首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study used whole-farm management, nutrient budgeting/greenhouse gas (GHG) emissions and feed formulation computer tools to determine the production, environmental and financial implications of intensifying the beef production of typical New Zealand (NZ) sheep and beef farming systems. Two methods of intensification, feeding maize silage (MS) or applying nitrogen (N) fertiliser, were implemented on two farm types differing in the proportions of cultivatable land to hill land (25% vs. 75% hill). In addition, the consequences of intensification by incorporating a beef feedlot (FL) into each of the farm types were also examined.Feeding MS or applying N fertiliser substantially increased the amount of beef produced per ha. Intensifying production was also associated with increased total N leaching and GHG emissions although there were differences between the methods of intensification. Feeding MS resulted in lower environmental impacts than applying N even after taking into account the land to grow the maize for silage. Based on 2007/08 prices, typical NZ sheep and beef farms were making a financial loss and neither method of intensification increased profitability with the exception of small annual applications of N, especially to the 75% hill farm. These small annual additions of N fertiliser (<50 kg N/ha/yr applied in autumn and late winter) resulted in only small increases in annual N leaching (from 11 to 14 kg N/ha) and GHG emissions (from 3280 to 4000 kg CO2 equivalents/ha). Limited N applications were particularly beneficial to 75% hill farms because small increases in winter carrying capacity resulted in relatively large increases in the utilisation of pasture growth during spring and summer than the 25% hill farms. Intensification by incorporating a beef feedlot reduced environmental emissions per kg of beef produced but considerably decreased profitability due to higher capital, depreciation and labour costs. The lower land-use capability farm type (75% hill) was able to intensify beef production to a proportionally greater extent than the higher land-use capability farm (25% hill) because of greater potential to increase pasture utilisation associated with a lower initial farming intensity and inherent constraints in the pattern of pasture supply.  相似文献   

2.
Intensification of the agricultural sector and the increase in quantity and decrease in quality of municipal and industrial wastewater, in particular during the past decades, resulted in many industrial countries, such as Belgium, in a sharp degradation of surface water and groundwater. To control the current degree of contamination and reduce the environmental impact of the agricultural sector, the Flemish government recently introduced a number of regulations aiming at controlling the use of nitrogen fertilisers. To facilitate the implementation and the control of the new regulations, threshold values of allowable doses of organic and inorganic nitrogen fertilisers, and their spreading in time were made soil independent. As the soil physical, chemical and biological response depends on the geohydrology of the site and the past fertilisation practice, fertiliser standards applied on different soil–crop systems result in different leaching patterns.To assess the effect of the soil on the nitrogen leaching, a number of past experimental field trials were analysed using the WAVE model as modelling tool for the reconstruction of the nitrogen dynamics. As a first step in the study, the historic data of the field experiments were used to calibrate and validate the WAVE model. The deterministic calibration and validation of the WAVE model yielded a set of model parameters for the examined soil–crop–fertiliser practice conditions. The bottlenecks in the calibration were the nitrogen mineralisation parameters and the initialisation and subdivision of the soil organic matter over the different organic pools. The model validation, being the second step in the study, revealed the power of the WAVE model to predict the evolution and transformations of nitrogen in the soil profile and the leaching of nitrate at the bottom of the root zone. In a third step, the WAVE model was used in a scenario-analysis exercise to examine the factors effecting the amount of nitrate leached at the bottom of the root zone. This analysis revealed that the nitrate leached out of the soil profile is controlled by the fertiliser practice, the rainfall depth and its distribution, the soil texture, the soil mineralisation capacity and the past fertilisation practice.  相似文献   

3.
Establishing and implementing management practices that limit N leaching from agricultural and horticultural land is a priority internationally. Movement of N through soil to surface and ground waters can degrade aquatic systems and compromise water used for drinking, industry and recreation. Reported annual rates of N leaching from turfgrass range from 0 to 160 kg N ha−1 year−1, representing up to 30% of applied N. Irrigation rate, fertiliser regime and turfgrass growth phase influence the amounts of N leached. Nitrogen losses tend to be low (<5% of applied fertiliser N) from established turfgrass that is not over-irrigated, and has received N fertiliser at 200–300 kg N ha−1 year−1. Efficient irrigation management is critical for efficient N use. Irrigation scheduling that does not cause water to move beyond the active rooting zone decreases the amount of N leached from established turfgrass, without being detrimental to, and in some instances enhancing, turfgrass growth and quality. Applying N fertilisers at rates and frequencies that match N requirements decreases N leaching from established turfgrass. Soil disturbance, such as during preparation of areas for planting turfgrass, can increase N leaching. Therefore, the main strategies for minimising N leaching from turfgrass are (i) optimise irrigation regimes, and (ii) ensure N is applied at rates and frequencies that match turfgrass demand. These strategies are particularly important during turfgrass establishment. Further work is required on turfgrass-soil N cycling and partitioning of N applied to turfgrass. Research needs to be conducted for a broad range of turfgrass species, turfgrass ages, soil types and climates.  相似文献   

4.
《Agricultural Systems》2003,76(1):159-180
The long-term effects of nitrogen (N) fertiliser and slurry management practices in agricultural systems has been simulated using event driven physically based models. The Swedish soil water model SOIL and its associated nitrogen cycle model SOILN has been used to simulate the long-term impacts (over 12 years) of 360 management scenarios; three slurry applications with 10 spreading dates (involving single and split applications) for surface spreading and injection of slurry, and three fertiliser applications with two spreading dates. The effects of the N management scenarios on NO3–N drainage flows, total gaseous N losses and crop yields for grass, winter and spring cereals is investigated. Furthermore, seven soils with varying degrees of drainage efficiency and three climatic conditions (East and West coast Scotland and Southern Ireland) are studied.The aim of this work is to produce N-budget tables for an expert agricultural decision system (ADS) which deals specifically with N best management practises for fertiliser and slurry applications. Simulations conducted in this study were based on input parameters calibrated for specific sites in previous studies on hydrology and NO3–N transport to subsurface drains with associated crop growth.The results of this study show that increasing rates of N applications (in the form of slurry and fertiliser) resulted in a non-linear increase in both the N leached through subsurface drains and the N harvest yield. Surface spreading and injection of slurry gave similar trends. The most important decision about slurry spreading concerns the selection of spreading date and the selection of fields which are likely to produce only moderate leaching effects. Application of slurry in autumn (as a single or split loading), invariably leads to large losses through N leaching, with a single application always resulting in the highest loss. Significant differences are evident for N leaching from the seven soil types. Climatic variation as exemplified in the three meteorological data sets, produces noticeable and significant differences in both N leached and harvest crop totals. This study also aims to identify that a field environmental risk assessment (ERA) using a physically based model such as SOILN can be determined such that strategic agronomic decisions involving N management can be made. In practice this is so provided that a farm manager can recognise and match the actual soil type and drainage condition of the fields on which spreading is to occur with the simulated field types within a similar climate region.  相似文献   

5.
Nitrate leaching was studied for 2 years in a structured clay soil (Evesham series) under grass, winter wheat and spring barley at N fertilizer inputs of 135–144 kg ha?1 year?1. Measurements of soil water to 2 m depth by neutron probe showed that the year could be divided into well defined periods of deficit, separated by a period when the soil was at its winter mean water content. Soil water potentials showed very little gradient for water flow below 1 m, and a persistent convergent zero flux plane at 40–60 cm depth during the autumn wetting-up period (September—November).Nitrate concentration in the drainage increased with discharge rates up to 3–6 mm day?1. Mean nitrate concentrations were generally highest during intermittent drain-flow in the autumn. Of the total N leached over the 2 years, 23 to 28% (5–7 kg N ha?1) was lost during this period. The remainder (13–25 kg N ha?1) was leached during winter and virtually no N was lost in the following spring-early summer. This seasonal pattern of N leaching was interpreted in terms of intermittent flow during rainfall of nitrate-rich water from surface layers, which bypassed the relatively dry soil matrix at 40–60 cm, but was intercepted by natural and artificial drainage channels. Implications for the prediction of N leaching loss based on the concept of excess winter rainfall are discussed. When predicting the start of N leaching in structured clay soils, the soil water status should be assessed from measurements of water potential rather than water content.  相似文献   

6.
The Sorraia Watershed has a long history of continuous irrigated maize. Imprecise water and fertiliser management has contributed to increase nitrate in the groundwater. Solving this problem requires the identification of problem sources and the definition of alternate management practices. This can be performed by an interactive use of selective experimentation and modelling. This paper presents the experimentation phase, where the field experiments were conducted under the irrigation and fertilisation management commonly found in the watershed. Two different soil representatives of the watershed were selected, presenting different water and solute transport properties. One is a silty loam alluvial soil, with a shallow water table, and the other is a sandy soil with a very low water retention capacity. The various terms of the water (consumption, drainage, soil storage) and nitrogen balance (plant uptake, mineralisation and leaching) were obtained from intensive monitoring in the soil profile up to 80 cm, corresponding to the crop root zone. The results showed that in the alluvial soil, up to 70 kg N ha−1 was produced by mineralisation. Current fertiliser management fail in that it does not consider the soil capability to supply mineral nitrogen from the organic nitrogen stored in the profile at planting. This leads to a considerable amount of NO3-N stored in the soil at harvesting, which is leached during the winter rainy season. In the sandy soil, the poor irrigation management (45% losses by deep percolation), leads to NO3-N leaching during the crop season and to inefficient nitrogen use by the crop.  相似文献   

7.
Field experiments were carried out over a 2-year period on a loamy soil plot under corn in Montpellier (south-east France). The effectiveness of improved irrigation practices in reducing the adverse impact of irrigation on the environment was assessed. Different irrigation and fertiliser treatments were applied to identify the best irrigation and fertilisation strategy for each technique (furrow and sprinkler) to ensure both good yields and lower NO3- leaching. No significant differences in corn yield and NO3- leaching were found for the climatic scenario of 1999 between sprinkler and furrow irrigation during the irrigation season. Following the rainy events occurring after plant maturity (and the irrigation season), differences in N leaching were observed between the treatments. The study shows that both the fertiliser method, consisting of applying a fertiliser just before ridging the furrows, and the two-dimensional (2D) infiltration process, greatly influence the N distribution in the soil. N distribution seems to have a beneficial impact on both yield and N leaching under heavy irrigation rates during the cropping season. But, under rainy events (particularly those occurring after harvesting), the N, stored in the upper part of the ridge and not previously taken up by plants, can be released into the deeper soil layers in a furrow-irrigated plot. In contrast, the 1D infiltration process occurring during sprinkler irrigation events affects the entire soil surface in the same way. As a result the same irrigation rate would probably increase N leaching under sprinkler irrigation to a greater extent than under furrow-irrigation during an irrigation period. In order to assess the robustness of these interpretations derived from soil N-profile analysis, a modelling approach was used to test the irrigation and fertilisation strategies under heavy irrigation rates such as those occurring at the downstream part of closed-end furrows. The RAIEOPT and STICS models were used to simulate water application depths, crop yield and NO3- leaching on three measurement sites located along the central furrow of each treatment. The use of a 2D water- and solute-transport model such as HYDRUS-2D enabled us to strengthen the conclusions derived from the observations made on the N distribution under a cross-section of furrow. This model helped to illustrate the risk of over-estimation of N leaching when using a simplified 1D solute-transport model such as STICS.  相似文献   

8.
A combination of high input management systems, high annual rainfall and deep, permeable soils in northern Tasmania create conditions that are conducive to high drainage and nitrogen losses below the root zone. An understanding of the extent and mechanism of such losses will enable farm managers and their consultants to identify and implement more sustainable management practices that minimise potential adverse financial and environmental consequences. Analysing the fate of water and nutrients in farming systems is complex and influenced by a wide range of factors including management, soil characteristics, seasonal climate variability and management history of the paddock/farm in question. This paper describes a novel farm system modelling approach based on the model APSIM, for analysing the fate of nitrogen and water in mixed vegetable-based farming enterprises. The study was based on seven case farms across the Panatana catchment in northern Tasmania. Substantial simulated drainage losses (>100 mm average seasonal loss) were apparent for all crop and rotation elements across all farms in response to the surplus between crop water supply and crop water use. Crop nitrogen demand was found to be close to crop nitrogen supply for all crop and pasture rotation elements with the exception of potato, which had an average surplus nitrogen supply of 89 kg N/ha. This resulted in potato having much higher nitrate nitrogen leaching losses (32 kg N/ha) compared to other crops (<10 kg N/ha). Simulations suggest that practicable management options such as deficit-based irrigation and reduced N fertiliser rates will maintain current levels of productivity while reducing potential offsite N loss and generating significant financial savings via reduced input costs.  相似文献   

9.
《Agricultural Systems》1999,60(2):123-135
The use of crop models to simulate the nitrogen (N) cycle in crop rotations is of major interest because of the complexity of processes that simultaneously interact. We studied the performance of the Erosion Productivity Impact Calculator (EPIC) model in simulating the N cycle in two different rotations under irrigation: tomato (Lycopersicon esculentum Mill.)–safflower (Carthamus tinctorius L.) and tomato–wheat (Triticum aestivum L.). Processing tomatoes were grown on raised beds and furrow irrigated in 1994 in the Sacramento Valley of California, USA. Safflower and wheat were grown in 1995 and 1994–95, respectively, after the previous tomato crop. A data set from safflower grown on different plots in 1994 was used to calibrate the model for this crop. The model accurately predicted the yield, biomass and N uptake of the crops in the rotation. Soil inorganic N was also accurately simulated in the two rotations. The model predicted important amounts of N leached during the winter period of 1994–95 due to the heavy rainfall. The model was used to explore the influence of rotation type (tomato–safflower or tomato–wheat) and irrigation type (fixed amounts and dates or flexible automatic irrigation). Simulation results of the two rotations during 10 years (1986–95) predicted average losses by leaching higher than 200 kg N ha−1 for each rotation period, irrespective of the rotation type. Losses were more important during the fall–winter and increased as rainfall increased above a threshold rainfall of 300 mm. The flexible automatic irrigation resulted in lower N leached during the tomato crop season. Simulation results indicated that a fallow period during the fall–winter following processing tomatoes should be avoided because of the high risk of N leaching losses. The introduction in the rotation of a deep-rooted crop, such as safflower, grown with low irrigation, drastically reduced the risk of N leaching during the following fall–winter period, without substantial yield reductions.  相似文献   

10.
Heavy rainfall and irrigations during the summer months in the North China Plain may cause losses of nitrogen because of nitrate leaching. The objectives of this study were to characterize the leaching of accumulated N in soil profiles, and to determine the usefulness of Br as a tracer of surface-applied N fertilizer under heavy rainfall and high irrigation rates. A field experiment with bare plots was conducted near Beijing from 5 July to 6 September 2006. The experiment included three treatments: no irrigation (rainfall only, I0), farmers’ practice irrigation (rainfall plus 100 mm irrigation, I100) and high-intensity irrigation (rainfall plus 500 mm irrigation, I500), with three replicates. Transport of surface-applied Br and NO3 (assuming no initial NO3 in the soil profile) and accumulated NO3 in soil profiles were all simulated with the HYDRUS-1D model. The model simulation results showed that Br leached through the soil profile faster than NO3. When Br was used as a tracer for surface-applied N fertilizer to estimate nitrate leaching losses, the amount of N leaching may be overestimated by about 10%. Water drainage and nitrate leaching were dramatically increased as the irrigation rate was increased. The amounts of N leaching out of the 2.1-m soil profile under I0, I100 and I500 treatments were 195 ± 84, 392 ± 136 and 612 ± 211 kg N ha−1, equivalent to about 20 ± 5%, 40 ± 6% and 62 ± 7% of the accumulative N in the soil profile, respectively. N was leached more deeply as the irrigation rate increased. The larger amount of initial accumulated N was in soil profile, the higher percentage of N leaching was. N leaching was also simulated in summer under different weather conditions from 1986 to 2006. The results indicated that nitrate leaching in rainy years were significantly higher than those in dry and normal years. Increasing the irrigation times and decreasing the single irrigation rate after fertilizer application should be recommended.  相似文献   

11.
《Agricultural Systems》2003,76(3):1183-1205
A generalised climate driven pasture growth model is described and evaluated by comparison to field observation. The model describes dry matter production and green-dead tissue flow dynamics for grazed temperate swards, especially perennial ryegrass (Lolium perenne). The model includes a unique feature to account for light interception by non photosynthetic tissue. Extrapolation across environments occurs by the interaction of climate variables with three parameters that tune the model to a site. These parameters reflect the influence of soil fertility and sward species composition on production patterns. They are: (1) the efficiency of radiant energy use for photosynthesis, (2) the timing of reproductive development and (3) the relative efficiency of radiant energy use in vegetative compared to reproductive swards. Initial parameter settings were derived from data from a sheep grazing experiment in New Zealand. In this paper the ability to describe pasture production under dairy grazing at a different site is confirmed. When the three available parameters were calibrated for the dairy site, all but two of the 42 seasonal estimates of pasture production were within the 95% confidence interval for mean measured production. The model is being used as a component of a whole-farm dairy production model.  相似文献   

12.
基于模拟降雨与自然降雨的田间试验,分析了不同施肥处理下水分渗漏与氮素淋溶过程。结果表明,夏玉米生长期间,南小区土壤剖面含水率较北小区小,且土壤水分运动主要以向下为主;北小区不同处理水分渗漏占降水量的5.4%~8.9%,而南小区则高达12%~37%。土壤硝态氮与铵态氮质量浓度随着时间的推进而降低,且铵态氮质量浓度下降速率远高于硝态氮。南小区氮素质量浓度变化较北小区快,且略小于北小区。南小区氮素淋溶量占施肥量的1%~1.8%;而北小区不足1%,且氮素流失量随着施肥量的增大而增多。  相似文献   

13.
A grazing system with Merino sheep and subterranean clover pasture was studied in a 550 mm rainfall, mediterranean climate in Western Australia.Changes over twelve months in seed, the quantities of green and dry herbage, soil moisture, animal intake and liveweight, wool growth and body composition were measured. Six paddocks, representing two soil types, were grazed continuously at 8·75 sheep per hectare. The system was also simulated and the actual results were compared with those from the simulation model.From a seed pool in March of 300 kg ha?1, 80% of which was soft and non-dormant, 4000 clover seedlings per square metre became established; subsequent drought reduced this to 1450 plants per square metre. From measurements of soil moisture it was shown that this population survived at available moisture levels as low as 0·5 mm in the main root zone in gravelly sandy loam. Pasture growth rate reached a spring peak of 102 kg ha?1 day?1 and total growth (estimated from pasture grazed for 26 weeks) was 6700 kg ha?1 for 500 mm of rainfall between germination and maximum biomass. At maturity, burr and seed made up 57% of the plant residues on offer, with a seed pool of 1160 kg ha?1. During the summer this biomass decreased at 5 kg ha?1 day?1 without grazing and 19 kg ha?1 day?1 under grazing.The liveweight losses and gains of the sheep were atypical, no liveweight gain until 1200 kg ha?1 of gree herbage was available—about treble the expected amount. Measurements of food intake indicate a gross inefficiency in energy utilisation during the winter and a low intake of energy in the spring.Total green and dry plant residues showed general agreement between actual and simulated results for most of the growing season. However, the field data highlighted error in the pasture sub-model which were corrected and are reported elsewhere.  相似文献   

14.
通过土柱模型试验,模拟研究了两种处理等级污水中氮素对农田土壤环境的影响。试验结果表明,采用1级处理污水中铵氮基本不会在土壤各层累积和淋溶,而硝氮和总氮则随着灌水次数的增加,向更深层土壤运移、累积和淋溶。对于2级处理污水,由于其各态氮素浓度均比较低,土壤各层浓度也相对较低,土壤中各态氮素浓度为土壤中原有氮素和污水氮素共同作用的结果;随着灌溉次数增加,硝氮和总氮也有向下淋溶的趋势。试验结果还表明,相对于2级处理污水,长时间采用1级处理污水灌溉,将对土壤环境和地下水环境带来高的污染风险。   相似文献   

15.
Ground water and water from springs are sources used for water supply in Slovenia. The quality of these waters has been monitored since 1987. Among 12 main ground water aquifers in Slovenia the amount of nitrate exceeds the allowable level (50 mg/l) for drinking water in areas with more intensive agricultural production with higher concentrations of animals (two livestock unit – LU/ha) and where drainage of sewage water is not excellently arranged or where quality of river water that effluent ground water is not well. The identification of nitrogen surpluses has been done on regional and farm level (using normative approach). This method is taking into account nitrogen input from mineral fertiliser, animal wastes and the deposition from the atmosphere minus nitrogen uptake of harvested crops and ammonia losses to the atmosphere. On an average nitrogen input from mineral fertiliser is low, while input from organic manure is rather high – 90 kg/ha. Average net-balance surplus for Slovenia is about 56 kg N/ha. The differences between regions are relatively high. In the most intensive arable region with high intensity of animal husbandry (2 LU/ha) nitrogen surplus is about 90 kg/ha. This region can be identified as vulnerable for nitrogen leaching into ground water. In regions with limited growing conditions for agriculture plants (climate, soil depth) just small increase of livestock density can cause high nitrogen surpluses. Our Slovenian legislation, which almost entirely corresponds to EC Nitrate Directive and Code of Good Agricultural Practice intends to reduce mineral surpluses in agriculture and meet the standards of nitrate in drinking water.  相似文献   

16.
The alfalfa pastureland in the semiarid Loess Plateau region of Northwest China usually has dry soil layers. A field experiment was conducted from October 2000 to October 2004 to examine soil water recovery and crop productivity on a 9-year-old alfalfa pasture. This experiment included six treatments: alfalfa pasture for 10-14 years, a conventional farming system without prior alfalfa planting, and four alfalfa-crop rotation treatments. For the rotation treatments, after 9 years of alfalfa selected crops were planted from 2001 to 2004 in the following sequence: (1) millet, spring wheat, potatoes, peas; (2) millet, corn, corn, spring wheat; (3) millet, potatoes, spring wheat, corn; (4) millet, fallow, peas, potatoes. The results showed that dry soil layers occurred in alfalfa pasture. We then plowed the alfalfa pasture and planted different crops. The soil water gradually increased during crop growth in the experimental period. The degree of soil water recovery in the four alfalfa-crop rotation treatments was derived from comparison with the soil water in the conventional system. After 4 years, the soil water recovery from the alfalfa-crop rotation systems at 0-500 cm soil depth was 90.5%, 89.8%, 92.2% and 96.7%, respectively. Soil total N content and soil respiration rate were high in the alfalfa-crop rotation systems. The yields of spring wheat in 2002, peas in 2003 and potatoes in 2004 in the alfalfa-crop rotation systems were not significantly different from yields in the conventional system. In the alfalfa-crop rotation systems, the yields of spring wheat and peas were greatly influenced by rainfall and were lowest in the dry year of 2004; the yields of corn and potatoes had a direct relationship with water use and were lowest in 2003. In summary, soil water in dry soil layers can recover, and crop yields in the alfalfa-crop systems were equal to those of the conventional system.  相似文献   

17.
Fertilization is an important cause of groundwater contamination with nitrate in agricultural soils. The objectives of the present work were: (i) to quantify the nitrate leaching in two fertilized and irrigated soils of the Pampas Region, Argentina; (ii) to test the ability of the NLEAP model to predict residual and leached nitrate in those soils. The soils were a Typic Hapludoll and a Typic Argiudoll. The treatments were: natural grassland never ploughed or fertilized; maize with a short history of fertilization; maize with a long history of fertilization; irrigated maize with a long history of fertilization. Both sites were sampled after harvest in two consecutive years to a 3 m depth. Residual nitrate and potential losses below 150 cm were estimated by NLEAP model. The average amount of nitrate (NO3-N), including values of all treatments, in the upper layer (0–1.5 m) was 128 kg NO3-N ha−1 in the first sampling date and was consistently lower in the second sampling date (38 kg NO3-N ha−1). In the deeper layer (1.5–3 m) these values were 80 and 28 kg NO3-N ha−1 for the first and second sampling date, respectively. Differences between the non-fertilized and the fertilized treatments were significantly smaller in the second sampling date. Obtained results suggest that the rainfall previous to the first sampling was not enough to displace nitrate below 3 m depth. The afterwards heavy rainfall leached nitrate previously accumulated in the soil. Complementary irrigation did not affect nitrate movements. Simulated residual and leached nitrate showed a high correlation with observed values. Nitrate leaching was more associated to rainfall regime and crop yields than to soil type. Simulated residual and leached nitrate showed a high correlation with measured values in both soils, which suggests that NLEAP was appropriate to predict soil nitrate leaching under the studied conditions.  相似文献   

18.
One challenge in predictive modelling of productivity for pastures varying in topography, soils or management is to achieve the prediction over space with acceptable accuracy. As a new modelling approach, the decision tree has been shown to have high predictive accuracy; while geographical information systems (GISs), with their strong ability to deal with spatial factors, have been widely used in environmental modelling. Integration of a decision tree approach with a GIS offers a potential solution in meeting this challenge. In this study, decision tree models were developed for annual and seasonal pasture productivity (aboveground dry matter in kg/ha) using environmental and management variables and the outputs of these decision trees were integrated with a GIS to get predictions of pasture productivity in a hill-pasture grazing system. Results showed that the decision tree model for annual pasture productivity adequately predicted 91% of cases in the model validation, and the GIS-based prediction for annual pasture productivity was verified in three of four test farmlets. The decision tree models also revealed the relative importance of environmental and management variables and their interaction in influencing pasture productivity. Hill slope, soil Olsen P and annual P fertiliser input were the most significant variables influencing annual pasture productivity, while hill slope, annual P fertiliser input, autumn rainfall and soil Olsen P were the most significant variables influencing spring, summer, autumn and winter pasture productivity, respectively. The successful integration of the decision tree model with a GIS in this study provided a platform to predict pasture productivity for pastures with heterogeneous environmental variables and management features, and to present model predictions over space for further application and investigation. This modelling approach can be used as, or incorporated in, decision support systems to improve pasture management, and to investigate the interrelationship between pasture productivity and environmental and management variables.  相似文献   

19.
为了探究施氮对不同质地滴灌棉田硝态氮分布及产量的影响,采用温室土柱模拟的方法,研究了滴灌条件下不同质地土壤硝态氮分布迁移特征,分析了施氮对NO_3-N和棉花产量的影响。结果表明,在灌水量一定的条件下,在砂土、壤土中施氮量分别为256.00、287.34 kg/hm~2时,相应的氮素积累量最大,皮棉产量最高,土壤硝态氮主要集中分布在30~40 cm土层,有利于棉花根系的吸收,且分别比不施氮增产43.87%和44.92%。一定施氮量下,壤土硝态氮分布的均匀性优于砂土,并且根层20~40 cm土层硝态氮量高于砂土,且比砂土平均增产6.16%。砂土、壤土中硝态氮量在各生育期总体呈现"降-增-降"的变化趋势,并且收获前期施纯氮340 kg/hm~2处理60cm土层砂土硝态氮量的第二个峰值较壤土提高15.98%,在生育期末端砂土在深层的氮素积累高于壤土,存在继续向下淋失的风险。  相似文献   

20.
A model of a steer beef production system, developed for a Mediterranean environment in Argentina, was evaluated for a similar environment in Australia. After testing against experimental data, the model was used to examine the effects of a range of pasture growth responses to a current application of superphosphate in an average and a poor season, and for different combinations of stocking rates, beef prices and dates of sale.Gross margins were small at low stocking rate, irrespective of the level of pasture response to fertiliser. In an average season, higher stocking rates were profitable, particularly if prices were high and large responses possible. In a poor season, however, these same stocking rates gave negative gross margins although large responses did reduce the size of the loss. The adverse effects of a poor season were least at lower stocking rates or if steers were sold earlier at the end of spring rather than in late summer.It is suggested that, where data on the growth response of pasture to fertiliser in a given farm situation are provided, this simple model can provide an early assessment of subsequent fertiliser strategy in that situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号