首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification of the interactive effects of nitrogen (N) and water on nitrate (NO3) loss provides an important insight for more effective N and water management. The goal of this study was to evaluate the effect of different irrigation and nitrogen fertilizer levels on nitrate-nitrogen (NO3-N) leaching in a silage maize field. The experiment included four irrigation levels (0.7, 0.85, 1.0, and 1.13 of soil moisture depletion, SMD) and three N fertilization levels (0, 142, and 189 kg N ha−1), with three replications. Ceramic suction cups were used to extract soil solution at 30 and 60 cm soil depths for all 36 experimental plots. Soil NO3-N content of 0-30 and 30-60-cm layers were evaluated at planting and harvest maturity. Total N uptake (NU) by the crop was also determined. Maximum NO3-N leaching out of the 60-cm soil layer was 8.43 kg N ha−1, for the 142 kg N ha−1 and over irrigation (1.13 SMD) treatment. The minimum and maximum seasonal average NO3 concentration at the 60 cm depth was 46 and 138 mg l−1, respectively. Based on our findings, it is possible to control NO3 leaching out of the root zone during the growing season with a proper combination of irrigation and fertilizer management.  相似文献   

2.
Identification of nitrate (NO3) leaching hot spots is important in mitigating environmental effect of NO3. Once identified, the hot spots can be further analyzed in detail for evaluating appropriate alternative management techniques to reduce impact of nitrate on groundwater. This study was conducted to identify NO3 leaching hot spots in an approximately 36,000 ha area in Serik plain, which is used intensively for agriculture in the Antalya region of Southern Turkey. Geo-referenced water samples were taken from 161 wells and from the representative soils around the wells during the period from late May to early June of 2009. The data were analyzed by classical statistics and geostatistics. Both soil and groundwater NO3-N concentrations demonstrated a considerably high variation, with a mean of 10.2 mg kg−1 and 2.1 mg L−1 NO3-N for soil and groundwater, respectively. The NO3-N concentrations ranged from 0.01 to 102.5 mg L−1 in well waters and from 1.89 to 106.4 mg kg−1 in soils. Nitrate leaching was spatially dependent in the study area. Six hot spots were identified in the plain, and in general, the hot spots coincided with high water table, high sand content, and irrigated wheat and cotton. The adverse effects of NO3 can be mitigated by switching the surface and furrow irrigation methods to sprinkler irrigation, which results in a more efficient N and water use. Computer models such as NLEAP can be used to analyze alternative management practices together with soil, aquifer, and climate characteristics to determine a set of management alternatives to mitigate NO3 effect in these hot spot areas.  相似文献   

3.
Considerable NO3 contamination of underlying aquifers is associated with greenhouse-based vegetable production in south-eastern Spain, where 80% of cropping occurs in soil. To identify management factors likely to contribute to NO3 leaching from soil-based cropping, a survey of irrigation and N management practices was conducted in 53 commercial greenhouses. For each greenhouse: (i) a questionnaire of general irrigation and N management practices was completed, (ii) amounts of N applied in manure were estimated; and for one crop in each greenhouse: (a) irrigation volume was compared with ETc calculated using a mathematical model and (b) total amount of applied fertiliser N was compared with crop N uptake. Total irrigation during the first 6 weeks after transplanting/sowing was generally excessive, being >150 and >200% of modelled ETc in, respectively, 68 and 60% of greenhouses. During the subsequent period, applied irrigation was generally similar to modelled ETc, with only 12% of greenhouses applying >150% of modelled ETc. Large irrigations prior to transplanting/sowing were applied in 92% of greenhouses to leach salts and moisten soil. Volumes applied were >20 and >40 mm in, respectively, 69 and 42% of greenhouses. Chemical soil disinfectants had been recently applied in 43% of greenhouses; associated irrigation volumes were >20 and >40 mm in, respectively, 78 and 48% of greenhouses conducting disinfection. Nitrogen and irrigation management were generally based on experience, with very little use of soil or plant analysis. Large manure applications were made at greenhouse construction in 98% of greenhouse, average manure and N application rates were, respectively, 432 m3 ha−1 and 3046 kg N ha−1. Periodic manure applications were made in 68% of greenhouses, average application rates for farmyard and pelleted manures were, respectively, 157 and 13 m3 ha−1 (in 55 and 13% of greenhouses); the average N rate was 947 kg N ha−1. Manure N was not considered in N fertiliser programs in 74% of greenhouses. On average, 75% of fertiliser N was applied as NO3. Applied fertiliser N was >1.5 and >2 times crop N uptake in, respectively, 42 and 21% of crops surveyed. The survey identified various management practices likely to contribute to NO3 leaching loss. Large manure applications and experiential mineral N management practices, based on NO3 application, are likely to cause accumulation of soil NO3. Drainage associated with: (i) the combined effect of large irrigations immediately prior to and excessive irrigations for several weeks following transplanting/sowing and (ii) large irrigations for salt leaching and soil disinfection, is likely to leach accumulated NO3 from the root zone. This study demonstrated that surveys can be very useful diagnostic tools for identifying crop management practices, on commercial farms, that are likely to contribute to appreciable NO3 leaching.  相似文献   

4.
Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on crop N and P accumulation, N-fertilizer use efficiency (NUE) and NO3-N leaching of tomato cultivated in a plastic mulched/drip irrigated production system in sandy soils. Experimental treatments were a factorial combination of three irrigation scheduling regimes and three N-rates (176, 220, and 330 kg ha−1). Irrigation treatments included were: (1) surface drip irrigation (SUR) both the irrigation and fertigation line placed underneath the plastic mulch; (2) subsurface drip irrigation (SDI) where the irrigation drip was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with the irrigation and fertigation lines placed as in SUR and irrigation applied once a day. Except for the TIME treatment all irrigation treatments were soil moisture sensor (SMS)-based with irrigation occurring at 10% volumetric water content. Five irrigation windows were scheduled daily and events were bypassed if the soil water content exceeded the established threshold. The use of SMS-based irrigation systems significantly reduced irrigation water use, volume percolated, and nitrate leaching. Based on soil electrical conductivity (EC) readings, there was no interaction between irrigation and N-rate treatments on the movement of fertilizer solutes. Total plant N accumulation for SUR and SDI was 12-37% higher than TIME. Plant P accumulation was not affected by either irrigation or N-rate treatments. The nitrogen use efficiency for SUR and SDI was on the order of 37-45%, 56-61%, and 61-68% for 2005, 2006 and 2007, respectively and significantly higher than for the conventional control system (TIME). Moreover, at the intermediate N-rate SUR and SDI systems reduced NO3-N leaching to 5 and 35 kg ha−1, while at the highest N-rate corresponding values were 7 and 56 kg N ha−1. Use of N application rates above 220 kg ha−1 did not result in fruit and/or shoot biomass nor N accumulation benefits, but substantially increased NO3-N leaching for the control treatment, as detected by EC monitoring and by the lysimeters. It is concluded that appropriate use of SDI and/or sensor-based irrigation systems can sustain high yields while reducing irrigation application as well as reducing NO3-N leaching in low water holding capacity soils.  相似文献   

5.
Applying high rates of nitrogen (N) fertilizer to crops has two major disadvantages: (1) the low N fertilizer use efficiency and (2) the loss of N by leaching, which may cause groundwater nitrate (NO3) pollution, especially in humid areas.The objectives of this study were to adjust and validate the LEACH-W model simulations with data observed in the field; to quantify nitrate concentrations in the soil solution; to estimate N loss by leaching; and to determine the moments during the year when greatest nitrate transport events occur beyond the rooting profile.A randomized complete block design with four replications was established on a typic Argiudoll. Crop fertilization treatments consisted of three N rates (0, 100, and 200 kg N ha−1) using urea and ammonium nitrate solution (UAN) as the N source. Corn (Zea mays L.) was planted and ceramic soil-water suction samplers were installed to depths of 1, 1.5 and 2 m. Drainage was estimated by the LEACH-W model, which adjusted very well the actual volume of water in the soil profile. Nitrogen losses were statistically analyzed as repeated measure data, using the PROC MIXED procedure.Losses of nitrate-nitrogen (NO3-N) during the study increased as the rate of N applied increased. At all depths studied, statistically significant higher values were found for 200 N compared to 100 N and 0 N, and for 100 N compared to 0 N (p < 0.001).The greatest NO3-N losses through leaching occurred during crop growth. Significant differences (p < 0.05) were found between cropping and fallow in the three treatments and depths studied for seasons 4 and 5; these two seasons produced the highest drainage volumes at all depths.  相似文献   

6.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

7.
Quantifying nitrogen (N) losses below the root zone is highly challenging due to uncertainties associated with estimating drainage fluxes and solute concentrations in the leachate. Active and passive soil water samplers provide solute concentrations but give limited information on water fluxes. Mechanistic models are used to estimate leaching, but require calibration with measured data to ensure their reliability. Data from a drainage lysimeter trial under irrigation in which soil profile nitrate (NO3) concentrations were monitored using wetting front detectors (passive sampler) and ceramic suction cups (active sampler) were compared to NO3 concentrations in draining and resident soil water as simulated by the research version of the Soil Water Balance model (SWB-Sci). SWB-Sci is a daily time-step, cascading soil water and solute balance model that provides draining NO3 concentrations by accounting for incomplete solute mixing. As hypothesized, suction cup concentrations aligned closely with resident soil water concentrations, while wetting front detector concentrations aligned closely with draining soil water NO3 concentrations. These results demonstrate the power of combining monitoring and modelling to estimate NO3 leaching losses. Access to measured draining and resident NO3 concentrations, especially when complemented with modelled fluxes, can contribute greatly to achieving improved production and environmental objectives.  相似文献   

8.
Water scarcity and nitrate contamination in groundwater are serious problems in desert oases in Northwest China. Field and 15N microplot experiments with traditional and improved water and nitrogen management were conducted in a desert oasis in Inner Mongolia Autonomous Region. Water movement, nitrogen transport and crop growth were simulated by the soil-plant system with water and solute transport model (SPWS). The model simulation results, including the water content and nitrate concentration in the soil profile, leaf area index, dry matter weight, crop N uptake and grain yield, were all in good agreement with the field measurements. The water and nitrogen use efficiency of the improved treatment were better than those of the traditional treatment. The water and nitrogen use efficiency under the traditional treatment were 2.0 kg m−3 and 21 kg kg−1, respectively, while under the improved treatment, they were 2.2 kg m−3 and 26 kg kg−1, respectively. Water drainage accounted for 24-35% of total water input (rainfall and irrigation) for the two treatments. Nitrogen loss by ammonia volatilization and denitrification was less than 5% of the total N input (including the N comes from irrigation). However, 32-61% of total nitrogen input was lost through nitrate leaching, which agreed with the 15N isotopic result. It is impetrative to improve the water and nitrogen management in the desert oasis.  相似文献   

9.
We present the results from a sensitivity analysis and a preliminary short-term, site-scale performance assessment of the analytical soil and groundwater nitrate transport RISK-N. The study was carried out in the Central Valley of Chile, on a 2.6 ha corn (Zea mays L.) field underlain by a shallow unconfined aquifer during the cropping season 2000–2001. Nitrogen levels in soils as well as NO3–N irrigation water and groundwater concentrations were monitored through the crop-growing period, the latter by a network of 16 monitoring wells. A sensitivity analysis shows that both the nitrate flux from the vadose zone and NO3–N groundwater concentration are mainly influenced by the initial soil nitrogen levels, water input, and soil porosity. Also, simulated groundwater NO3–N levels are sensitive to changes on the saturated zone denitrification constant. An additional analysis further reveals the significance of the latter parameter, in conjunction with the amount of applied nitrogen fertilizer. We obtained a good agreement between observed average and simulated values. While the model performs well when spatially averaged values are used (root mean square error, RMSE = 1.4 mg l−1 of NO3–N), the prediction error increases (RMSE = 1.9 mg l−1 of NO3–N) when the concentration in each well is considered. This fact could be explained by the time and space scale of the experiment and the characteristics of the RISK-N model. The model is easy to use and seems appropriate for mid- and long-term studies of nitrogen contamination in groundwater for agricultural conditions in the Central Valley of Chile and under limited field data availability conditions. However, it needs to be tested for longer periods and under different climatic conditions, soil types, and aquifer characteristics, before its range of applicability can be fully established and recognized.  相似文献   

10.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

11.
Soil water flow and nitrogen dynamics were simulated in sunflower field during and after the growing period, in Northern Greece. Soil water and nitrogen dynamics were evaluated using a one-dimensional simulation model based on the Galerkin finite element method. We examined the effects of irrigation with reclaimed wastewater and nitrogen fertilizer applications on plant growth, water and nitrogen distribution in the soil profile, water and nitrogen balance components and nitrogen leaching to groundwater. The model simulated the temporal variation of soil water content with reasonable accuracy. However, an over estimation of the measured data was observed during the simulation period. Relatively good agreement was found between the simulated and measured NH4-N and NO3-N concentrations over time and depth, whereas fluctuations at greater depths were relatively small. Most of the cumulative nitrate-N leaching (44.7 kg N ha−1) occurred during the winter.  相似文献   

12.
Spatial and temporal variability of nitrate in irrigated salad crops   总被引:2,自引:0,他引:2  
The objective of this study was to analyze the spatial and seasonal variations in NO3 -N concentration in soil samples and solution samplers and the N leaching of an irrigated crop cultivated intensively in the Mediterranean zone. Although much information is available from controlled field experiments concerning N concentration and its spatial variability, quantitative estimates of nitrate fluxes under normal farming conditions and when the field is directly managed by farmers are rare. This is particularly true for gardening crops in the Mediterranean zone, where high evapotranspiration rates lead to intensive irrigation and may be responsible for N leaching. A field experiment was conducted in the Departement du Gard under agricultural conditions. Salads (Cichorium endivia, Lactuca sativa) were planted in three consecutive periods. The field was irrigated with sprinklers. Local measurements with a neutron probe were made at two sites (row, interrow), and an experimental plot (95 m×25 m) was surveyed at 36 points located on a 10 m×10 m equilateral grid to analyze the spatial variability of water and NO3 -N balances. To analyze the basic statistical properties of our sampling scheme, random fields of soil concentration were simulated with the turning-bands method. Sampling strategy simulations indicated that when a spatial structure exists, sampling according to a regular grid was more efficient than a purely random sampling strategy. Global trends indicated high spatial variability for nitrate leaching with differences between periods of different irrigation intensity (97 kg ha–1 NO3 -N leaching during the spring and summer, and 199 kg ha–1 NO3 -N leaching during autumn and winter). Leaching caused temporal variations in the spatial distributions of NO3 -N. The origin of the spatial variability of N leaching was explained by first, the variability in NO3 -N concentration in the soil profile, and second, by spatial variability in irrigation. Furthermore, the spatial distribution of the NO3 -N concentration was time dependent, and NO3 -N spatial distributions became independent after approximately 2 or 3 months under our conditions. Our results show that better management of irrigation and fertilizer in spring and summer may reduce N leaching and, thus, improve ground water quality. Received: 15 March 1996  相似文献   

13.
Andosols are the dominant soils in the Valle de Bravo basin, the origin of a significant amount of Mexico City's drinking water. The main land use is agriculture and most of the existing surface water bodies are eutrophic. Nitrogen fertilizer is used extensively. There have been very few studies on nitrate (NO3) fate in this type of soil and region. Comprehensive laboratory studies were conducted to determine the fate of NO3 in an Andosol profile from Valle de Bravo, in order to assess the risk of water resources contamination. Nitrate retention was analysed statically (using batch experiments) and dynamically (using intact and packed soil columns) at different soil depths and its competition with Cl was evaluated. Complementary laboratory experiments were conducted to study water transport through the columns and nitrogen transformations in the soil. In batch and columns, NO3 adsorption was linear in the range of concentrations studied and higher in the deepest soil layer. Preferential flow pathways were found in the unaltered deeper soil layers, while tillage activity in the top layer destroyed the pore continuity. In spite of the deeper soil layer's greater capacity for NO3 retention, the presence of preferential flow pathways coupled with high rainfall intensities, makes the NO3 mobile below the root zone at 1 m depth and increases the risk of groundwater contamination. The results illustrate the complexity of nitrate fate in Andosols and can be used to improve agricultural practices in the central Mexico region.  相似文献   

14.
High value crops such as carrot planted in coarse soils of the Southern San Joaquin Valley in California are prime candidates for nitrate leaching through irrigation nonuniformity. A 2-year study was carried out to explore the impact of irrigation uniformity on nitrate leaching. Irrigation uniformity was measured using catchcans. Soil nitrate (NO3-N) and ammonium (NH4-N) contents were measured from soil sampled at different depths and times during two growing seasons. Nitrate leaching was determined using ion-exchange resin bags at 1-m depth sampled three times during each season. Although, soil NO3-N as well as seasonal irrigation was significantly higher along the lateral irrigation pipe than between the sprinklers, nitrate leaching was not significantly higher. As expected, soil nitrate content decreased as percolation increased for both years. Nitrate leaching, as estimated by anion-exchange resin bags, was positively correlated to soil NO3-N content but was not correlated to irrigation depth, irrigation uniformity, or deep percolation. Field variation in saturated hydraulic conductivity (Ks), soil organic matter (OM), and soil water retention at field capacity had limited effect on NO3-N and NH4-N distributions in the profile and on nitrate leaching. The results of this experiment suggest that irrigation nonuniformity has less impact on nitrate movement than suggested by earlier studies.  相似文献   

15.
Excessive irrigation and nitrogen applications result in substantial nitrate leaching into groundwater in intensively cropped oases in desert areas of Alxa, Inner Mongolia. An integrated modelling approach was developed and applied to compare policy incentives to reduce nitrate leaching. The integrated model consists of a process-based biophysical model, a meta-model, a farm economic model and an assessment of policy incentives. The modelling results show that there are “win-win” opportunities for improving farm profitability and reducing nitrate leaching. We found that 4471 Yuan ha−1 of farm gross margin could be obtained with a reduction in nitrate leaching of 373 kg ha−1. Farmers’ lack of knowledge about water and nitrogen in soil, and on crop requirements for water and nitrogen could explain the differences, so that agricultural extension is an appropriate policy incentive for this area. When the economic optimum is obtained reductions in nitrate leaching are not achievable without profit penalties and there is a “trade-off” relationship between farm profitability and groundwater quality protection. The combination of low elasticity of nitrate leaching and large elasticity of farm gross margin against water price increases results in very high costs for reducing nitrate leaching (105.6 Yuan kg−1). It is suggested that if the water price increases were coupled with subsidies for adopting nitrate leaching mitigation practices, environmental gains could come at a lower cost.  相似文献   

16.
Like many intensive vegetable production systems, the greenhouse-based system on the south-eastern (SE) Mediterranean coast of Spain is associated with considerable NO3 contamination of groundwater. Drip irrigation and sophisticated fertigation systems provide the technical capacity for precise nutrient and irrigation management of soil-grown crops which would reduce NO3 leaching loss. The VegSyst crop simulation model was developed to simulate daily crop biomass production, N uptake and crop evapotranspiration (ETc). VegSyst is driven by thermal time and consequently is adaptable to different planting dates, different greenhouse cooling practices and differences in greenhouse design. It will be subsequently incorporated into a practical on-farm decision support system to enable growers to more effectively use the advanced technical capacity of this horticultural system for optimal N and irrigation management.VegSyst was calibrated and validated for muskmelon grown in Mediterranean plastic greenhouse in SE Spain using data of four melon crops, two grown in 2005 and two in 2006 using two management strategies of water and N management in each year. VegSyst very accurately simulated crop biomass production and accurately simulated crop N uptake over time. Model performance in simulating dry matter production (DMP) over time was better using a double radiation use efficiency (RUE) approach (5.0 and 3.2 g MJ−1 PAR for vegetative and reproductive growth phases) compared to a single RUE approach (4.3 g MJ−1 PAR). The simulation of ETc over time, was very accurate in the two 2006 muskmelon crops and somewhat less so in the two 2005 crops. The error in the simulated final values, expressed as a percentage of final measured values was −1 to 6% for DMP, 2-11% for crop N uptake, and −11 to 6% for ETc. VegSyst provided effective simulation of DMP, N uptake and ETc for crops with different planting dates. This model can be readily adapted to other crops.  相似文献   

17.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

18.
Salinization and nitrate leaching are two of the leading threats to the environment of the European Mediterranean regions. Inefficient use of water and fertilizers has led to a nitrate increase in the aquifers and reduction in crop yields caused by salts. In this study, a triple emitter source irrigation system delivers water, salt (Na+), and fertilizer (N) applications to maize (Zea mays L.). The objective of the study was to evaluate the combined effect of saline water and nitrogen application on crop yields in two different textured soils of Alentejo (Portugal) and to assess if increasing salinity levels of the irrigation water can be compensated by application of nitrogen while still obtaining acceptable crop yield. Maximum yield was obtained from both soils with an application of 13 g m−2 of nitrogen. Yield response to Na+ application was different in the two studied soils and depended on the total amount of Na+ or irrigation water applied. No significant interaction was found between nitrogen and sodium, but a positive effect on maize yield was observed in the medium textured soil for amounts of Na+ less than 905 g m−2 when applied in the irrigation water.  相似文献   

19.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

20.
This study was aimed to investigate dual effects of irrigation regimes and N fertilizer rates on some agronomic traits (with emphasis on yield qualitative and quantitative characteristics) and finding optimized irrigation level and N application rate for two canola (Brassic napus L.) cultivars. For this purpose, two variety of canola (Zarfam and Modena), four irrigation regimes including 30%, 45%, 60% and 75% (I1-I4) of maximum allowable depletion (MAD) of available soil water (ASW) and four nitrogen rates (viz. 0, 90, 180 and 270 kg N ha−1 (N1-N4) were involved in Karaj, Iran for two successive years (2007-2008). Our results revealed special fertilizer threshold for each irrigation regime in respect to seed yield. Response rate to fertilizers was ceased in lower fertilizer rates by prolonging irrigation. The response rate showed a decrease of 15.4%, 17.2% and 30.7% in I2, I3 and I4 in comparison with I1, but I2 response to fertilizer ceased in higher N rate as Ncritical (189.8 kg N ha−1). This implies that I2 improved response of canola cultivars to N fertilizer, which was accompanied by its higher WUE. Also, all estimated Ncriticals for all irrigation levels were higher than the current recommendation of 130 kg N ha−1. This show the capability of increasing canola cultivars yield in study region by reasonable increasing of fertilizer rate (decreasing gap between recommended N rate and estimated values) in advisable irrigation regime (I2). Cultivars tended to respond similarly to irrigation and nitrogen for seed yield in both years, but Zarfam was more efficient than Modena in respect to response to diverse treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号