首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】快速、精确地获得作物水分状况。【方法】采用高光谱采样数据分析方法,研究了北京大兴冬小麦不同生育期不同水分条件下的冠层光谱变化特点,筛选了水分光谱敏感波段,构建了冬小麦水分状况诊断模型。【结果】(1)在750~1 075 nm近红外反射平台拔节—抽穗期、抽穗—灌浆期冬小麦冠层光谱反射率随植株含水率的增大而上升,在350~750 nm的可见光区域灌浆—成熟期冬小麦冠层光谱反射率随植株含水率的增大而降低;(2)不同生育期冬小麦植株水分状况均与650~775 nm波段密切相关,其中对冬小麦植株含水率变化最为敏感的波段为661nm和771 nm;(3)通过筛选光谱参数模型、构建基于敏感波段回归模型并综合分析2类模型对冬小麦植株含水率的监测效果发现,冬小麦不同生育期植株含水率监测最佳模型均为光谱参数模型。【结论】在利用光谱技术监测冬小麦植株含水率时,包含661 nm及771 nm附近波段的水分监测光谱参数模型效果最佳。  相似文献   

2.
无人机多光谱遥感监测冬小麦拔节期根域土壤含水率   总被引:1,自引:0,他引:1  
快速精确地获取冬小麦根域土壤含水率对实现精准灌溉具有重要意义。以拔节期不同水分处理的冬小麦为对象,利用低空无人机搭载六波段多光谱相机获取其冠层光谱反射率,并同时采集5个不同深度(10、20、30、40、60 cm)土壤含水率数据,通过逐步回归法、偏最小二乘法、岭回归法建立光谱数据与5个深度的多元回归模型。结果表明,三种回归模型对10、20 cm深度土壤含水率都有较高的监测精度,可以较好地对作物根域土壤含水率进行定量预测,其中逐步回归模型效果最好,其模型的决定系数R~2达到0.815、0.747,预测模型的R~2为0.774、0.717,相对分析误差R_(PD)为2.007、1.862,但三种回归模型对深度为30、40、60 cm根域土壤含水率的监测精度都较低。该研究结果对指导精准灌溉具有一定的参考价值。  相似文献   

3.
叶片含水率和叶水势反映植物组织中水分的状态,是衡量植物水分供应和水分利用效率的重要指标。为探究基于不同高度下无人机多光谱影像反演叶片含水率和叶水势模型的差异,本研究在3个飞行高度处理F30、F60、F100 (30、60、100m)下采集多光谱影像数据,通过使用6种光谱反射率+经验植被指数的组合与地面实测数据进行相关性分析,获得不同飞行高度下的光谱反射率+经验植被指数组合与叶片含水率和叶水势的反演模型及其决定系数,以决定系数为依据分别构建支持向量机(SVM)、随机森林(RF)和径向基神经网络(RBFNN)模型,分析不同飞行高度无人机多光谱影像反演芳樟叶片含水率和叶水势的精度。结果发现:3个飞行高度下,基于RF模型的反演精度均高于SVM模型和RBFNN模型。F30处理对叶片含水率与叶水势反演效果均优于F60和F100处理。F30处理对叶片含水率反演的敏感光谱反射率+植被指数组合为红光波段反射率(R)、红边1波段反射率(RE1)、红边2波段反射率(RE2)、近红外波段反射率(NIR)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)。RF模型训练集的R2、RMSE、MRE分别为0.845、0.548%、0.712%;测试集的R2、RMSE、MRE分别为0.832、0.683%、0897%。对叶水势反演的敏感光谱反射率+植被指数组合为R、RE2、NIR、EVI、SAVI、花青素反射指数(ARI)。RF模型训练集的R2、RMSE、MRE分别为0.814、0.073MPa、3.550%;测试集的R2、RMSE、MRE分别为0.806、0.095MPa、4.250%。研究结果表明飞行高度30m与RF方法分别为反演叶片含水率和叶水势的最优光谱获取高度与最优模型构建方法。本研究可为基于无人机平台的矮林芳樟水分监测提供技术支持,并可为筛选无人机多光谱波段与经验植被指数、实现植物长势参数快速估测提供应用参考。  相似文献   

4.
为研究水稻叶片叶绿素相对含量(SPAD)在3种水分处理和5种施氮处理下的变化规律,探讨无人机多光谱遥感技术反演水稻SPAD的可行性,本研究利用大疆精灵4多光谱无人机,采集了水稻拔节孕穗期、抽穗开花期和乳熟期的冠层多光谱遥感影像,并同步测定水稻SPAD值,基于25个光谱变量(5个波段反射率和20个植被指数),采用多元线性逐步回归、岭回归和套索回归3种方法构建了水稻SPAD的反演模型。结果表明:水稻3个生育期的SPAD最佳反演模型均是采用套索回归方法构建的,其中乳熟期建立的SPAD最佳反演模型在3个生育期中的反演精度最高,决定系数为0.782,均方根误差为1.217 7,相对误差为6.611 3%。因此,该研究可对水稻叶片SPAD进行遥感监测,并为水稻精准灌溉和施肥提供科学依据和数据支撑。  相似文献   

5.
为剔除无人机多光谱图像中的土壤背景、提高作物根域土壤含水率反演精度,以不同水分处理的拔节期冬小麦为研究对象,利用无人机多光谱相机分别在09:00、11:00、13:00、15:00和17:00等5个时刻获取高分辨率多光谱图像,采用改进的植被指数阈值法快速确定植被像元与土壤像元的分类阈值,通过阈值划分剔除土壤背景,并根据阈值变化研究土壤背景对冬小麦冠层反射率的影响,建立了剔除土壤背景前后基于植被指数的土壤含水率反演模型。结果表明,应用改进的植被指数阈值法可有效剔除多光谱图像中的土壤背景,其中基于植被指数RDVI的剔除精度最高,总体精度在91.32%以上;土壤背景对冬小麦冠层近红外波段的反射率影响较大,红边波段次之,而对可见光波段的反射率影响较小;剔除土壤背景前后的植被指数与土壤含水率均呈线性关系,剔除土壤背景对反演土壤含水率的精度有显著提高,其中NGRDI反演深度10~20cm的冬小麦根域土壤含水率效果最好,建模集R2和RMSE分别为0.739和2.0%,验证集R2和RMSE分别为0.787和2.1%。  相似文献   

6.
为了快速获取棉花长势信息为棉田精准水肥管理提供决策支持,以新疆石河子滴灌棉花为研究对象,利用无人机搭载高光谱成像光谱仪采集了滴灌棉花7个生长日期的光谱信息,地面同步采集样本,共收集了176个样本,构建了30个光谱反射率模型,并筛选出了一种基于无人机冠层高光谱遥感的棉花地上部生物量高效无损监测模型。研究结果表明:滴灌棉花地上部生物量与反射率在0.01水平上显著相关,估算滴灌棉花地上部生物量的最优模型为基于连续投影算法的偏最小二乘法的光谱反射率模型,该模型的校正决定系数为0.7061,均方根误差为0.0198,验正决定系数为0.7168,均方根误差为0.0275,可作为无人机遥感快速、无损估测滴灌棉花地上部生物量的技术手段。本研究旨在为开发实时监测的多光谱仪器提供了理论支持。  相似文献   

7.
为研究光谱对冬小麦植株组分含水率的估测能力,分析小波技术对光谱信息的分离规律,以冬小麦冠层光谱数据与相应的冬小麦植株叶片、茎秆、麦穗含水率的测定值为数据源,先采用小波技术分离冬小麦冠层光谱信息,再将分离的光谱信息与冬小麦各植株组分的含水率进行相关性分析,并提取敏感波段;最后利用偏最小二乘算法构建冬小麦植株组分含水率的估测模型,并进行了验证与评价。研究表明:经小波技术分解后,冬小麦冠层光谱内的吸收特征逐分解水平分离至高频信息内,且各分解水平所代表的吸收特征按强度依次分布于高频信息的分解水平H1~H10内;冬小麦麦穗含水率估测模型的精度与稳定性较强,茎秆次之,叶片稳定性最差,说明扬花期后的冬小麦水分供给已不再适合只采用叶片含水率进行评定,应增加或替换检测指标。  相似文献   

8.
基于近红外傅里叶特征提取方法的土壤含水率检测   总被引:2,自引:1,他引:1  
以湖北地区的3种土壤为研究对象,利用偏最小二乘法建立了处理后样品的土壤含水率分析模型,模型预测值与标准值的决定系数为0.995,交叉验证预测均方差为0.801%,模型预测决定系数为0.992,预测均方差为0.912%,利用该模型预测黄土高原地区黄绵土含水率误差均大于4%.利用近红外光谱傅里叶变换特征提取方法对湖北地区黄棕壤、稻田土和潮土建立土壤含水率PLS预测模型,模型决定系数为0.988,交叉验证预测均方差为1.106%,且该模型预测黄绵土的误差均在2%左右,精度较传统模型有较大提高.  相似文献   

9.
基于无人机多光谱遥感的土壤含水率反演研究   总被引:6,自引:0,他引:6  
为研究无人机多光谱遥感技术对裸土土壤含水率的大范围快速测定和最佳监测深度的确定,以杨凌地区粘壤土为试验材料,分别配制成2种不同深度(5 cm和10 cm)、含水率为3%~30%的土壤样本。用无人机搭载多光谱相机对土样连续监测3 d,监测时刻均为15:00。采集6个波段(490、550、680、720、800、900 nm)处的土壤光谱反射率,同时对2种不同深度的土壤样本表层(约1 cm)含水率和整体含水率进行测定。分别采用偏最小二乘回归法、逐步回归法和岭回归法,建立不同波段光谱反射率因素反演土壤含水率的回归模型,并分析其定量关系。试验结果表明,逐步回归预测精度最佳,决定系数(R2)分别为0.775、0.764、0.798、0.694,而预测均方根误差(RMSE)分别为0.028、0.042、0.037、0.038;其次为岭回归法;偏最小二乘法的预测精度最低。综合比较得最佳回归方法为逐步回归法,最佳监测深度为土壤表层(约1 cm),其次为5 cm深度,最后为10 cm深度。  相似文献   

10.
低空无人机多光谱遥感数据的土壤含水率反演   总被引:1,自引:0,他引:1  
以杨凌地区黏壤土为研究对象,用无人机搭载多光谱相机采集土壤6个波段的光谱信息,探索一种快速监测土壤含水率的方法。试验通过相关系数法筛选光谱对于不同深度土壤水分的敏感波段,然后使用单一敏感波段处的光谱数据建立不同的一元回归模型并分析其定量关系。试验结果表明,一元二次回归模型的拟合效果最好,一元对数回归模型次之。其中,对于表层(约1 cm)土壤含水率的反演,模型拟合度均在0.81以上,预测相关系数均在0.92以上,预测均方根误差均在0.10以内,因此通过采集黏壤土反射率来推算表层土壤含水率是可行的。但随着深度增加,模型拟合效果急剧变差。该研究为利用无人机多光谱遥感对表层土壤含水率的快速、准确监测提供了一条新途径。  相似文献   

11.
配备多光谱相机的无人机可实现对农作物生长状况的快速无损监测,为评估无人机遥感监测高粱作物长势的可行性和准确性,利用无人机搭载的多光谱相机获取高粱拔节期、抽穗开花期、灌浆成熟期多光谱遥感图像,构建常用的4种植被指数与叶面积指数LAI和植被覆盖度FVC之间的回归模型。经过精确度评价,确定归一化差异植被指数NDVI为最优植被指数,LAI-NDVI和FVC-NDVI估算模型的决定系数R~2分别为0.91和0.88,均方根误差RMSE分别为0.28和0.06;平均绝对误差MAPE分别为11%和8%。基于此,选择归一化差异植被指数NDVI,分析LAI和FVC无人机遥感估算值和实测值之间的关系,通过交叉验证得到LAI值:R~2=0.94,RMSE=0.16,MAPE=13%;FVC值:R~2=0.90,RMSE=0.05,MAPE=4%,说明两者存在高度拟合性。结果表明:根据无人机遥感得到的归一化差异植被指数NDVI可准确地估算高粱作物的叶面积指数和植被覆盖度,无人机遥感适用于对高粱作物生长状态的监测。  相似文献   

12.
基于无人机遥感的冬小麦叶绿素含量多光谱反演   总被引:1,自引:0,他引:1  
以杨凌地区冬小麦为研究对象,使用六旋翼无人机搭载RedEdge多光谱相机进行叶绿素监测试验。共选取65个样本,每个样本为1 m×1 m的样地,在样地内选取小麦冠层的7片叶片,测量相对叶绿素含量SPAD值,取平均值作为实测值,GPS记录位置信息。地面数据测量与无人机飞行测量同步进行。用Pix4D mapper软件对无人机多光谱影像进行拼接处理,得到4个波段下小麦冠层叶片反射率光谱图像,并利用ENVI 5.1软件提取光谱反射率数据。选取8种常用光谱参数,其中与小麦SPAD相关性较高的有SAVI、EVI2、DVI、RVI、NDVI、EVI和ARVI共7种,相关系数均在0.67以上。用7种光谱参数和小麦SPAD实测值,使用一元线性回归法和多元线性回归法构建反演模型并进行精度分析,结果表明:一元线性回归法构建的SPAD-SAVI模型精度最佳,决定系数(R~2)为0.866,均方根误差RMSE为0.245,可作为无人机遥感快速、无损监测冬小麦叶绿素的技术手段。  相似文献   

13.
基于无人机遥感的玉米水分利用效率与生物量监测   总被引:1,自引:0,他引:1  
玉米生物量及水分利用效率是反映作物长势和作物品质的重要指标。为实现农业精准管理,本文以不同水分处理的青贮玉米为研究对象,探讨无人机多光谱遥感平台结合作物生长模型估测青贮玉米生物量及水分利用效率的可行性。首先,将基于高时空分辨率无人机多光谱图像估测的关键作物参数蒸腾系数kt输入到简单的水分效率模型中,来拟合不同水分胁迫处理下玉米水分利用效率WUE和标准化水分利用效率WP*;然后,采用拟合的WUE、WP*估算相同水分和不同水分状况下的玉米生物量,并进行验证;基于高时空分辨的无人机多光谱遥感图像获取了大田尺度上的WUE、WP*和生物量的空间分布图。结果表明,基于无人机多光谱、气象和土壤水分数据计算的实际蒸腾量∑Tc,adj和∑ktkswkst(ksw、kst为环境胁迫因子)与玉米生物量具有极显著(P<0.001)的相关性,不同水分处理下WUE的决定系数R2均不小于0.92,WP*的R2均不小于0.93。在同一水分胁迫下,使用拟合的WUE和WP*对生物量的估测精度几乎相同,玉米V-R4生育期估测精度较高,WUE的RMSE为126g/m2,WP*的RMSE为91.7g/m2,一致性指数d均为0.98,但在R5-R6生育期内精度不高。在不同水分胁迫下,使用WUE和WP*估测生物量时,WUE容易受到水分胁迫影响,精度较低(RMSE为306g/m2,d=0.93),而WP*的精度较高(RMSE为195g/m2,d=0.97)。研究表明,将无人机遥感平台与作物生长模型相结合能够很好地估测大田玉米生物量及水分利用效率。  相似文献   

14.
为了探究无人机多光谱遥感影像估算作物光合有效辐射吸收比例(Fraction of absorbed photosynthetically active radiation,FPAR)的潜力,以无人机多光谱影像提取的植被指数、纹理指数、叶面积指数为模型输入参数,在分析不同参数与FPAR相关性的基础上优选植被指数与纹理指数,并分别以一元线性模型、多元逐步回归模型、岭回归模型、BP神经网络模型等方法估算玉米FPAR。结果表明:植被指数、纹理指数、叶面积指数 3种参数与FPAR都具有较强的相关性,其中植被指数相关系数最大;在不同类型的FPAR估算模型中,BP神经网络模型的估算效果最优,FPAR估算模型决定系数R2、均方根误差(RMSE)分别为0.857、0.173,验证模型R2、RMSE分别为0.868、0.186,模型估算值与田间实测值间相对误差(RE)为8.71%;在不同形式的模型参数组合中,均以植被指数、纹理指数、叶面积指数 3种参数融合的FPAR模型的估算与验证效果最优,说明多特征参数融合能有效改善FPAR估算效果。该研究为基于无人机多光谱遥感数据精准估算玉米FPAR及生产潜力提供了科学依据。  相似文献   

15.
基于近红外的小麦植株含水率检测方法   总被引:1,自引:0,他引:1  
张亚伟  王书茂  陈度  王禹  付函 《农业机械学报》2017,48(S1):118-122, 261
针对小麦植株含水率快速检测需求,提出了一种基于近红外的小麦植株含水率检测方法。利用不同波长近红外感光元件组成的探测器研发了小麦植株含水率无损快速检测装置,利用该检测装置对采集的多组样品进行了测量,通过均值滤波与参考实时校正方法得到了小麦植株的近红外反射强度。基于测量数据,分别采用多元线性回归、多元逐步回归、偏最小二乘以及最小二乘支持向量机建立了含水率检测模型。结果表明,基于最小二乘支持向量机建立的模型效果最优,校正集决定系数R2达到0.9742。利用建立的检测模型对另一批样品进行含水率检测试验,结果表明:小麦植株含水率真实值与预测值的决定系数R2为0.9337,预测集均方根误差均小于等于3.00%。研究结果为小麦植株含水率无损快速检测提供了一种有效的方法与装置,能够满足联合收获机在作业现场对小麦植株含水率快速调整作业参数的需求。  相似文献   

16.
基于无人机高光谱长势指标的冬小麦长势监测   总被引:5,自引:0,他引:5  
为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R~2、RMSE和NRMSE分别是0. 716 4、0. 096 3、15. 90%。  相似文献   

17.
甘蔗作为广西、云南等地的主要农作物,极易受到干旱的影响。土壤含水率是评估甘蔗是否受到干旱影响的重要指标。以蔗田土壤含水率为研究对象,利用无人机搭载的热红外和多光谱传感器数据计算出甘蔗冠层的温度、重归一化植被指数RDVI等植被指数,采用人工测定的方法对无人机监测数据进行校正和率定,构建了甘蔗的温度植被干旱指数(TVDI)模型。结果表明,利用多光谱和热红外传感器计算的TVDI与蔗田苗期、分蘖期、伸长期和成熟期土壤含水率均具有高度相关性,决定系数R2分别为0.906 6、0.819 0、0.852 9和0.916 0。因此,TVDI模型最适合用于监测甘蔗苗期和成熟期的受旱情况。  相似文献   

18.
基于无人机遥感影像的冬小麦氮素监测   总被引:7,自引:0,他引:7  
精准氮素管理是一项提高作物氮肥利用效率的有效策略,利用无人机遥感技术精确估测小麦氮素状况是必要的。试验在山东省乐陵市科技小院实验基地进行,利用八旋翼无人机搭载Mini-MCA多光谱相机于2016年获取冬小麦4个关键生育时期(返青期、拔节期、孕穗期、扬花期)冠层多光谱数据,同步获取地上部植株样品并测定其生物量、吸氮量、氮营养指数,及成熟期籽粒产量,根据各关键生育期与全生育期分别构建植被指数与农学参数回归分析模型,评估基于无人机遥感影像的冬小麦氮素营养诊断潜力。结果表明:基于无人机遥感影像能够较好地估测冬小麦氮素指标(R2为0.45~0.96),决定系数随着生育期推移而逐渐增大。拔节期、孕穗期和扬花期估产效果接近且具有很好的估测能力,扬花期DATT幂函数模型对小麦氮营养指数的解释能力最强(R2=0.95)。因此,以多旋翼无人机为平台同步搭载多光谱相机对冬小麦有较好的氮素诊断潜力,可利用估测结果指导精准氮肥管理。  相似文献   

19.
为进一步提升无人机遥感快速监测覆膜条件下冬小麦叶面积指数(Leaf area index, LAI)的能力,以垄沟覆膜冬小麦为研究对象,利用无人机搭载五通道多光谱传感器获取2021—2022年冬小麦出苗期、越冬期、返青期、拔节期、抽穗期和灌浆期的遥感影像数据,使用监督分类剔除背景并计算50种可见光和近红外植被指数,采用主成分分析、相关系数法、决策树排序和遗传算法进行特征降维,结合偏最小二乘、岭回归、支持向量机、随机森林、梯度上升和人工神经网络6种机器学习算法建立不同输入特征变量下的覆膜冬小麦LAI反演模型,并进行精度评价。结果表明,剔除覆膜背景使冬小麦冠层反射率更接近真实值,提高反演精度。采用适宜的特征降维方法结合机器学习算法能够提高覆膜冬小麦LAI的反演精度和稳定性,对比特征降维前的反演精度,主成分分析和相关系数法无法优化反演效果,决策树排序只适用于基于树模型的随机森林和梯度上升算法,遗传算法优化效果明显,遗传算法-人工神经网络模型反演效果达到最优(决定系数为0.80,均方根误差为1.10,平均绝对值误差为0.69,偏差为1.25%)。研究结果可为无人机遥感监测覆膜冬小麦生长状况提供...  相似文献   

20.
水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为3个等级(每个等级共包含530幅五通道图像,其中480幅作为训练集,50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于TensorFlow深度学习框架搭建了ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和GPS 信息,识别彩色图像模型在验证集的正确率为84.7%,识别多光谱图像模型在验证集的正确率为90.5%,模型训练平均时间为4.5h,五通道图像识别平均用时为3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号