首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
高架栽培草莓采摘机器人系统设计   总被引:1,自引:0,他引:1  
为了提高草莓采收自动化水平,针对高架栽培草莓设计了自动采摘机器人系统,其采用无线遥控和语音提示相结合的人机交互方式,可以对机器人本体两侧果实同时进行采摘。该系统采用机器视觉和声纳测距相结合的方式实现了自主导航,通过双目视觉相机对果实进行识别和空间定位,由关节型机械臂操纵末端执行器进行定位。系统末端执行器采用果实吸附、果柄夹持和电热切割的方式对果实进行柔性操作。针对系统控制方案,制定了采摘机器人系统作业流程,并对机械臂末端运动路径节点和时间节拍进行规划,防止与周围环境发生运动干涉,保证机器人作业效率。试验结果表明,草莓采摘机器人系统末端定位平均误差小于2.2mm,单次采摘作业平均耗时10.99s。  相似文献   

2.
智能移动水果采摘机器人设计与试验   总被引:10,自引:0,他引:10  
设计了一种智能移动水果采摘机器人,该机器人主要由智能移动平台、采摘机械臂、末端执行器、横向滑移机构和控制系统组成。用VC++语言编写了系统控制程序,开发了人机交互界面。样机在江苏省丰县果园进行了综合试验,结果表明:该机器人能够完成自主导航、自主采摘及自主装箱作业,移动平台、采摘机械臂及末端执行器能够实现智能协调控制。整个系统工作性能稳定,成熟果实的识别正确率为81.73%,采摘成功率为86.92%,单个苹果采摘平均耗时9.50 s。  相似文献   

3.
针对采摘机器人对果蔬的位置定位不够准确、无法准确避障,导致采摘效率较低的问题基于深度双目视觉处理对智能采摘机器人进行了设计。智能采摘机器人的主要组成包括PLC控制器、视觉系统、移动平台、导航系统、机械臂、通信系统和电源。为了对采摘机器人的机械臂进行最优路径规划并避障,通过对采集的图像进行预处理后,利用双目视觉系统对果蔬进行精准定位,然后采用哈夫变换直线检测的方法进行最优路径的设计和选择,最终确定最优采摘路径。对采摘机器人进行运动轨迹精度试验和采摘试验,结果表明:采摘机器人对果蔬的采摘成功率较高,可以满足果农对于采摘机器人的要求。  相似文献   

4.
为提高苹果采摘的自动化与智能化水平,降低重复繁琐的人工劳动强度,减少对果实的损坏率,研制了一款用于苹果成熟自动检测并采摘的轮式机器人系统。系统由硬件平台和软件平台两部分组成。其中,硬件平台由四轮驱动越野小车、IPC-610L工控机、图像数据采集卡、四自由度机械臂和末端执行器组成;软件平台基于Visual C++6.0开发环境,使用双目立体视觉技术和图像处理技术实现对苹果的识别与定位,再通过机械臂的路径规划实现对苹果的采摘。通过仿真实验和数据分析表明:机器人在无人值守的情况下,能实现自动导航、自动识别、自动采摘苹果等功能,并且识别成功率大于94.00%,采摘成功率达到91.33%,平均采摘周期约为1 1 s,具有较高的准确性及稳定性。  相似文献   

5.
介绍了卷积神经网络的基本结构及其工作原理,基于DH参数法建立了采摘机械臂运动模型,并设计了一套采摘机械臂无碰撞运动规划算法,旨在实现对采摘机械臂的精确控制。MatLab仿真试验表明:采摘机械臂在系统的驱动控制下,能够准确从起点移动到目标点,轨迹比较圆滑,且能以最优的圆弧路径避开障碍物,优化效果明显,能够满足采摘机器人作业需求,证实了该算法的稳定性和可靠性。  相似文献   

6.
周大鹏  苗苗 《农机化研究》2024,(10):223-227
首先,介绍了数字国画的产品设计,并将其应用在采摘机器人动作仿真中;然后,分析了采摘机器人机械臂运动学和动力学模型,对机械臂的驱动控制进行了深入研究;最后,基于Matlab对采摘机器人动作“掰”进行了仿真分析。结果表明:随着姿态角β或γ的增大,苹果与果枝连接处产生的力矩都会发生变化;而使用动作“掰”采摘苹果时,改变姿态角γ更容易采摘到苹果。  相似文献   

7.
基于改进Mask RCNN的复杂环境下苹果检测研究   总被引:2,自引:0,他引:2  
苹果检测是苹果采摘系统中的关键环节,为实现复杂环境下苹果采摘机器人视觉系统对苹果的识别和定位,提出一种基于深度学习的方法,通过改进的Mask RCNN网络对苹果进行检测研究。该方法在原始Mask RCNN网络的基础上,增加边界加权损失函数,能够使边界检测结果更为精确。训练后的模型在验证集下的AP值为92.62%。通过比较Mask RCNN与Faster RCNN、YOLO v3和传统分割算法K-means算法在不同数目,不同光照和绿色苹果情况下的检测效果,试验结果表明:Mask-RCNN的F1值和分割效果均高于其他算法,证明本文方法对复杂环境下的苹果有很好的检测效果,可为苹果产业中采摘机器人的视觉系统提供技术支持。  相似文献   

8.
针对现有采摘机器人的识别-采摘精度与效率偏低等问题,开展了采摘机器人深度视觉伺服手-眼协调规划研究。开发了在手RealSense深度伺服的小型升降式采摘机器人,进行了采放果的工作空间与姿态分析,针对“眼在手上”模式建立了手-眼协调的坐标变换模型。对采摘机器人提出了基于在手RealSense深度伺服的由远及近手眼协调策略,并根据RealSense与机械臂参数完成了基于深度视觉的远近景协调关键点间分段动作规划。手眼协调采摘试验表明,末端在X、Y、Z方向的平均定位精度为3.51、2.79、3.35mm,平均耗时为19.24s,其中机械臂从初始位开始采果的平均耗时为12.04s,中间识别与运算的平均耗时为3.82s,放果动作平均耗时为7.2s,机械臂动作耗时占整个环节的80.2%。该机器人结构和在手RealSense深度伺服的手眼协调策略可满足采摘作业需求。  相似文献   

9.
针对苹果采摘存在的一些问题,设计出一种机械臂夹剪苹果采摘机;运用三维造型软件UG对其进行三维建模,并在Adams软件中进行仿真试验;根据仿真生成的数据曲线进行计算分析,验证了机械臂夹剪苹果采摘机的采摘性能和机械机构的可行性。通过UG和Adams进行仿真设计之后,制造出一台物理样机并进行试验,结果表明:机械臂夹剪苹果采摘机能够适应我国大多数苹果种植园的采摘环境,使苹果采摘效率大大提高,极大地减轻了果农采摘的工作强度,实现了苹果采摘的半自动化,能够满足中小果农对苹果采摘机械的需求。  相似文献   

10.
击打式松果采摘机器人设计与试验   总被引:2,自引:0,他引:2  
针对人工采摘松果过程中存在严重安全隐患的问题,设计了一种击打式松果采摘机器人,该机器人系统主要由电机驱动模块、主控模块、视觉模块、夹持模块、采摘模块组成,视觉模块完成松果识别与定位,实时反馈给主控模块,并控制电机驱动模块,配合夹持模块和采摘模块作业实现松果采摘。采用Matlab仿真软件建立松果采摘机器人运动学模型,求解出机械臂工作空间为直径4.5 m的球体;基于冲量原理和Lagrange方程建立碰撞动力学模型,通过动态分析求解出碰撞后各关节保持原有运动规律所需的驱动力矩;运用静力学原理建立关键组件有限元模型,利用ANSYS Workbench对结构进行优化设计,优化后其安全系数最低为1.577 1,支撑关节最大变形4.148 4 mm。仿真结果表明:该机器人结构在运动学、动力学及静力学方面均满足设计要求。制作物理样机并在实验室环境下进行了松果采摘试验,样机初始状态尺寸1 000 mm×1 200 mm×1 100 mm,试验结果验证了机器人结构设计的合理性与实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号