首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
提出一种基于车轮侧向力和纵向力传感器信息的车辆状态观测器.建立3自由度车辆动力学模型,并构建扩展卡尔曼滤波器,结合纵向加速度传感器和横摆角速度传感器的校正信息,实时估计车辆的纵向车速和质心侧偏角.在复杂附着条件下,该车辆状态观测器对车轮滑移和路面附着条件有很好的鲁棒性.通过veDYNA车辆动力学仿真软件,对该观测器进行了仿真验证.在分离附着系数路面条件下的仿真结果显示,传统的基于2自由度和非线性轮胎模型估计方法的纵向车速最大估计误差为25 km/h,质心侧偏角最大估计误差为3°,相同工况下,提出的基于车轮力传感器信息的全轮驱动车辆状态观测器对车辆的纵向车速和质心侧偏角估计结果具有更好的精确度,最大估计误差分别不超过0.6 km/h和0.2°,对车轮滑移和复杂路面附着条件具有更强的自适应能力.  相似文献   

2.
4WID-4WIS车辆横摆运动AFS+ARS+DYC模糊控制   总被引:8,自引:0,他引:8  
对四轮独立驱动-独立转向(4WID -4WIS)车辆横摆稳定性控制进行研究.对侧偏角与横摆角速度之间的耦合性进行分析,提出了控制策略:当质心侧偏角比较小时以理想横摆角速度跟踪控制为主,当质心侧偏角比较大时以抑制质心侧偏角过大为主.基于模糊控制技术提出集成“主动前/后轮转向+直接横摆力矩控制”( FRD)的新型车辆横摆稳定性控制系统.仿真结果表明,与直接横摆力矩控制(DYC)的车辆相比,FRD可明显降低车辆的制动力矩和车轮纵向滑移率,确保车辆在低附着路面上高速行驶时具有良好的横摆稳定性.  相似文献   

3.
基于扩张状态观测器的路面附着系数实时估计   总被引:2,自引:0,他引:2  
对车辆动力学控制中的道路路面附着系数实时估计问题进行研究.首先使用魔术公式建立1/4车辆制动模型,即车轮制动动力学模型;然后将其中的附着系数相关项视为制动系统的扩张状态,建立其扩张状态观测器,通过轮速信号和制动力矩信号实时观测制动过程中地面与轮胎间的纵向力,进而计算出路面附着系数;最后在均匀路面和突变路面条件下进行仿真研究.结果表明,所提出的方法对车辆制动系统参数摄动和传感器噪声具有鲁棒性,可以准确地实现道路路面附着系数的实时估计,观测器与控制器设计具有一定独立性.  相似文献   

4.
对车辆动力学控制中的道路路面附着系数实时估计问题进行研究。首先使用魔术公式建立1/4车辆制动模型,即车轮制动动力学模型;然后将其中的附着系数相关项视为制动系统的扩张状态,建立其扩张状态观测器,通过轮速信号和制动力矩信号实时观测制动过程中地面与轮胎间的纵向力,进而计算出路面附着系数;最后在均匀路面和突变路面条件下进行仿真研究。结果表明,所提出的方法对车辆制动系统参数摄动和传感器噪声具有鲁棒性,可以准确地实现道路路面附着系数的实时估计,观测器与控制器设计具有一定独立性。  相似文献   

5.
在Burkhardt模型与单接触点瞬态模型的基础上建立整车模型,针对路面附着信息进行估计器设计。以轮胎所受纵向力为基础,利用车轮滚动逆模型建立车轮转速与所受外力矩的关系,经过RLS算法估计出车轮所受纵向力,进而得到纵向摩擦系数;借助Fiala轮胎模型,建立车辆运动状态与轮胎所受侧向力、轮-路附着系数之间的量纲转化关系,由此设计观测器,估计出轮胎所受侧向力与轮-路附着系数,进而得到轮-路侧向摩擦系数与轮-路附着系数;结合所得轮胎所受纵向附着力与侧向附着力,得出轮胎侧偏角。最后,利用Carsim与Matlab/Simulink软件建立联合仿真平台,根据标准试验工况进行仿真实验。结果显示所设计估计器能够准确估计得到轮胎-路面附着信息以及轮胎侧偏角。  相似文献   

6.
为了改善车辆在低附着系数路面的稳定性,提出了基于轮胎力优化分配的车辆稳定性控制策略。整体控制方案采用分层结构的控制方法,上层横摆力矩控制器以跟踪期望横摆角速度为目标,输出保持车辆横向稳定性的修正横摆力矩;下层控制分配器通过最优化控制分配方法,合理、最优地分配各轮制动力大小,实现上层修正横摆力矩。采用MATLAB/Simulink与Carsim联合仿真平台,验证所设计稳定性控制方案的控制效果,并与传统的单轮、单侧制动控制方式进行对比。研究结果表明,在低附着系数路面上,同时对多个车轮进行优化分配控制可以发挥更大的控制潜力,控制效果明显优于单轮/单侧制动控制方式。  相似文献   

7.
本文通过利用Adams/CAR建立了整车动力学仿真模型;基于DYC控制方法和线性二次型最优控制理论,在Matlab中建立前馈-反馈复合控制系统和与ADAMS联合的控制模块,实现ADAMS与Matlab的车辆稳定性控制联合仿真;通过调节控制系统参数,对湿滑路面的阶跃工况进行仿真,分析联合仿真的结果,使控制器对车辆的稳定性控制效果达到最佳.结果表明,本控制系统能有效提高车辆的操作稳定性.  相似文献   

8.
基于主动制动的车辆稳定性系统最优控制策略   总被引:1,自引:1,他引:0  
引入分层控制概念设计了横摆力矩控制和滑移率控制相结合的车辆稳定性控制系统.建立了侧偏角和横摆角速度具有最佳输出响应的车辆理想模型,采用前馈与反馈控制相结合跟踪理想模型的控制策略,基于最优控制理论设计横摆力矩控制器.通过设计理想滑移率分配模块确定下层滑移率控制器理想值,基于模糊控制理论设计滑移率控制器.在Matlab/Simulink平台上建立8自由度非线性车辆模型,分别在低附着和高附着路面条件下进行了仿真分析.结果表明:采用分层控制可以很好地实现车辆所需横摆力矩,有效地控制车辆质心侧偏角和横摆角速度跟踪理想模型,瞬态及稳态响应良好,改善了车辆操纵稳定性.  相似文献   

9.
为提高低附着极限操纵工况下半挂汽车列车队列的跟驰控制性能,保证队列运行的安全性,提出考虑个体车辆动力学特性的半挂汽车列车队列协调控制方案。首先建立了12自由度(12DOF)的非线性半挂汽车列车模型作为队列中个体车辆的动力学仿真模型,其次设计了基于车头时距策略和模型预测控制(MPC)方法的上层队列跟驰控制器,一个显著特点是加速度约束可以根据路面附着的变化自动调整,即在进行上层队列的控制决策时就考虑了个体车辆动力学的潜能,使决策的期望跟驰加速度不超出个体车辆动力学极限,实现了上层队列跟驰与下层车辆动力学稳定性的协调控制。为准确识别路面附着工况,设计了基于带有遗忘因子的递归最小二乘法的路面附着系数估计算法。最后,以3辆车组成的半挂汽车列车队列为对象,对控制方案进行仿真验证,并分析了轴间制动力分配对队列跟驰控制和队列中各车辆横向稳定性的影响。研究结果表明:所提出的队列控制方案可以实现队列的跟驰控制,验证了在低附着路面条件下通过上下层的协调控制,可以显著减小跟驰误差和车间距波动,缩短跟驰调整时间。通过仿真分析还得到不同的制动力分配方案对队列跟驰性能的影响差别较大,并且还会显著影响车辆的横向稳定性。  相似文献   

10.
提出电动汽车再生摩擦集成制动系统,建立了集成制动系统动力学模型和仿真系统;针对小型电动乘用车,分别在高附着路面直行、低附着路面直行、高附着弯道行驶3种典型工况下,对集成制动系统进行ABS性能仿真试验研究。研究中,以各轮制动转矩、滑移率和质心纵向加速度表征ABS控制性能参数,以纵向位移和质心侧偏角表征车辆行驶稳定性参数,以制动能回收率表征车辆能量回馈性能参数。研究结果表明,电动汽车再生摩擦集成制动系统具有较高制动性能、良好的ABS控制性能及较好的前后轮制动力分配性能,同时显著提高了制动能回收率。  相似文献   

11.
周福阳  郭康权  李岩  党小选 《农业机械学报》2021,52(1):385-392,417
农用柔性底盘原地姿态切换时车轮绕偏置转向轴原地滚动转向,为探明该过程的轮胎力学特性,对接地区域的滑移速度进行了运动学分析,据此将现有轮胎纵滑LuGre模型扩展成纵滑横滑联合的偏置转向轴原地转向LuGre模型;设计了相应测试装置,通过双因素试验测试了偏置距离和载荷对轮胎横向与纵向摩擦力的影响;根据实测结果对模型参数进行了辨识,利用辨识值对柔性底盘原地姿态切换过程中的轮胎摩擦力进行了仿真。结果表明:柔性底盘原地姿态切换时,轮胎受到阻碍滚动的纵向摩擦力和指向外侧的横向摩擦力,纵向摩擦力与载荷的1.82次方成正比,与偏置距离的1.61次方成反比;随着偏置距离的增加,横向摩擦力先增大、后减小,但变化较为平缓。轮胎横向与纵向摩擦力的实测结果和仿真结果吻合程度较高。本研究可为柔性底盘转向驱动力矩的估算和装置参数的优化提供依据。  相似文献   

12.
为提高多轮轮毂电机驱动车辆动力学综合控制性能,提出了一种基于分层模型的直接横摆力矩控制策略。上层为运动跟踪控制层,设计了基于车轮转角的前馈控制器,对车辆横摆角速度稳态增益进行调节,同时将滑模控制进行改进,设计了滑模条件积分控制器进行反馈控制,使横摆角速度追踪其期望值;下层为转矩优化分配层,基于稳定性优先原则,建立了以减小轮胎负荷率为目标的优化函数,并且将控制分配问题转换为二次规划问题进行求解。依托某型8×8轮毂电机驱动样车进行实车试验,结果表明,在连续转向工况和双移线工况下,所提出的控制策略使车辆最大横摆角速度偏差分别降至理想横摆角速度的6%和9%以内。此外,该策略能够有效控制轮胎负荷率,实现转向行驶时的转矩优化分配,改善了车辆操纵稳定性。  相似文献   

13.
基于DYC和ABS分层协调控制策略的ESP仿真   总被引:4,自引:3,他引:1  
提出了一种基于直接横摆力矩控制器(DYC)和制动防抱死系统(ABS)分层协调控制策略的汽车电子稳定程序(ESP)控制方法,以提高ESP的控制效果.在DYC和ABS的基础上设计了一个协调控制器,将控制系统分成上下层.上层协调控制器根据侧偏角的偏差值和车轮的滑移率计算出对下层子系统的调节量,统一协调下层的DYC和ABS工作.仿真结果表明,采用此协调控制策略,可比单独采用DYC更好地维持车辆的方向稳定性和侧向性能.  相似文献   

14.
提出了一种基于直接横摆力矩控制器(DYC)和制动防抱死系统(ABS)分层协调控制策略的汽车电子稳定程序(ESP)控制方法,以提高ESP的控制效果。在DYC和ABS的基础上设计了一个协调控制器,将控制系统分成上下层。上层协调控制器根据侧偏角的偏差值和车轮的滑移率计算出对下层子系统的调节量,统一协调下层的DYC和ABS工作。仿真结果表明,采用此协调控制策略,可比单独采用DYC更好地维持车辆的方向稳定性和侧向性能。  相似文献   

15.
基于滑模极值搜索算法的车辆驱动防滑控制策略   总被引:2,自引:0,他引:2  
周兵  徐蒙  袁希文  范璐 《农业机械学报》2015,46(2):307-311,342
为了提高车辆的驱动防滑能力,提出了一种基于滑模极值搜索算法的驱动防滑控制策略。采用滑模极值搜索算法作为一种自寻优方法找到轮胎力-滑转率曲线的极值点,无需估计路面附着系数和建立理想参考模型就可以将轮胎的滑转率控制在最优滑转率附近,提高车辆的动力性和方向稳定性。在Matlab/Simulink中建立车辆系统仿真模型。仿真结果表明,此控制策略能使车辆在驱动过程中快速达到实时路面条件下的最优滑转率,增强了车辆的动力性能。  相似文献   

16.
针对某项目开发的电动汽车样车在行车试验时存在前轮侧滑量偏大引起轮胎磨损较大的问题,基于灵敏度分析对麦弗逊式前独立悬架的布置方案进行优化,在ADAMS/Car模块中建立整车虚拟样机模型,进行了整车操纵稳定性仿真试验分析,并且将优化前后整车的操纵稳定性进行对比,优化后的整车操纵稳定性有所提高。  相似文献   

17.
提出了一种含有两个参数的轮胎纵向力模型,并通过该模型利用基于模式搜索的最小二乘法对轮胎的纵向刚度和滚动半径进行了动态估计。仿真证明了该算法的可行性。将该算法应用于车辆的实际试验数据,结果证明轮胎的压力与轮胎纵向刚度近似成反比。  相似文献   

18.
为了弥补汽车动力学独立主动控制系统的不足,研究了主动前轮转向(AFS)和横摆力矩控制(DYC)的联合控制策略。运用滑模控制理论,设计主动前轮转向控制器,控制汽车的横摆角速度。基于最优控制理论,设计横摆力矩控制器,通过前馈控制调整侧偏角,状态反馈控制调整横摆角速度和侧偏角。线性二自由度开环汽车模型仿真结果表明,无论是低速还是高速,联合控制方法能够有效地同时控制汽车的侧偏角和横摆角速度,提高了汽车操纵稳定性。  相似文献   

19.
用于车辆紧急制动仿真的动态轮胎模型   总被引:2,自引:0,他引:2  
提出一种可用于车辆紧急制动仿真的动态轮胎模型——LuGre轮胎模型。该动态模型不仅具有与经典稳态模型(如魔术公式)相似的稳态特性,可以方便地通过试验数据进行参数拟合和在线整定,而且能够精确捕捉汽车紧急制动过程中的瞬态特性,又由于采用微分方程形式来描述,更有利于开发高性能的电子制动控制系统来提高汽车的行驶安全性。得到了LuGre轮胎模型的基本特性,并分析了其在车辆紧急制动仿真中的稳态特性和动态特性。  相似文献   

20.
毕松  韩奕非 《农业机械学报》2023,54(8):110-121,192
受果园路面起伏及轮胎附着能力变化影响,滑动转向轮式机器人轮胎的垂直载荷及侧向力参数变化大且难以实时估计,针对现有滑动转向控制器设计时对轮胎动力学参数进行简化,从而导致机器人姿态控制稳定性低的问题,本文提出了非铺装路面滑动转向轮式机器人轮胎垂直载荷实时估计方法和轮胎驱动力实时估计及优化分配算法。首先,提出了适用于滑动转向过程静力学计算的理想平面以及基于该平面的四轮垂直载荷估计方法;其次,提出了基于Fiala轮胎动力学模型的小侧偏角侧向力估计方法;再次,建立了滑动转向轮式机器人坡道稳态动力学方程和轮胎实时驱动力估计方法;最后,基于轮胎利用率构造轮胎驱动力最优实时分配模型。为验证本文方法,建立了基于ADAMS的滑动转向轮式机器人动力学模型进行对比验证,并且对垂直载荷以及侧向力估计方法搭建了检测装置进行实际验证。实际验证结果表明,轮胎垂直载荷实时估计方法准确率为95%以上,侧向力实时估计方法准确率为85%以上,基于轮胎垂直载荷以及侧向力的轮胎驱动力优化方法使轮胎利用率从96.25%降低至93.75%,提高了轮胎附着裕量和姿态控制稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号