤盐分累积较小,春玉米产量较高,土壤CO2、N2O累积排放量和全球增温潜势相对较小,是灌区适宜采用的灌溉定额。  相似文献   

11.
采用土柱试验法,设计3个灌水量(1.0 L、1.5 L、2.0 L),研究了不同灌水量在灌水后土壤表面CO_2通量的变化过程及特征,进一步分析了温度、含水率对土壤CO_2排放的影响。研究结果表明:表层土壤CO_2通量在灌水后连续48 h内呈现出先降低后升高再降低再升高的变化特点,与土壤温度的变化具有一致性;土壤温度对表层土壤CO_2通量的影响显著,呈指数关系,土壤含水率与表层土壤CO_2通量的关系随着滴灌水量的增加逐渐减弱,无显著性;采用通径分析发现,土壤温度和含水率交互影响表层土壤CO_2通量,土壤温度是表层土壤CO_2通量的最主要影响因素。  相似文献   

12.
不同灌溉方式对冬小麦生长发育及水分利用效率的影响   总被引:7,自引:4,他引:3  
为了确定山西省晋南地区冬小麦高产高效的节水灌溉模式,采用田间小区试验,研究了微喷灌(MSI)、滴灌(SDI)和传统漫灌(CK)3种灌溉方式对冬小麦不同生育期的土壤水分变化、生长性状、产量和水分利用效率的影响。其中SDI处理和MSI处理生育期灌水3次,分别为越冬期(12月9日)、拔节期(4月1日)、灌浆期(5月20日),每次灌水量为600 m~3/hm~2;CK按当地灌水习惯,于越冬期和拔节期灌水,每次灌水量为2 250 m~3/hm~2。结果表明,各处理越冬期0~100 cm土层土壤含水率没有明显差异,灌浆期0~80 cm土层土壤含水率表现为SDI处理MSI处理CK,MSI处理、SDI处理灌浆期灌水,可满足灌浆期对水分需求,促进籽粒灌浆;与CK相比,SDI处理与MSI处理可以明显增加单株分蘖数和总茎数、促进群体生长,显著增加冬小麦成穗数、穗粒数和千粒质量,因而显著提高了籽粒产量。与CK相比,MSI处理穗粒数、千粒质量分别提高16.54%、5.21%,SDI处理穗粒数、千粒质量分别提高9.10%、11.78%,MSI、SDI处理籽粒产量分别增加了2.79%、3.35%;同时,SDI处理与MSI处理冬小麦生育期的耗水总量分别减少43.88%和41.64%,水分利用效率分别提高了83.15%和77.09%。因此,在山西临汾盆地采用微喷与滴灌可以取得明显的节水高产效果。  相似文献   

13.
内蒙古阴山北麓滴灌马铃薯田氨挥发和氧化亚氮排放特征   总被引:3,自引:1,他引:2  
采用静态暗箱法和通气法,研究了在滴灌条件下氮肥用量对马铃薯田氧化亚氮排放和氨挥发的影响。结果表明,氮素的气态损失量以氨挥发形式大于以氧化亚氮的排放形式。马铃薯田的氨挥发速率与氧化亚氮排放通量呈现出季节性动态变化,且随着施氮量的增加而增加。马铃薯田氨挥发量均在施肥后第1~4 d出现峰值,氨挥发损失量为2.5~3.6 kg/hm~2,净损失量占施氮量的0.21%~0.42%;马铃薯田的氧化亚氮排放量均在施肥后第3 d出现峰值,氧化亚氮排放损失量为0.64~1.96 kg/hm~2,净损失量占施氮量的比例为0.29%~0.48%。当施氮量达到270kg/hm~2时氮的气态损失量显著高于其他处理。土壤含水率和温度对氧化亚氮的排放通量和氨挥发速率有一定影响,随水分增加,氧化亚氮的排放增加,氨挥发速率受到抑制;温度升高会促进氨挥发速率,但温度对氧化亚氮的排放基本没有影响。  相似文献   

14.
为揭示加气灌溉及不同灌水量处理设施番茄地土壤N2O排放对土壤微生物的响应,于2016年8—12月在日光温室内进行试验,以充分供水的灌水量(W)为基准,设置0.6W、0.8W和1.0W 3个灌水定额,每个灌水定额又设置加气和不加气处理,共计6个处理:0.6W加气(AI0.6)、0.6W不加气(CK0.6)、0.8W加气(AI0.8)、0.8W不加气(CK0.8)、1.0W加气(AI1.0)和1.0W不加气(CK1.0)。结果表明,番茄生育前期,不同灌溉处理的土壤N2O排放通量呈下降的趋势;移植25 d后,N2O气体维持在较低且稳定的排放水平。与不加气处理相比,不同灌水定额的加气处理增加了土壤N2O排放,平均增加了4.7%;且随着灌水量的增加,土壤N2O排放也在增加,平均增加了1.9%,但处理间差异性均不显著(P0.05)。就番茄全生育期微生物数量均值而言,加气较不加气处理增加了土壤硝化细菌数量,平均增加了2.1%;但加气减小了土壤反硝化细菌数量,平均降低了9.7%(P0.05)。而随着灌水量的增加,土壤硝化细菌和反硝化细菌数量均逐渐增加(P0.05)。相关分析表明,土壤N2O排放与土壤水分和土壤温度呈极显著正相关关系(P0.01),与土壤反硝化细菌数量呈极显著负相关关系(P0.01)。试验结果为研究设施菜地土壤硝化和反硝化反应过程及氮循环奠定了理论基础。  相似文献   

15.
覆膜滴灌条件下,采用静态箱-气相色谱法研究了不同施肥策略:CK(不施肥)、CF(N 300 kg/hm~2;P2O590 kg/hm~2;K2O 60 kg/hm~2)、60%CF+OF(普通有机肥6 000 kg/hm~2)、60%CF+BF(生物有机肥6 000 kg/hm~2)对棉田土壤N_2O排放的影响,旨在明确滴灌棉田连续不同施肥策略下土壤N_2O的排放特征。结果表明,棉花生育期N_2O排放通量表现为施肥处理大于不施肥处理,滴灌施肥后第3/4天N_2O排放通量顺序为CF60%CF+OF60%CF+BFCK,而滴灌后第7/8天N_2O排放通量则表现为有机肥处理高于化肥处理,滴灌施肥结束后表现与之相同;生育期的N_2O排放总量以100%化肥处理(CF)最高,与其相比,60%CF+OF和60%CF+BF处理分别降低3.75%和8.37%,N_2O排放系数则分别降低1.39%和73.8%;相关及通径分析均表明,与土壤NH+4-N相比,NO-3-N与N_2O排放的关系更密切。  相似文献   

16.
水肥气一体化灌溉对温室辣椒地土壤N2O排放的影响   总被引:1,自引:0,他引:1  
采用水肥气一体化灌溉可改善土壤的通气状况,影响土壤碳氮循环过程,进而影响土壤N_2O的排放。为明确施氮、增氧和灌水对温室辣椒地土壤N_2O排放的影响,设置了施氮量(300、225 kg/hm~2)、溶氧量(40、5 mg/L)和灌水量(1. 0W、0. 6W,W为充分灌溉时的灌水量) 3因素2水平试验,采用静态箱-气相色谱法监测N_2O排放通量,系统研究了水肥气一体化灌溉对温室辣椒地土壤N_2O排放的影响,并通过结构方程模型分析各影响因子对N_2O排放的定量贡献。结果表明,增氧处理、施氮量和灌水量的增加可增加温室辣椒地土壤N_2O的排放通量峰值、排放总量和单产排放量。试验中增氧条件下N_2O排放总量较对照增加了31. 90%;充分灌溉较非充分灌溉增加了43. 22%;常量施氮较减量施氮增加了33. 01%。增氧处理和灌水量的增加可提高温室辣椒的氮素利用效率,而施氮量的增加降低了温室辣椒的氮素利用效率。综合考虑作物产量、氮素利用效率和单产N_2O排放量,减量施氮非充分灌溉增氧处理是推荐的水肥气管理方案。通过结构方程模型的路径分析,土壤温度、充水孔隙度和NO3--N含量可分别解释N_2O排放的42%、60%和58%,是影响水肥气一体化灌溉的主要影响因子。  相似文献   

17.
滴灌控制土壤基质势对土壤水分分布和苜蓿生长的影响   总被引:1,自引:0,他引:1  
采用在滴头正下20 cm深度处埋设负压计,分别设置-15、-25和-35 k Pa的土壤基质势控制滴灌,通过田间试验,研究了不同土壤基质势下土壤水分变化特点和紫花苜蓿的生长特性,分析了蒸发、降雨和灌水与土壤基质势之间的关系。从土壤剖面水分分布来看,整个生育期内-15 k Pa处理下的土壤剖面含水率整体集中在14%~15%,较-25和-35 k Pa处理的更为均匀,水分密集区域距离滴头最近;-15 k Pa处理下苜蓿株高达到41.7 cm,盖度为15.3%,生物量值达到了281.29 g/m~2,在所有处理中均为最高。  相似文献   

18.
滴灌模式和灌水下限对甜瓜耗水量和产量的影响   总被引:1,自引:1,他引:0  
以膜下滴灌(MDI)、地表滴灌(DI)和地下滴灌(SDI)3种滴灌模式与4种不同灌水下限组合,在我国西北地区进行了滴灌模式和灌水下限对甜瓜耗水量和产量影响的试验研究.结果表明:同一灌水下限下,MDI较DI平均增产16.0%,较SDI平均增产7.5%,SDI较DI平均增产7.9%,3种滴灌模式的单产均高于当地地面灌溉的单产(40.97 t/hm2);DI耗水量最大(平均239.3 mm),SDI次之(平均217.3 mm),MDI最小(平均193.0 mm).同一滴灌模式下:伸蔓期灌水下限为60%田间持水量的处理较灌水下限为40%田间持水量的处理平均增产21.0%,耗水量平均增加9.2%;果实膨大期灌水下限为80%田间持水量的处理较灌水下限为70%田间持水量的处理平均增产9.3%,耗水量平均增加6.7%.甜瓜各生育阶段适宜土壤含水率下限(占田间持水量的百分比)分别为:苗期65%,伸蔓和开花坐果期60%,果实膨大期80%,成熟期55%.  相似文献   

19.
灌溉量和灌溉时期对紫花苜蓿耗水特性和产量的影响   总被引:1,自引:0,他引:1  
2008年通过第2茬苜蓿田间试验,研究了不同灌水量和灌水时期对紫花苜蓿耗水特性、鲜草产量及其水分利用效率的影响.结果表明:土壤贮水消耗量占总耗水量百分率的变异系数显著低于降水量占总耗水量百分率的变异系数,表明土壤贮水利用率的可调控幅度不是很大;适量灌溉的W3处理(灌水6次,灌水量100 mm)的灌水量、降水量和土壤贮水消耗量占总耗水量的百分率分别为42.6%、45.67%和11.73%,灌水量多的W6处理(灌水6次,灌水量210 mm)分别为76.43%、39.01%和-15.44%,与W6处理相比,W3处理显著提高了土壤贮水消耗量占总耗水量的百分率.灌水量均为100 mm的条件下,W3处理的耗水量显著高于W2处理(灌水3次),W3处理的耗水模式与苜蓿需水规律相吻合,这是其水分利用效率高的生理基础.  相似文献   

20.
咸水灌溉对土壤水盐分布和小麦产量的影响   总被引:1,自引:0,他引:1  
在石羊河流域中游开展田间灌溉试验,试验设置3种灌水量,灌溉定额分别为355,280,205 mm(W1,W2和W3);4种灌水矿化度0.7,3.0,5.0和7.0 g/L(S1,S2,S3和S4),共12个处理,每个处理3组重复.研究结果表明:淡水灌溉条件下,土壤积盐率不超过15%,当灌水矿化度在3.0 g/L以上时,土壤剖面盐分积累峰值在20~40 cm层,灌溉水带入的盐分有40%~80%积累在60 cm深度.当灌水矿化度为3.0 g/L时,盐分胁迫造成春小麦减产在10%以下;灌水矿化度为5.0 g/L和7.0 g/L时,春小麦减产严重,最高可达28%.相同灌水矿化度条件下,与充分灌溉(W1)相比,W2和W3分别减产10%和15%左右.拔节期-灌浆期是春小麦需水关键期,灌水要及时,3种灌水量均可以保证春小麦根区含水量维持在田间持水量的60%~80%.因此,3.0 g/L的微咸水灌溉不会造成春小麦大幅减产,合理调控灌水时间,灌水量为205~355mm可以保证春小麦土壤含水量维持在适宜的水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号